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Abstract

A regular mapM is an embedding of a finite connected graph into a compact surface S
such that its automorphism group Aut+(M) acts transitively on the directed edges. A re-
flection ofM fixes a number of simple closed geodesics on S, which are called mirrors. In
this paper, we prove two theorems which enable us to calculate the total number of mirrors
fixed by the reflections of a regular map and the lengths of these mirrors. Furthermore, by
applying these theorems to Hurwitz maps, we obtain some interesting results. In particular,
we find an upper bound for the number of mirrors on Hurwitz surfaces.
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1 Introduction
Let S be a compact Riemann surface of genus g. It is known that S can be expressed in
the form U/Λ, where U is the Riemann sphere Σ, the Euclidean plane C, or the hyperbolic
plane H, depending on whether g is 0, 1 or > 1, respectively, and Λ is a discrete group of
isometries of U. A conformal or anti-conformal homeomorphism f : S → S is called an
automorphism of S. If S admits an anti-conformal involution r : S → S, then it is called
symmetric and r is called a symmetry of S. The fixed-point set of r is either empty, or
consists of disjoint simple closed geodesics on S. These geodesics are called the mirrors
of r and their number cannot exceed g + 1 by a classical theorem of Harnack [10]. All
automorphisms of S form a group under composition and it is denoted by Aut±(S). The
subgroup of Aut±(S) consisting of orientation-preserving automorphisms is denoted by
Aut+(S).
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Let T be a triangle in U, with angles π/2, π/m and π/n, where m and n are integers
greater than one and 1

m + 1
n is greater than, equal to or less than 1

2 depending on whether
U is Σ, C or H, respectively. Such a triangle is said to be a (2,m, n)-triangle. Let Γ be
the group generated by the rotations about the corners of T . Then it is called the ordinary
triangle group Γ[2,m, n] and it has a presentation

〈x, y, z | x2 = ym = zn = xyz = 1〉.

If Γ is the group generated by the reflections in the sides of T , then it is called the extended
triangle group Γ(2,m, n), which has a presentation

〈a, b, c | a2 = b2 = c2 = (ab)2 = (bc)m = (ca)n = 1〉.

A map M on S is an embedding of a finite connected graph G into S such that the
interior of each face (a component of S \G) is homeomorphic to an open disc. The genus
of M is defined to be the genus of S. A directed edge of M is called a dart and M
is said to be of type {m,n} if every face of M has m sides and n darts meet at every
vertex. An automorphism of S that leavesM invariant and preserves incidence is called
an automorphism of M. All automorphisms of M form a group under composition and
this group is denoted by Aut±(M). The subgroup of Aut±(M) consisting of orientation-
preserving automorphisms is denoted by Aut+(M). If Aut+(M) is transitive on the darts,
thenM is called regular. It is clear that ifM is regular, then the number of darts is equal
to |Aut+(M)| andM has |Aut+(M)|/2 edges, |Aut+(M)|/m faces and |Aut+(M)|/n
vertices.

IfM is a regular map of type {m,n} and S = U/Λ is the underlying Riemann surface,
then by [12], Λ is normal in the ordinary triangle group Γ[2,m, n]. If Λ is also normal in the
extended triangle group Γ(2,m, n), thenM is called reflexible. In that caseM admits an
anti-conformal involution r, which is a symmetry of S with fixed-points, called a reflection
ofM.

In this paper, we prove two theorems which enable us to calculate the total number of
mirrors fixed by the reflections of a regular map and the lengths of these mirrors. Further-
more, we use these theorems to obtain an upper bound for the total number of mirrors in
Hurwitz maps.

Throughout this paper, we assume that the maps we deal with are regular and reflexible.

2 Patterns and mirror automorphisms
LetM be a regular map of type {m,n} on a compact Riemann surface S of genus g. By
joining the centers of the faces ofM to the midpoints of the neighboring edges and vertices
by geodesic arcs, we can divide S into |Aut±(M)| (2,m, n)-triangles. If T is one of these
triangles, then the group Aut±(M) can be generated by the reflections in the sides of T
and it has a presentation of the form

〈A,B,C | A2 = B2 = C2 = (AB)2 = (BC)m = (CA)n = · · · = 1〉. (2.1)

Similarly, the group Aut+(M) can be generated by the rotations about the corners of T
and it has a presentation of the form

〈X,Y, Z | X2 = Y m = Zn = XY Z = · · · = 1〉. (2.2)
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Note that if g = 0, then the groups Aut±(M) and Aut+(M) are finite and the explicitly
listed relations in (2.1) and (2.2) give presentations for these groups, respectively. If g ≥ 1,
then these presentations must contain at least one more relation.

Following [7], we label the vertices, edge-centers and face-centers ofM with 0, 1 and
2, respectively. They are called the geometric points ofM. As an automorphism preserves
the geometric points, it follows that a mirror of a reflection of M passes through some
geometric points of M and these geometric points form a periodic sequence. Since S is
compact, this sequence is finite and it is called the pattern of the mirror. As an example,
consider the icosahedral map on the sphere, which has type {3, 5}. Each reflection of this
map fixes a mirror with pattern 010212010212, which is abbreviated as (010212)2; see
[7]. Each repeated part of a pattern is called a link, and the number of links is called the
link index. So in this example, 010212 is a link and the link index is 2.

In [15], it has been shown that the pattern of a mirror is always obtained from one of the
six links 01, 02, 12, 0102, 0212, 010212, and there cannot be more than three mirrors
with different patterns on the same Riemann surface. (See Figures 1 and 2, which repre-
sent regular maps admitting two and three different patterns, respectively.) The following
theorem expresses this idea and it can be deduced from [15].

Theorem 2.1. LetM be a regular map of type {m,n} on a compact Riemann surface S
and let M be a mirror of a reflection ofM. Then:

(i) If m and n are odd, then M has pattern of the form (010212)`;

(ii) If m is even and n is odd, then M has pattern of the form (0102)`1 or (12)`2 ;

(iii) If m is odd and n is even, then M has pattern of the form (0212)`1 or (01)`2 ;

(iv) If m and n are even, then M has pattern of the form (01)`1 , (02)`2 or (02)`3 .

Here `, `1, `2 and `3 are positive integers, which depend only onM, not on M . Further-
more, `is in different lines need not be equal.

Note that all the patterns listed in each part of Theorem 2.1 do occur. For example,
in part (ii) the surface S contains two classes of mirrors such that the mirrors in different
classes have different patterns, namely (0102)`1 and (12)`2 . The same argument applies
to all parts of Theorem 2.1.

Now letM be a regular map on a compact Riemann surface S and let M be a mirror of
a reflection ofM. Suppose that ` is the link index of the pattern of M . If ` > 2, then there
exist two orientation-preserving automorphisms ofM of order `, which fix M setwise and
have no fixed points on M . They rotate M in opposite directions and cyclically permute
the links of the pattern of M . These automorphisms are inverses of each other and they are
called the mirror automorphisms of M . Note that if ` = 2, then M has a unique mirror
automorphism. If ` = 1, then we assume that the mirror automorphism ofM is the identity.
Associated to each pattern, there is a conjugacy class of mirror automorphisms such that
the order of each mirror automorphism in this conjugacy class is equal to the link index
of the pattern; see [15, Lemma 1]. In Table 1, for each pattern, a representative mirror
automorphism is displayed in terms of the generators of Aut+(M) in (2.2). Note that in
the table, for each pattern, only one link is displayed. See [15] for details.
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Table 1: Patterns and mirror automorphisms.

Case Link Mirror automorphism

1 01 Z
n
2X

2 02 Y
m
2 Z

n
2

3 12 Y
m
2 X

4 0102 Z
n+1
2 Y Z

n+1
2 Y

m
2

5 0212 Z
n
2 Y

m+1
2 ZY

m+1
2

6 010212 Y
m+1

2 ZY
m+1

2 Z
n+1
2 Y Z

n+1
2

3 Number of mirrors
From now on, ‖M‖ will denote the total number of mirrors fixed by the reflections of a
regular mapM.

Theorem 3.1. Let M be a regular map of type {m,n} on a compact Riemann surface,
and let `, `1, `2, `3 be as in Theorem 2.1. Then:

(i) If m and n are odd, then ‖M‖ = |Aut+(M)|
2` ;

(ii) If m and n have different parities, then ‖M‖ = |Aut+(M)|
2 ( 1

`1
+ 1

`2
);

(iii) If m and n are even, then ‖M‖ = |Aut+(M)|
2 ( 1

`1
+ 1

`2
+ 1

`3
).

Proof. (i) By Theorem 2.1, every mirror of a reflection ofM has pattern (010212)
`. It is

clear that each of these mirrors contains ` edges ofM. SinceM has |Aut+(M)|
2 edges, we

find that ‖M‖ = |Aut+(M)|
2` .

(ii) Suppose that m is even and n is odd. It follows from Theorem 2.1 that the pattern
of a mirror of a reflection of M is either (0102)

`1 or (12)
`2 . It is known that M has

|Aut+(M)|
m faces and a mirror with pattern (0102)

`1 passes through the centers of `1 faces
ofM. Also, the number of mirrors with pattern (0102)

`1 passing through the center of a
face F ofM is m/2. (See Figure 1, where m = 6 and n = 3. The dashed lines denote the
mirrors that have pattern (0102)

`1 and pass through the center of F .) Therefore, there are

|Aut+(M)|
m

1

`1

m

2
=
|Aut+(M)|

2`1

mirrors with pattern (0102)
`1 . A similar argument shows that there are

|Aut+(M)|
m

1

`2

m

2
=
|Aut+(M)|

2`2

mirrors with pattern (12)
`2 . As a result, we find that

‖M‖ =
|Aut+(M)|

2

(
1

`1
+

1

`2

)
.
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Figure 1: Mirrors with pattern (0102)
`1 , passing through a face-center.

The case where m is odd and n is even is similar.
(iii) In this case, by Theorem 2.1, the pattern of a mirror is either (01)

`1 , (12)
`2 or

(02)
`3 . We know thatM has |Aut+(M)|

n vertices and a mirror with pattern (01)
`1 passes

through `1 vertices of M. Moreover, the number of mirrors with pattern (01)
`1 passing

through a vertex ofM is n/2. (See Figure 2, where m = n = 4. The dashed lines denote
the mirrors that have pattern (01)

`1 and pass through a vertex v ofM.) Thus, there are

|Aut+(M)|
n

1

`1

n

2
=
|Aut+(M)|

2`1

mirrors with pattern (01)
`1 . Similar arguments show that there are |Aut+(M)|

2`2
mirrors with

pattern (12)
`2 and |Aut+(M)|

2`3
mirrors with pattern (02)

`3 . Consequently, we find that

‖M‖ = |Aut+(M)|
2 ( 1

`1
+ 1

`2
+ 1

`3
).
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Figure 2: Mirrors with pattern (01)
`1 , passing through a vertex.

Note that if M is a reflexible regular map and if we are given a presentation for
Aut+(M) as in (2.2), then we can easily determine the link indices by using Table 1
and MAGMA [1]. This is because the link indices are the orders of the mirror automor-
phisms (see [15, Lemma 1]), and the latter are explicitly known (see Table 1). Then by
using Theorem 3.1 we can easily calculate ‖M‖.
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Example 3.2. Let S be the Riemann surface of genus 7 admitting 504 conformal automor-
phisms. This surface is known as the Fricke-Macbeath surface; see [8, 14]. It is known that
S underlies a regular mapM of type {3, 7}, which is called the Fricke-Macbeath map. It
follows from [15] that Aut+(M) has a presentation

〈X,Y, Z | X2 = Y 3 = Z7 = XY Z = (Y 2ZY 2Z4Y Z4)2 = 1〉,

and Y 2ZY 2Z4Y Z4 is a mirror automorphism. Since this automorphism has order 2, by
Theorem 2.1 every mirror on S has pattern (010212)

2. Thus, by using Theorem 3.1 we
find that ‖M‖ = 504

4 = 126.

Remark 3.3. LetM be a regular map andM∗ be its dual. Since the reflections ofM and
M∗ coincide, the mirrors ofM∗ are the same as those ofM. So ‖M‖ = ‖M∗‖.
Remark 3.4. Let M be a regular map on a compact Riemann surface S and let M be
a mirror of a reflection of M. If ` is the link index corresponding to the pattern of M ,
then the stabilizer of M in Aut+(M) is the dihedral group D`. Here D` is generated by
a mirror automorphism of M and an involution fixing two antipodal points of M . Since
Aut+(M) is transitive on the mirrors with the same pattern, the orbit of M consists of the
mirrors on S which have the same pattern as M . So by the Orbit-Stabilizer theorem, we
find that there are |Aut+(M)|/2` mirrors in the orbit of M . By Theorem 2.1, there are at
most three orbits, and their sizes can be determined in the same way. Therefore, we obtain
an alternative proof of Theorem 3.1.

4 Lengths of mirrors
LetM be a regular map of type {m,n} on a compact Riemann surface S of genus g and
let M be a mirror of a reflection ofM. As pointed out in Section 2, S can be divided into
|Aut±(M)| (2,m, n)-triangles and M is a combination of the sides of (2,m, n)-triangles.
Let a, b and c be the lengths of the sides of a (2,m, n)-triangle as indicated in Figure 3. If
g > 1, then by using sine and cosine rules for hyperbolic triangles, we can calculate a, b
and c. So the length of M can be calculated as described below.
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Figure 3: A (2,m, n)-triangle with side lengths a, b, c.

Let m and n be odd. Then M will have pattern of the form (010212)`. Now every
link corresponds to a segment of M , which has length 2(a + b + c). Thus, M has length
2`(a + b + c). Clearly, every mirror has the same length as M in this case. If m and n
have different parities, then there are two classes of mirrors on S. Ifm and n are both even,
then there are three classes of mirrors on S. In both cases the mirrors in each class have the
same length and pattern. In each case, the lengths of the mirrors can be calculated in the
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same way. Note that if g = 0 or 1, then it is not difficult to find the length of the mirrors
explicitly. So we have the following result:

Theorem 4.1. LetM be a regular map of type {m,n} on a compact Riemann surface S
and let the lengths of the sides of a (2,m, n)-triangle be a, b and c as indicated in Figure 3.
Then the lengths of the mirrors of the reflections ofM can be determined by the formulae
in Table 2, where `, `1, `2 and `3 are the link indices and `is in different lines need not be
equal.

Table 2: Lengths of mirrors.

Case Pattern Length of mirror

m and n are odd (010212)` 2`(a+ b+ c)

m odd n even (01)`1 2`1a
m odd n even (0212)`2 2`2(b+ c)

m even n odd (12)`1 2`1b
m even n odd (0102)`2 2`2(a+ c)

m and n are even (01)`1 2`1a
m and n are even (12)`2 2`2b
m and n are even (02)`3 2`3c

5 Application to Hurwitz maps
By a classical theorem of Hurwitz [11], a compact Riemann surface of genus g > 1 has at
most 84(g− 1) conformal automorphisms. Any such surface S = H/Λ is called a Hurwitz
surface, and in that case Aut+(S) is called a Hurwitz group. It is known that if S is a
Hurwitz surface, then Λ is normal in the ordinary triangle group Γ[2, 3, 7]. Thus, every
Hurwitz surface underlies a regular map of type {3, 7}, which is called a Hurwitz map.
Furthermore, Aut+(M) is isomorphic to Aut+(S) and has a presentation of the form

〈X,Y, Z | X2 = Y 3 = Z7 = XY Z = · · · = 1〉.

It has been shown by [13] that the upper bound in Hurwitz’s theorem is attained for in-
finitely many values of the genus g. Thus, there exist infinitely many Hurwitz maps and
surfaces. See [2, 3, 4, 5, 13] for further details.

Theorem 5.1. LetM be a Hurwitz map of genus g and let S be the underlying surface.
Then ‖M‖ ≤ 21(g − 1), where equality holds if and only if S is the Fricke-Macbeath
surface.

Proof. Let ` be the link index ofM. By Theorem 3.1, we find that

‖M‖ =
|Aut+(M)|

2`
=

84(g − 1)

2`
=

42(g − 1)

`
.

It follows from [15, Theorem 5] that ` ≥ 2 and hence ‖M‖ ≤ 21(g − 1) and that equality
holds if and only if S is the Fricke-Macbeath surface. See also [9, Theorem 4.1].
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It follows from Theorem 5.1 that if M is a Hurwitz map of genus g with link index
`, then ‖M‖ is bounded above by 21(g − 1). When this upper bound is attained, ` = 2
and the underlying surface is the Fricke-Macbeath surface. However, ‖M‖ cannot have a
lower bound in terms of g. This follows from the theorem below, which was given in [6].

Theorem 5.2. For every positive integer n, there exist Hurwitz maps with link indices 2n
and 3n. In particular, the link index of a Hurwitz map can be any even positive integer.

Let L be the sum of the lengths of the sides a (2, 3, 7)-triangle. Then by using the
sine and cosine rules for hyperbolic triangles we find that L ' 1.4490747226. It follows
from Theorem 4.1 that the length of a mirror on a Hurwitz surface is 2`L, where ` is the
link index. Also, the minimum possible length of a mirror on a Hurwitz surface is 4L '
5.7962988904, and in that case the underlying surface is the Fricke-Macbeath surface; see
[15, Theorem 6]. However, by Theorem 5.2, there is no upper bound on the lengths of
mirrors on Hurwitz surfaces.
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