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Abstract

Let G be a graph cellularly embedded on a surface. We consider the problem of determining
whetherG contains a cycle (i.e. a closed walk without repeated vertices) of a certain topological
type. We show that the problem can be answered in linear time when the topological type is one of
the following: contractible, non-contractible, or non-separating. In either case we obtain the same
time complexity if we require the cycle to contain a given vertex. On the other hand, we prove that
the problem is NP-complete when considering separating or splitting cycles. We also show that
deciding the existence of a separating or a splitting cycle of length at mostk is fixed-parameter
tractable with respect tok plus the genus of the surface.

1 Introduction

Topological graph theory studies combinatorial embeddings of graphs on surfaces. This includes the
design of efficient algorithms for finding optimal cycles with certain topological properties. This last
subject has received much attention since Thomassen seminal work [Tho90] to extract a shortest cycle
in a family of cycles satisfying the so-called3-path condition (see also Mohar and Thomassen [MT01,
Chapter 4]). Recent progress include polynomial-time algorithms for the shortest (possibly closed)
walk homotopic to a given (possibly closed) walk [CdVE10] or the shortest contractible [Cab10],
non-contractible, or non-separating cycle [EHP04, CC07, CCdVL10a]. In contrast, it is NP-hard to
find a shortestsplitting (separating but non-contractible) cycle [CCdVE+08], a shortest separating
cycle [Cab10], a shortest contractible cycle through a given vertex [Cab10], or a shortest cycleZ2-
homologous to a given closed walk [CEN09].

In this paper we consider the simpler problem of deciding if thereexists a cycle of a certain
topological type in a given surface-embedded graph, without any optimization objective. Here, a
cycle is a closed walk without repeated vertices; looking for closed walks instead of cycles would
make the problem trivial. We may require this cycle to contain a given vertex or not. We emphasize
that we considercellular graph embeddings, where each face is an open disk. Nevertheless, a given
edge may have the same face on both of its sides.
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We exhibit a strong dichotomy in the complexity of these problems, depending on the topological
type required. As it turns out, there are linear-time algorithms when the corresponding optimization
problem has a polynomial-time algorithm. This is the case for contractible, non-contractible, or non-
separating cycles. On the other hand, we again obtain NP-hardness for splitting or separating cycles,
as in the optimization version of these problems. For those cases, we also propose algorithms to
decide the existence of a separating or splitting cycle of length at mostk, whose complexities are
polynomial whenk and the genus of the surface are fixed. We emphasize that our arguments quite
differ from the ones used in the above cited papers [EHP04, CdVE10, CC07, CCdVE+08, CEN09,
Cab10, CCdVL10a] and are more inclined towards basic graph theory.

Our Results. Let G = (V,E) be a graph cellularly embedded on a surfaceS, possibly non-
orientable. Letn be the total number of vertices and edges ofG.

Theorem 1. We can determine in O(n) time if G admits:

1. a contractible cycle on S ,

2. a contractible cycle on S passing through a given vertex,

3. a non-contractible cycle on S passing through a given vertex,

4. a non-separating cycle on S passing through a given vertex,

and return one such cycle if it exists.

Note that the last two problems become rather trivial if we do not enforce the cycle to contain a
given vertex. Indeed, ifS is not a sphere, then any cycle in a cut graph (see the next section for a
definition) is non-separating, hence non-contractible.

Theorem 2. Deciding the existence of a cycle in G of any of the following type is NP-complete:

1. separating on S ,

2. splitting on S ,

3. separating on S and passing through a given vertex of G,

4. splitting on S and passing through a given vertex of G.

We mention that (1) answers negatively to an open problem raised by Mohar and Thomassen [MT01,
Problem 4.3.3(b)]. As a side note, (1) reduces to (3) (and similarly (1) reduces to (4)) usingCook re-
ductions: to solve (1), simply solve problem (3), taking each vertex ofG in turn, and similarly for (2).
However, NP-completeness is defined in terms ofKarp reductions, which is more restrictive. It is not
clear a priori that (1) reduces to (3) by Karp reductions, namely, whether an instance of (1) can be
transformed to an instance of (3) such that the answer is the same on both instances. Therefore, (3)
and (4) do not follow trivially from (1) and (2).

We finally propose algorithms for parameterized versions of those NP-complete problems relying
on the color-coding approach of Alon et al. [AYZ95].
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Theorem 3. Let k ≥ 1 be an integer, and let s be a vertex of G. There is an algorithm that in
2O(g+k)|E| log |V | time decides if G has a separating, respectively splitting, cycle on S through s of
length at most k and reports one, if one exists. There is a randomized algorithm for the same problem
that needs 2O(g+k)|E| time in the worst-case and returns the correct answer with probability at least
2/3.

By running this algorithm once for every choice ofs, we can drop the basepoint condition.

Corollary 4. We can decide if G has a separating, respectively splitting, cycle on S of length at most
k and report one, if one exists, in 2O(g+k)|E||V | log |V | time.

2 Background

We review some basic terminology and properties of graphs and their embedding on surfaces. We
follow standard graph theory terminology, as in the book by West [Wes01]. All the considered graphs
may have loops and multiple edges. Acycle in a graph is a closed walk without repeated vertices.
A loop is a closed walk with one distinguished vertex, itsbasepoint. All walks are oriented; given a
walkw, we denote byw−1 the same walk with the opposite orientation.

Blocks. LetG = (V,E) be a graph. Theblocks of G are its subgraphs induced by the classes of the
following equivalence relation on its setE of edges:e ∼ e′ if there is a cycle inG that contains bothe
ande′. The blocks ofG can be determined inO(|E|) time using depth-first search. (See West [Wes01,
p. 157]).

T -loops, T -cycles, and cycle group. Let T be a tree inG ands be a vertex ofT . To every edgee
of G with endpoints onT we can associate the loopτ(T, s, e) composed of the path inT joining s to
an endpoint ofe, the edgee, and the path inT joining the other endpoint ofe to s. We callτ(T, s, e)
theT -loop associated toe; the vertexs is thebasepoint of theT -loop.

We can also associate toe the closed walkτ(T, e) composed ofe and the path inT joining the
endpoints ofe. If e is not an edge ofT , τ(T, e) is called theT -cycle associated toe.

An even subgraph is a subgraph ofG, each vertex of which has even degree. An even subgraph is
thus a disjoint union of Eulerian subgraphs. The set of even subgraphs form an Abelian group, where
the sum corresponds to the symmetric difference of the even subgraphs. This group is called thecycle
group of G. WhenG is connected andT is a spanning tree ofG, it is again part of the folklore that
the set ofT -cycles associated to the set ofchords E(G) \E(T ) form a basis of the cycle group ofG.

Surfaces. We only consider surfaces without boundaries. Asurface (or 2-manifold)S is a compact,
connected, topological space where each point has a neighborhood homeomorphic to the plane.

A surface is homeomorphic to a sphere where either:

• g ≥ 0 open disks are removed and a handle is attached to each resulting circle, or

• g ≥ 1 open disks are removed and a Möbius band is attached to each resulting circle.

The surface is calledorientable in the former case andnon-orientable in the latter case. In both cases,
g is thegenus of the surface.
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Cellular graph embeddings. A graphG is cellularly embedded on a surfaceS if every open face
of (the embedding of)G onS is a disk. As it is customary, we will assume that the input graphs are
cellularly embedded. (At some intermediary steps we may have graphs that are not cellularly embed-
ded.) Following Mohar and Thomassen [MT01], the embedding ofG can be encoded by adjoining
to the data ofG a rotation system and asignature. The rotation system provides for every vertex in
V a cyclic permutation of its incident edges and the signature assigns a sign to every edge to indicate
whether the rotation systems of its endpoints are compatible or not. Storing a cellular embedding takes
a space linear in thecomplexity of G, that is, in its total number of vertices and edges.

A facial walk of G is then obtained by the face traversal procedure described in [MT01, p. 93].
Every face corresponds to two opposite facial walks. We will not differentiate these two opposite
facial walks and will refer tothe facial walk of a face as any one of its two facial walks.

An edgee of an embedded graphG may be incident to two distinct faces or to a single face. In
the former case,e is calledregular andsingular in the latter. Note that a regular edge appears exactly
once in each facial walk of its incident faces, while a singular edge appears twice, with or without the
same orientation, in the facial walk of its incident face.

There are data structures to maintain and operate efficiently with embedded graphs, like for exam-
ple the gem representation [Epp03, Lin82]. With such data structures we can traverse the neighbors
of a vertex in time proportional to its degree, obtain a facial walk in time proportional to its length, or
cut the surface along a path or cycle in time proportional to its length.

Duality. LetG be a graph embedded on a surfaceS. Its dual graph, denoted byG∗, has for vertices
the set of faces ofG and for edges the set of edges (dual to)E(G): two faces are adjacent if they share
an edge ofG. The edge dual toe is denoted bye∗, and it connects the two faces adjacent toe in the
embedding. An edge dual to a singular edge is a loop edge. For a set of edgesA ⊆ E(G), we use the
notationA∗ = {e∗ | e ∈ A}.

Homotopy and Homology. Let G be a graph embedded in an ambient spaceX (for example, a
surface). Two loops inG with basepoints arehomotopic in X if one can be deformed continuously to
the other withinX, keeping the basepoints fixed during the deformation. The equivalence classes of
homotopic loops are calledhomotopy classes, and we use〈α〉 to denote the homotopy class containing
the loopα. The homotopy classes form a group, where the multiplication in the group corresponds to
the concatenation of the loops. Its unit is the set ofcontractible loops, i.e., the set of loops that are
homotopic to the constant loop. When the ambient spaceX is a surfaceS where the graph is cellularly
embedded, we denote this group byπ1(S, s). Indeed, the fact thatG is cellularly embedded implies
that this group, called thefundamental group of S, depends only on the surfaceS. When we regardG
as a 1-dimensional complex and takeG itself as the ambient space, we obtain the fundamental group
of G, denoted byπ1(G, s). If G is connected andT is a spanning tree ofG, it is a well-known fact
that the set ofT -loops with basepoints associated to the set of chordsE(G) \ E(T ) form a basis of
π1(G, s).

LetG be a graph embedded in a surfaceS. Theboundary graph of a facef of G is the even sub-
graph ofG induced by the union of edges of the facial walk off occurring exactly once in this facial
walk. Two even subgraphs are saidhomologous if their sum in the cycle group ofG is equal to the sum
of the boundary graphs of some faces. The equivalence classes of homologous even subgraphs, called
homology classes, form an Abelian group under the symmetric difference. Equivalently, this group,
called thehomology group, can be defined as the quotient of the cycle group ofG by the subgroup
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of even subgraphs homologous to the empty graph. In particular,a generating family for the homol-
ogy group can be obtained by taking the homology classes of a basis of the cycle group ofG. It can
actually be shown that the homology group depends only on the surfaceS and not on the embedded
graphG; we therefore denote this homology group byH1(S). (This is known asZ2-homology in
algebraic topology, but it is the only homology we will deal with.)

Every loop inG without repeated vertices forms a cycle inG. It turns out that such a loop is
contractible if and only if the corresponding cycle bounds a disk inS. In this case, we say that the
cycle iscontractible. A cycle inG is separating if the surface is disconnected by cutting it along that
cycle. It is a well-known fact that a cycle separates a surface if and only if its homology class is trivial.
A cycle is splitting if it cuts the surface into two components, neither of which is a disk. In other
words, a splitting cycle is a separating and non-contractible cycle.

If H is a subgraph ofG, we will denoteS\\H the surface obtained after cuttingS alongH.
The dual graph of S\\H has for vertices the set of faces ofG and for edges the (dual) set of edges
E(G) \ E(H): two faces are adjacent if they share an edge that is not inH. If S\\H is a topological
disk, thenH is called acut graph. A cut graph isspanning if it contains all the vertices ofG.
In this case, the dual graph ofS\\H is a tree. A spanning cut graph can be computed in linear
time [CCdVL10b, Epp03].

A homology basis ofH1(S) can be computed as follows. LetH be a subgraph ofG that is a cut
graph, and letT be a spanning tree ofH. The set ofT -cycles associated to the set of chordsE(H) \
E(T ) form a homology basis forS. Said differently, a homology basis ofH1(S) can be obtained
from a homology basis of a cut graph. From Euler’s formula, it is easily derived that a homology basis
has2g (respectivelyg) cycles ifS is an orientable (respectively non-orientable) surface of genusg.
A homology class can thus be represented by a vector ofO(g) bits, where each bit stands for the
occurrence of a basis cycle in this sum [EW05, Section 4]. We will use[α] to denote the bit vector of
the homology class of an even subgraphα, and use⊕ to make the bitwise sum between classes. Thus,
if an even subgraphβ is the symmetric difference of two even subgraphsα andα′, then[β] = [α]⊕[α].

SupposeH is a spanning cut graph. LetT be a spanning tree ofH, hence ofG. We can compute
the bit vectors of the homology classes of theT -cycles associated to the edges ofG as follows. The bit
vector of theT -cycle associated to an edge ofT is obviously the zero vector. The homology class of
theT -cycle associated to an edge inE(H) \E(T ) has one non-zero bit for thisT -cycle. Now, cutting
S along the cut graphH yields a diskD. SinceH is spanning, every edgeuv in E(G) \ E(H) has
its endpointsu andv on the boundary ofD; therefore, the homology class ofτ(T, uv) is the mod 2
sum of the bit vectors of the walk connectingu andv on the boundary of the diskD (both possible
choices will give the same result). Assume one of the two pieces ofD cut alonge = uv is a single
facef of G; we may compute the bit vector ofe as indicated above, by running along the boundary
of f . Then we removef and recurse on the diskD \ f . Therefore, the following lemma holds.

Lemma 5 (See also [EN11, Lemma A.1.]). We can compute the homology class of all the T -cycles
associated to the edges of G in O(g|E|) time.

3 Contractible cycles

In this section we prove points (1) and (2) of Theorem 1: we can determine in linear time ifG contains
a contractible cycle1. The same is true if we impose the contractible cycle to contain a given vertex

1Note that the problem becomes trivial for a graph embedded with face-width at least two since, in this case, all the facial
walks are cycles. See [MT01, Prop. 5.5.11].
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Figure 1: A cellular embedding of a graph without contractible cycle.

of G. Figure 1 shows a simple example of graph embedding without contractible cycle. Recall that
an edge is regular if it is incident to two distinct faces. The edges ofG can be classified as regular
or singular in a simple traversal of all the facial walks: edges appearing once (resp. twice) in a facial
walk can be marked regular (resp. singular). This clearly takes linear time by assumption on the
data-structure for storing the embedded graphG.

Lemma 6. Let e be a regular edge of a face F of G. Then e belongs to a cycle of G whose edges
appear in the facial walk of F . Moreover, such a cycle can be extracted in time proportional to the
length of the facial walk of F .

Proof. Consider the subgraphGF of G induced by the edges of the facial walk ofF . Sincee is
regular, the complementary walk ofe in this facial walk does not usee. Hence, the graphGF − e is
connected and we can extract from this graph a path between the endpoints ofe to form a cycle with
e.

We denotec(F, e) the cycle extracted by the above procedure. The following lemma is a direct
consequence of the Jordan curve theorem [MT01, p.25].

Lemma 7. Let e be a regular edge incident to a face F . Assume that F is contained in a closed disk
of S bounded by a cycle of G. Then, the cycle c(F, e) bounds a disk in S .

Given a vertexs, we construct a set of cyclesC(s) as follows. For every faceF incident to at least
one regular edge, we add toC(s) the cyclec(F, e), wheree is an arbitrary regular edge incident toF .
Clearly,C(s) can be constructed in time proportional to the complexity ofG. Also, since every edge
of c(F, e) is incident toF , we remark that any edge ofG may appear in at most two cycles inC(s).

We also defineC as the set composed of a cycle of the formc(F, e) for every faceF of G whose
facial walk contains some regular edgee. Again, C can be constructed in time proportional to the
complexity ofG.

Lemma 8. G contains a contractible cycle through s if and only if some cycle in C(s) is contractible.
Similarly, G contains a contractible cycle if and only if some cycle in C is contractible.

Proof. Since every cycle inC(s) containss, the “if” condition of the first equivalence is trivial. On
the other hand, supposeG has a contractible cyclec throughs. Let e be an edge ofc incident tos.
Sincec bounds some diskD in S, the edgee must be regular and must have an incident faceF in D.
By construction,C(s) contains a cyclec(F, e′) for some regular edgee′. By Lemma 7, this cycle is
contractible. The proof for the second part of the lemma is entirely similar, dropping the condition on
s and replacingC(s) by C.
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Lemma 9. C(s) contains a contractible cycle if and only if there is a disk in S whose boundary is a
cycle of C(s) and whose interior is disjoint from the cycles in C(s). The same is true if we replace
everywhere C(s) by C.

Proof. Consider a contractible cyclec(F, e) ∈ C(s). It bounds a closed diskD onS. We choose this
cycle so as to minimize the number of faces ofG in D. Consider another cyclec(F ′, e′) ∈ C(s). We
claim thatc(F ′, e′) does not cross the interior ofD. Indeed, suppose for the sake of contradiction
that an edgea of c(F ′, e′) is interior toD. Then the faces incident toa, one of which isF ′, must
be contained inD. So c(F ′, e′) would also be contained inD. By Lemma 7, this would be in
contradiction with the minimality ofD. A formal substitution ofC for C(s) proves the second part of
the lemma.

Proof of points (1) and (2) of Theorem 1. We prove (2). Again, a proof of (1) can be obtained by a
formal substitution ofC for C(s).

By Lemma 8, it suffices to test if one of the cycles inC(s) is contractible. By Lemma 9, this
happens if and only if one component of the surfaceS cut through∪C(s) — the set of edges in at least
one cycle inC(s) — is a disk whose boundary is a cycle ofC(s). This can be checked in linear time as
follows. First label each edge ofG with the cycles ofC(s) that contain this edge. As remarked above,
an edge can get at most two labels. CuttingS through the edges of the cycles inC(s) takes linear time
and we can extract the components that are disks by looking at their Euler characteristic. For each
disk component, we can easily check in constant time per edge if all the boundary edges share a same
label, i.e. if this component is bounded by a cycle inC(s).

4 Non-contractible and non-separating cycles

In this section we prove points (3) and (4) of Theorem 1: we can determine in linear time ifG contains
a non-contractible cycle or a non-separating cycle through a given vertexs.

Let T be a spanning tree ofG. Denote byC∗ the subgraph of the dual graphG∗ with the same
vertex set asG∗ and edge setE(G∗) \ E(T )∗. The following lemma appears in our former pa-
per [CCdVL10b, Cor. 2].

Lemma 10. Let e ∈ E(G) \ E(T ). The T -cycle τ(T, e) is separating on S if and only if C∗ − e∗ is
not connected. The T -cycle τ(T, e) is contractible if and only if C∗ − e∗ has a connected component
that is a tree (possibly reduced to a single vertex).

Proof of point (3) in Theorem 1. Remark that, by definition of a block, any cycle inG through the
given vertexs is contained in a single block ofG. We can thus restrict the search of a non-contractible
cycle to the union of the blocks ofG incident tos. Call H this union. Next we will see that the
following two statements are equivalent:

• there exists a non-contractible cycle throughs in H;

• there exists a non-contractible cycle inH.

Indeed, supposeγ is a non-contractible cycle inH that does not contains. We exhibit a non-
contractible cycle throughs in H. As remarked above,γ is contained in a single blockB ⊆ H.
Still by definition of a block, there exists a cyclec ∈ B throughs and some edge ofγ. Let p be the
subpath ofc betweens and the first encountered vertexx of c in γ. Similarly, letq be the subpath of
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c−1 betweens and the first encountered vertexy of c−1 in γ. The verticesx andy cutγ into two paths
α andβ. The two cyclesp ·α · q−1 andp ·β · q−1 contains and one of them must be non-contractible,
since otherwiseγ = β · α−1 would also be contractible.

In order to test ifH has a non-contractible cycle, we compute a spanning treeT of G that extends
a spanning tree ofH. Since the fundamental groupπ1(H, s) is generated by the loopsτ(T, s, e),
for e ∈ H \ T , the graphH has a non-contractible cycle if and only if one of theseT -loops is
non-contractible. Equivalently, one of the correspondingT -cycles should be non-contractible. From
Lemma 10,τ(T, e) is contractible if and only ifC∗ − e∗ has a connected component that is a tree.
The dual edgese∗ satisfying this condition are exactly those that are removed when “pruning” the
graphC∗, by iteratively removing degree-one vertices with their incident edge. Therefore, we can test
in linear time whether there is an edgee ∈ H \ T satisfying this condition.

Proof of point (4) in Theorem 1. Our proof starts literally as the proof of point (3) in Theorem 1, re-
placing non-contractible with non-separating. In particular, there exists a non-separating cycle through
s in G if and only if there exists a non-separating cycle inH, the union of blocks incident tos. In
order to test this last condition, we first compute a spanning treeT of G that extends a spanning tree
of H. As recalled in the background section, theT -cycles associated to the set of chords ofT in H
form a basis of the cycle space ofH. Hence,H has a non-separating cycle if an only if one of these
chords has an associatedT -cycle that is non-zero homologous, i.e. non-separating. From Lemma 10,
this holds if and only if the corresponding dual edge does not separateC∗, i.e. is not a bridge inC∗.
This can be tested for all the chordal edges in linear time by first marking the bridges ofC∗. Recall
that the bridges of a graph are its one-edge blocks and can thus be determined in linear time.

5 Separating and splitting cycles

In this section we show Theorem 2: It is NP-hard to decide ifG contains separating and splitting
cycles. Our NP-hardness proof is inspired by a former paper [CCdVE+08], but is more complicated.
It proceeds by reduction from the following NP-complete problem: determine whether a given planar
bipartite graphH with maximum degree 3 has a Hamiltonian cycle [IPS82, Lemma 2.1]. (Actually,
we will not use the fact thatH is bipartite.) See Figure 2 for an overview of the reduction.

Let s be an arbitrary vertex ofH of degree 3. InH, we replaces with a triangle, as shown in
Figure 3(a-b), obtaining a graphH1. Let one of the three new edges be callede. We mark all vertices
of H1 except the three new vertices asrequired. The following lemma is easy.

Lemma 11. H has a Hamiltonian cycle if and only if H1 has a cycle using e and all required vertices.

It is convenient, at this point, to fix an embedding ofH1 on the sphere. Note thate has two
different incident faces inH1. We color one of them in black and the other one in white. We surround
every required vertex ofH1 with a ring, as shown in Figure 4. This creates two or three new faces per
required vertex ofH1; we color exactly one of them (chosen arbitrarily) in black and another one in
white; the last one, if present, is not colored. Label each of thek uncolored faces with distinct integers
between 1 andk. Split e into three subedges; call one of the extremal subedgese′; replace the middle
subedge with a((k + 1)× 2)-grid, as shown in Figure 3(c), creatingk grid faces; these grid faces are
also labeled with distinct integers between 1 andk. We have obtained a new graphH2 with a planar
embedding, where every face got either a color (black or white) or a label between 1 andk. Moreover,
every label is represented by exactly one grid face and exactly one non-grid face.
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(a)

e′
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3
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4
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5

6

6

7

7

8

8

9

9

(b)

(c)

Figure 2: Overview of the reduction from Hamiltonian cycle in planar graphs with maximum degree 3.
(a) An original instanceH with a solution. (b) The corresponding graphH2. The disks inside the
faces indicate their color. (c) A part of the corresponding surface (only a part of the middle gray area
is shown; it was initially a sphere).

s

(a)

e

(b)

e′

(c)

Figure 3: (a) A degree-3 vertexs of H. (b) Replacement ofs by a triangle to obtainH1. (c) Insertion
of the grid on edgee to obtainH2.
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(a) (b)

Figure 4: Creation of the rings inH1: (a) for a degree-3 vertex; (b) for a degree-2 vertex. (We may
clearly assume thatH has minimum degree 2.)

Now we build the surfaceS; see Figure 2. First, we remove a disk from every labeled face,
and attachk cylinders to these2k punctures to connect the pairs of faces with corresponding labels.
Second, we remove disks from every white face, and we attach a single sphere with boundaries to
them. We similarly attach another sphere with boundaries to the black faces.

Lemma 12. H1 has a cycle using e and all required vertices if and only if H2 contains a separating
(or splitting) cycle in S .

Proof. Note that a cycleγ in H2 separatesS if and only if, when we considerγ in the planar embed-
dingH2:

• the black faces are on the same side ofγ,

• the white faces are on the same side ofγ, and

• for each label, the two faces with this label are on the same side ofγ.

If H1 has a cycle usinge and all required vertices, assume without loss of generality that it usese by
leaving the black face incident withe to its left. We transform it to a cycle inH2 as follows: within
each ring, modify the cycle so as it still passes through each central vertex at most once, and leaves
the black face of the ring to the left and the white face of the ring to the right (this is always possible).
Within the grid, modify the cycle so that it leaves a grid face with labeli to its left if and only if it
leaves the non-grid face labeledi to its left. This yields a separating (and even splitting) cycle.

Conversely, consider a separating cycleγ onH2. It must use edgee′: otherwise it uses only (1)
grid edges, in which case only grid faces (at least one) are on one of its sides, or (2) non-grid edges,
in which case the black and white faces incident withe′ and all grid faces are on the same side ofγ,
though all faces cannot be on this side. In both cases it contradicts the fact thatγ is separating. Sinceγ
separates the black faces from the white faces,γ must use a part of all rings of required vertices ofH1.
Since every ring is separated from the rest ofH2 by three edges, it is used at most once. Finally, this
yields a cycle inH1 usinge and all required vertices.

H2 is not cellular onS. We now augment it to a graphH3 that is cellular onS as follows. Every
facef in H2 that is not cellular is a punctured sphere. Put a new vertex insidef , and connect it with
one vertex per boundary component off (Figure 5).

Lemma 13. Any separating (or, in particular, splitting) cycle in H3 belongs to H2.

Proof. Let a be an edge added toH2 to formH3; that edgea has the same face ofH3 to its left and
to its right, and therefore there is a cycleγa on the surface that crossesa exactly once and crosses
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aγa

Figure 5: Extension ofH2 to a cellular graphH3.

no other edge ofH3. A separating cycle crosses any closed curve on the surface an even number
of times; henceγa cannot be crossed by a separating cycle; consequently,a cannot be used by a
separating cycle.

Proof of Theorem 2. These problems are clearly in NP. Statements (1) and (2) follow directly from
Lemmas 11, 12, and 13. Furthermore, every separating cycle inH3 uses edgee′ and its incident
vertices; this proves (3) and (4).

6 Computing separating and splitting cycles anyway

We now discuss a parameterized version of the last NP-hard problems. Given an integerk, decide
whetherG contains a separating, respectively splitting, cycle of length at mostk—and report such a
cycle in case of positive answer. These problems again admit two variants depending on whether or
not we force the cycle to pass through a given vertex. Using the color-coding approach of Alon et
al. [AYZ95], we propose randomized algorithms for these problems. Henceforth,T will designate a
spanning tree of the graphG. In order to test if a cycle is separating, we shall use the equivalence with
zero-homologous cycles. To this end, we precompute theO(g)-bit vectors of theT -cycles associated
to the edges ofG. By Lemma 5, this takesO(g|E|) time.

6.1 Separating cycle

Choose a randomk-coloring κ : V → {1, . . . , k} of the vertices ofG. Hence, each vertex gets a
color independently drawn in a bag ofk colors, where each color has probability1/k of occurrence.
SupposeG has a separating cycle of length at mostk through a given vertexs. With probability at
leastk!/kk = 2−Θ(k), the vertices of that cycle get different colors. More generally, a path or cycle in
G is saidcolorful if all its vertices get a different color.

Following Alon et al. [AYZ95] we use a dynamic programming approach to search for a colorful
separating cycle. For this, we consider the following directed graphH with arcs labelled by edges of
G. We refer to the nodes and arcs ofH in order to avoid confusion with the vertices and edges ofG.
The graphH has nodes of the form(u, c, h) whereu ∈ V is a vertex ofG, c ⊆ {1, . . . , k} is a subset
of colors, andh ∈ H1(S) is a homology class. Two nodes(u, c, h) and(v, c′, g) are linked by an arc
labelled with edgee if

• the endpoints ofe areu andv,
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• κ(v) 6∈ c andc′ = c ∪ {κ(v)}, and

• g = h⊕ [τ(T, e)], where[τ(T, e)] is the homology class inH1(S) of theT -cycleτ(T, e).

The graphH has2k · 2O(g) · |V | nodes since a homology class is represented by anO(g)-bit vector.
The number of arcs ofH is at most2k · 2O(g) · |E| since, forc andh fixed, the total number of arcs
outgoing from the set of nodes{(u, c, h)}u∈V is at most

∑
u∈V (degree ofu in G).

Lemma 14. Let ` be an integer, 1 ≤ ` ≤ k. There is a separating colorful cycle in G through s that
has length ` if and only if there is a directed path of length ` in H from (s, ∅, 0) to a node (s, c, 0) for
some c ⊆ {1, . . . , k}.

Proof. If there is a directed path inH from (s, ∅, 0) to a node(s, c, h), then, projecting onto the first
coordinate of the nodes, we obtain a loopw in G with basepoints, of the same length. Furthermore,
the homology class[w] is preciselyh. By the way how we defined arcs inH, all the vertices ofw have
different colors, sow is actually a cycle. This proves the “if” part. The converse is shown analogously:
every colorful path cycle inG “lifts” to a path of the same length inH.

Lemma 15. Given a k-coloring of G, we can decide if G contains a colorful separating cycle through
s of length at most k and report one, if one exists, in 2O(g+k)|E| time.

Proof. We can compute and store for every edge a vector ofO(g) bits that encodes the homology
class of its associatedT -cycle. By Lemma 5, this takesO(g|E|) total time.

We use the above color-coding schema. We thus have to traverseH from the node(s, ∅, 0) and
test the conditions of Lemma 14. ExploringH from a node(u, c, h) takesO(k + g) time per incident
outgoing arc. Indeed, for an edgee with endpointsu andv we have to check thatκ(v) 6∈ c and
compute the homology classh⊕[τ(T, e)]. TraversingH from (s, ∅, 0) thus takes overallO(

∑
u,c,h(k+

g)d(u)) = 2O(g) · 2O(k) · |E| time.
Note that, for any traversed node(u, c, h), the concatenation of the arc labels on its search path

is ac-colored pathp in G such that[p · T (u, s)] = h. This allows to backtrack a separating cycle of
length|c| in case of success of the previous test.

Thehomology cover used by Erickson and Nayyeri in [EN11] leads to an alternative to the above
construction ofH. Indeed,G has a separating cycle throughs if and only if the homology coverSH

of S has a cycle through a lift ofs that projects to a cycle inG. The lift GH of G in the cover has
2O(g)|E| edges. Therefore, a simple application of the color-coding approach of Alon et al. toGH

would lead to an algorithm of complexity2O(k)2O(g)|E| (see [EN11, Sec. 3]).

6.2 Splitting cycle

Our method to search for a splitting cycle through a given vertexs uses basically the same coloring
schema as for a separating cycle. This time, however, we also need to check that the separating cycle
is non-contractible. For this, we consider the graphH′ with nodes of the type(u, c, h, α), where
u ∈ V , c ⊆ {1, . . . , k} andh ∈ H1(S) as before andα is a homotopy class inπ1(S, s). Two nodes
(u, c, h, α) and(v, c′, g, β) are linked by an arc labelled with edgee if the four conditions below hold.

C1. the endpoints ofe areu andv,

C2. κ(v) 6∈ c andc′ = c ∪ κ(v),
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C3. g = h⊕ [τ(T, e)], and

C4. β = α · 〈τ(T, s, e)〉, where〈τ(T, s, e)〉 is the homotopy class of theT -loop τ(T, s, e) oriented
so as to traversee from u to v.

We then have the following analog of Lemma 14.

Lemma 16. Let ` be an integer, 1 ≤ ` ≤ k. There is a splitting colorful cycle in G through s and of
length ` if and only if there is a directed path of length ` in H′ from (s, ∅, 0, 1) to a node (s, c, 0, α)
for some c ⊆ {1, . . . , k} and some non-trivial homotopy class α. (Here, 1 denotes the homotopy class
of the constant loop.)

As opposed to homology classes there are usually an infinite number of homotopy classes. As a
consequence, we cannot just traverseH′ as we did withH for separating cycles. We circumvent this
difficulty with the following simple observation. Suppose that there are two colorful paths froms to
u that use the same subset of colors, are homologous, but are not homotopic. If there is a colorful
separating cycle that extends one of these paths, then there is also a splitting cycle that extends one of
them. Indeed, replacing in any cycle one path by the other does not change the homology class, but
does change the homotopy class. This leads to the following algorithm.

Wepartially traverseH′ from (s, ∅, 0, 1). To exploreH′ from a node(u, c, h, α) we inspect every
edgee incident tou and create a new node(v, c′, g, β) if the four above conditions C1-C4 are verified
and if at most one other node(v, c′, g, λ) was already created for someλ 6= β. This last condition can
be checked using a counting table with one entry per triple of the form(v, c′, g). We use an implicit
trivial encoding of the homotopy class: the homotopy classβ in the node(v, c′, g, β) is represented
by the sequence of arc labels on the traversal path from(s, ∅, 0, 1) to (v, c′, g, β). This indeed gives a
pathp in G such thatβ = 〈p · T (v, s)〉. The pathp can be backtracked when needed inO(k) time. In
order to perform the homotopy test between two classesβ andλ represented by the two pathsp and
q respectively, we can test if the loopp · q−1 is contractible using the contractibility test of Dey and
Guha [DG99] inO(k) time (afterO(|E|) time preprocessing). It follows that the cost for traversing
an arc ofH′ and visiting a new node or performing the test of Lemma 16 is bounded byO(g + k).

Lemma 17. Given a k-coloring of G, the above algorithm decides if G has a colorful splitting cycle
through s of length at most k and report one, if one exists, in 2O(g+k)|E| time.

Proof. The partial traversal ofH′ in the algorithm visits a subgraphH′′ that is at most twice as big as
H. The fact that we can replaceH′ byH′′ in Lemma 16 follows from the above observation. The rest
of the analysis is identical to the separating case as in Lemma 15.

6.3 Proof of Theorem 3

SupposeG has a separating or a splitting cycleγ of length at mostk. Sinceγ may be colorful with
probability at least2−Θ(k), the average number of independent randomk-colorings we have to draw
beforeγ is colorful with probability2/3 is 2O(k). Lemmas 15 and 17 thus lead to algorithms with
2O(g+k)|E| expected running time for findingγ. This provides a Monte Carlo linear time algorithm,
with fixed parametersk andg, to decide if G contains such a cycle.

In their color-coding paper [AYZ95], Alon et al. also show that they can compute a family of size
2O(k) log |V | of k-colorings with the property that every subset ofk vertices is colorful for at least one
of these colorings. In conjunction with the lemmas, this directly gives deterministic algorithms adding
an extralog |V | factor to the complexity. �
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7 Concluding remarks

Surfaces with boundary. We briefly indicate how to extend our linear-time algorithms to surfaces
with boundary. So letS be a surface with boundary, and letG be a graph cellularly embedded on it.
We extendS andG to a surfaceS̄ and a graph̄G such thatḠ has a contractible cycle on̄S if and only
if G has a contractible cycle on̄S, and similarly for the other topological types.

• For the separating and non-separating cases, we can just attach a disk to each boundary, since
this does not change whether a closed walk is separating or not.

• For the contractible case, we attach a handle to every boundary component, and add two loop
edges per handle to make the graph cellular. Every cycle using a loop edge is non-contractible,
and every other cycle inG is contractible inS if and only if it is contractible inS̄.

• For the non-contractible case, the only interesting case is when we require the cycle to pass
through a given vertexs. We again attach a handle to every boundary component; within each
handle, we put a new vertexv, connect it to a vertex ofG, and add two loop edges based atv
to transform the face of that handle into a disk. Sincev 6= s, no cycle throughs uses the new
edges, so there is a cycle throughs in G that is non-contractible onS if and only if there is a
cycle throughs in Ḡ that is non-contractible on̄S.

• For the splitting case, we consider a cycle to be splitting if it separatesS into two non-zero genus
subsurfaces, possibly with boundary. We can proceed as in the separating case by attaching a
disk to each boundary. This does not change the property of being separating and preserves
the genus of subsurfaces. Note that a splitting cycle inS̄ must cutS̄ into non-zero genus
subsurfaces.

Shortest closed walks. WhenG contains a separating, respectively splitting, cycle, we can compute
a shortest cycle of the corresponding type in2O(g+`)|E||V | log |V | time, wherè is the length of this
shortest cycle. For this we can apply Corollary 4 withk = 1, 2, 3, . . . until the algorithm reports the
existence of a cycle, which obviously happens fork = `. The total cost is

∑̀

k=1

2O(g+k)|E||V | log |V | = 2O(g+`)|E||V | log |V |.

Chambers et al. [CCdVE+08] present an algorithm with complexitygO(g)|E| log |V | for comput-
ing a shortest splittingclosed walk on G. This shortest closed walk may have repeated vertices
(in [CCdVE+08] this closed walk is called a cycle as it can be perturbed to atopological cycle).
This will be the case, for instance, ifG hasno splitting cycle. The problem tackled by Chambers et al.
is thus different from the problem treated here. This difference suggests the following more general
question: Given a closed walk inG, decide if there is a cycle inG of the same topological type, say
in the same homotopy or homology class, and report one if it exists. Chambers et al. were also able
to compute a shortest splitting closed walk that cuts the surface into two subsurfaces with prescribed
topology [CCdVE+08, Sec. 6], i.e. fixing there genera and number of boundary components. It is not
clear whether our present color coding approach can be extended to handle this case.
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