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The Geometry of Venice: Topographical
Observation and Statistical Appraisal

Luigi Calzavaraand Maurizio BrizZ

Abstract

Having observed that ancient Venice belfries amated in such a way
that they generate many Pythagorean triangles,nigaai great number of
vertices in common, it has been decided to test nhd hypothesis of
random location by statistical and probabilisticthwds. A simple index,
called Pythagorean Ratio, is proposed, for checkitgch triangles are to
be considered as Pythagorean. Then, a Monte Cantaulation is
performed, generating samples of “random belfrigmsthe historical kernel
of Venice; a Poisson model seems to fit very wdle thumber X of
Pythagorean triangles. Combining this number witie tnumber of
connections, the null hypothesis is rejected. Addia further belfry
(S.Simeon Grande) to the original group of belfridhe significance
becomes even higher.

1 Introduction

Ordering one’s own environment has many advantagesowers the cost of
protection and improves quality of life. With thigrg the most important points
of observation and transmission of visual inforroatare the tops of topographical
data, such as towers and belfries. The history afis&egives a strong evidence of
it. Just from the top of S.Marco belfry, on Augu&"2 1609, the Signoria (chief
family) and the same Doge (chief of State) lookedodigh the first Galileo’s
telescope. The Venetian senate confirmed the wtoit this tool, doubled the
scientist's salary and, moreover, imposed the “teprst” on this businesNfn
detur exemplum exordii(Tiepolo et al. 1985). Right now, in Venice, towers and
belfries lack of a clear historic documentationdas watch towers, have maybe
sometimes been built before the corresponding diesc
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A particular working hypothesis, based on anciemography, economy and
statistical assessment, shows us that belfries amdent watch towers were
deliberately positioned at the vertex of particutgrometrical forms; this means
that belfries were not built at random, but accogdio precise rules. In this paper
a statistical method is proposed, based on simaratior checking this working
hypothesis.

In particular, Luigi Calzavara has written the aeblogical and topographical
considerations (Chapters 1, 2, 3), while MaurizioizBi has performed the
statistical analysis (Chapter 4).

2 Some notes about Pythagorean triangles

The belfries of Venice seem to be sited accordngr ancient triangulation based
on the right-angled triangle. The master builded ha practical method for

determining the right angle of a building: he hadtake a ring of rope, divide it
into twelveequal parts, with a knot to mark each section, and thelh it out with

a divergent force at the third (3), seventh (3+4y dwelfth (3+4+5) knots, so

creating a right-angled triangle. This was a haadsversion of the first

Pythagorean Triplet (3,4,5). In fact this method Iwalways produce a shape
reflecting the well known Pythagorean equatiorf+43=5°. This ends the master
builder’'s work with the first of an infinite sequesm of Pythagorean triples, a
system already well known in ancient Babylon and doent®d by Tablet 322 of

the Plimpton collection at Columbia University. Inid tablet, dating about 1500
B.C., written in cuneiform alphabet, 15 Pythagore¢gplets are reported. These
triplets allow us to build Pythagorean triangleshnvé minimum angle width from

31°05" and 44°46’, and are useful to topographtcating.

At this point, the topographer’s experience begihisis time, however, rings
of rope or wooden rods were no longer used to bailight-angle but to trace the
vertex points of a specific right-angled triangkach time, depending on the city’s
particular building requirements, the most suitabley had to be devised. The
most suitable ring links the triplet of Pythagoreammbers, and hence the
theoretical shape, with the most suitable measun¢rnoé the cord segment i.e.
with the distance between the vertex points. Insthvay a bi-univocal
correspondence was established between specifiencah values of the infinite
number of Pythagorean triples and the infinite p®ioh the plane. Measuring
instruments are generally bivalent. They are emplayetuilding procedure but
also when verifying what already built.

In this particular work, we have been studying Pytitagn triangles during
forty years, in order to determine the different msasf building development in
the city of Venice, and to evaluate, even stati$iffcathe concrete evidence of a
building process.
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3 Archaeological findingsin ancient Venice

Venice was initially built as a group of pile dwellis on marshland. Church
belfries had to rest on toilsome and expensive dations, which were sometimes
more expensive than the belfry itself: marshland sdoet allow shifting. For
economic reasons therefore, belfries can be comsidéopographical reference
points down through the centuries. Indeed it cduddsaid that marshland induces
immobility. Furthermore, every belfry has a preciseigon on the Cartesian grid
of the official Italian cartographic system (Salzardi®91). Consider, as a good
example, S.Marco belfry, which collapsed in 1902t was immediately rebuilt in
the same location. For simplicity’s sake, the surkiag been limited to 50 belfries
linked to churches founded by the Xl century (Dorid®87). Any research into
the Pythagorean triangles linking Venice belfriessmmobviously focus on the
tolerance of right angles. Choosing a broad toleeamterval would increase the
number of Pythagorean triangles but would preclud¢istical significance. As a
result, working on a trial and error basis, we haseblished an optimal tolerance
of £ 0.125° (1/8 of a degree). Using this valud, Bythagorean triangles have
been identified which most importantly, link some d@Bthe 50 bell-towers in the
survey. The result is a geometrical mesh of triasgéach positioned as a function
of the other. In this way, the bell-towers do gemera system because the
topographical information passes from one to theeowithout interruption, as on
an electrical circuit. On the basis of these firgiin some perfectly measurable
topographical archaeology data were prepared andeidts analysed statistically.
The first survey considers 19 belfries connectedhorches in central Venice and
founded by the IX century. This system is based om fioiermeshing Pythagorean
triangles where several vertex points converge.dxample, triangles ABC; ABD;
BEC; BEF (Figure 1) have vertex B and point C inmeoon.

Figure 1: Map of the kernel belfries in the center of Venice
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Table 1: Some features (century, name, coordinates) ofrthie group of belfries.

# |century| CHURCH / BELFRY COORDINATES (metres)

A 9-th S. MARCO 2311870.31 5034632.76
B 8-th S. MOISE' 2311 636.50 5034 520.87
C 9-th S. BORTOLOMIO 2311674.35 5035041.07
D 9-th S. FOSCA 2 311 386.34 5035 640.50
E 9-th S. BARNABA 2 310 820.37 5034 581.36
F 9-th SS. APOSTOLI 2311697.18 5035 348.14
G 10-th S. SIMEON GRANDE 2310 743.82 5035419.33

In Figure 1, Triangles ABC, ABD, BEC, BEF, BFG a@#G are topographical
reference points in the old town. Point C corresimrio the belfry of San
Bortolomio at Rialto bridge, right in the historgentre of the city. The second
topographic system studied looked at the inclusidnthe new belfry of San
Simeon Grande — putatively dating from tHecentury — which became the vertex
G of two new right-angled triangles (BFG and CF®&;is also the western
boundary of the town. In this way, triangle afteratrgle we have been able to
detect a topographical mesh linking all fifty of thelfries studied. The system
appears the fruit of human design: a precise road far Venice foundation.

4 Statistical ssimulation and evaluation
4.1 Theoriginal kernel

The topographical evidence described above has babmitted to a statistical
appraisal, essentially based on a Monte Carlo sitiia in order to detect
whether these repeated occurrence of Pythagoremmgtes, and the close network
of connections between them, may be attributed meéoetandom factors or not.
We considered an “old kernel” of nineteen belfriesnnected to very ancient
churches, all built before 1000 A.D., which are apgpmately spread over a circle,
having its center in S.Bortolomio, one of the oldesligious complexes of the

. . . _ 19
city. These belfries, taken three at the time, bexdne vertices o€i9 3= [3} =

969 different triangles. Using the topographic coomates, we calculated, for
each triangle, the side length, as well as two $smpdices denoted with PR
(Pythagorean Ratio) and MR (Maximum Ratio). Denotimith a, b, cthe ordered
side lengths of a trianglsuch thata > b > ¢), we define:

b2 +c?

PR="_°, MR=2 (4.1)
a C
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Due to Pythagoras’ theorem, PR is equal to 1 if (anly if) the main angle is

right. Actually, PR may be near to 1 even when ome $$ very short, and this is

2 42
evident if we consider that|im

c—>0 a

consider the resulting triangle as a possible Rythean one. We took into account
both PR and MR values, calling hereafter “Almostiagorean Triangle” (APT) a
triangle having0.98 < PR < 1.02and MR < 6.5

The last inequality means, approximately, thatnaerowest angle width is, at
least, equal to 9° (i.e. one tenth of a right ahgWith this group of belfries, we
can detect seven APT’s, out of 969 possible triasglapproximately 0.72%),
graphically represented in Figure 2.

=1. Then, if MR is too large, we don’t

Belfry labels:1 = S.Marco, 2 = S.Antonino, 3 = Apostoli, 4 = &rBaba, 5 = S.Bortolomio,
6 = S.Fosca, 7 = S.Giorgio Maggiore, 8 = S.GiovaBrdgora, 9 = S.Margherita, 10 = S.Maria
Formosa, 11 = S.Maria Giglio, 12 = S.Martino, 13/sisé, 14 = S.Polo, 15 = Salvador,
16 = S.Silvestro, 17 = Trovaso, 18 = S.ZaccariaF19.Zulian.

Figure 2: Network map of 19 belfries and their Almost Pythegan Triangles.

Let X be the number of APT’s generated by 19 verticedf(ies). We have
observedX=7 (actually the APT’s were 8, but one was droppet baving a MR
value much larger than the limit value of 6.5; wied to check if such result was
significant, defining the null and alternative hypesis:
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Ho = “the belfries of Venice were built at random”

H, = “there is an underlying geometric pattern”

and making a Monte Carlo simulation. We generatedgeach replication, 19

random points in a circle and counting the resgltrumber of APT's. We can

simulate this way the distribution ok under the null hypothesis of random
location of the pointsThe resulting distribution oK after 3,000 replications is
shown in Table 2.

Table 2: Simulated distribution of X (19 belfries) and coanggson with Poisson model.

Xi n; fi Fi F°i Fei

0 81 2.70% 2.70% 2.93% 2.93%
1 309 10.30% 13.00% 10.34% 13.27%
2 574 19.13% 32.13% 18.26% 31.53%
3 645 21.50% 53.63% 21.48% 53.01%
4 535 17.84% 71.47% 18.96% 71.97%
5 403 13.43% 84.90% 13.39% 85.36%
6 254 8.47% 93.47% 7.88% 93.24%
7 121 4.03% 97.50% 3.97% 97.21%
8 46 1.53% 98.93% 1.75% 98.96%
9 19 0.64% 99.67% 0.69% 99.65%

>10 13 0.43% 100.00% 0.35% 100.00%

Note — { and F are, respectively, the simple and cumulative obsérfrequencies; fand F} are
the corresponding theoretical frequencies, undéd?oéssson model withi=3.53. The observed
value and its statistical features are writterbahd.

The empirical simulated mean value 8= 3.530, and the variance is
almost equal, beiny¥x = 3.534;, we easily realised that Poisson random variable,
with A = X = 3.53, fits almost perfectly the distribution of X. Thast two columns
show the theoretical values of p.d.f. and c.d.idema Poisson model; these values
are all very near to “empirical” ones, and the Koljprov distance, i.e. the
maximum distance between empirical and theoreticdlf. has a very low value
(Dk = 0.62%). The very good fit of Poisson model seems to giekability to
these empirical results.

We checked the significance of=7 under the null hypothesis of random
location, by using simulated frequencies as prolitéds for our test. Looking at
Table 2, we find:

P(X>7| H) =0.026(empirical) P(X>7| Hy) = 0.066(empirical)

0.028(Poisson) 0.068(Poisson)
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Since the variable is discrete, we have two diffiéngays of interpretation: the
result is significant (at 5% level) if we excludiee valueX=7 from the critical
region, and is not if we include it. We could hayged a randomisation procedure
to split the probabilityP(X=7) in two parts, “within” and “outside” the critical
region; actually, we preferred to use a more “cebel decision rule, by involving
connections between triangles.

Indeed we have observed that these APT's are Istrmxtnnected, having
several common vertices. We took into account ttaltnumber of connections
(denotedCy) in the whole group of seven APT’s and the minimaomber of
connections (denote@’) of each triangle; we realised that:

a) there are several connectio®s €14; notice that the maximum is 21),

b) each triangle is connected at least with othesd C’ = 3).

These results seemed immediately very interesting, we confirmed this first
impression by performing another simulation. Stytwith 19 points (labelled
from 1 to 19), we generated 7 random triangles ygsoof three distinct points),
computing each value @ andC’. We reported the joint distribution in Table 3:

Table 3: Simulated distribution of €(total number of connections) and C’ (minimum
number of connections) with 7 triangles.

Cr= C'=0 1 2 3 4-5
<5 2.73| 1.87| 0.00] 0.00| 0.00] 4.60
6-7 9.60 | 14.40/ 0.13| 0.00| 0.00| 24.13
8-9 7.74122.87| 4.23| 0.00| 0.00] 34.84
10-11 2.8011.24| 9.63| 0.07| 0.00| 23.74
12 - 13 0.33| 2.70| 5.10] 1.00| 0.00] 9.13
14 - 15 0.13| 0.43| 1.30| 0.87| 0.00] 2.73
16 — 20 0.00| 0.03| 0.23| 0.40| 0.17] 0.83
23.33|53.54|20.62| 2.34 | 0.17]100.00

In Table 3, we have evidencedbhold the frequencies of value€{, C’) which
are greater or equal to observed on€&=(Q4, C’'=3). Considering the joint
simulated frequencies as probabilities of a testighificance, we have:

P(Cr>14,C'>3| Hy) = 0.0144 = 1.44%

Considering now simultaneouslk, CGr and C’' we derive the probability of
having, due to mere random effects, a resulting memof APT’s which is:
1. larger than observe&¥$7)
2. equal to observatiorKE7), but generating a number of connections greater
or equal to the observed onér(> 14, C'> 3).
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Empirically simulated values:
PX>7|H)+P(X=7,CG>14,C'>3| Hy) = 0.0260 + 0.04030.0144=
= 0.0260 + 0.0006 = 0.0266 = 2.66%

Theoretical values (Poisson model):
PX>7|H)+P(X=7,CG>14,C'>3| Hy) = 0.0279 + 0.03970.0144=
= 0.0279 + 0.0006 = 0.0285 = 2.85%

This result, based on the number of APT's and cotiaes, has to be
considered much more significant than the mereevaliX, and gives us sufficient
elements for rejecting the null hypothesis. Bustbonclusion becomes clearer and
stronger if we extend the group of belfries by aada new unit: the bell tower of
S.Simeon Grande.

Belfry labels: 1 = S.Marco, 2 = S.Antonino, 3 = Apostoli, 4 :B&rnaba, 5 = S.Bortolomio,
6 = S.Fosca, 7 = S.Giorgio Maggiore, 8 = S.GiovaBrdagora, 9 = S.Margherita, 10 = S.Maria
Formosa, 11 = S.Maria Giglio, 12 = S.Martino, 13/sisé, 14 = S.Polo, 15 = Salvador,

16 = S.Silvestro, 17 = Trovaso, 18 = S.ZaccariaF1%.Zulian, 20 = S.Simeon Grande.

Figure 3: New connections generated by S.Simeon Grandetiélold kernel of
belfries.

4.2 The 20" belfry: S. Simeon Grande

The bell tower of S. Simeon Grande was built in tinst half of X century, just
some year after the previous belfries, and its tiooa not far from the historical
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kernel of the city, seems to be not chosen at randadeed, if we add this new
unit to the kernel group of 19 belfries, the numbbérAPT’s increases sensibly,
becoming 12 instead of 7. This means that this “nleelfry makes five new right
angles with the older ones, as shown in Figure 3.

This result seems very relevant even at a firshtsiut we checked it by a
further simulation procedure. Now we ha@g, 3 = 1140triangles, and 12 of them
(1.05%) have been classified as almost Pythagordame indicate withX the
number of APT’s generated by 20 points, we havebserved valu& =12 and
we can repeat the same simulation described befdre.main results are shown in
Table 4. Considering the enlarged group of 20 bedfrthe result seems much
more significant than before, being(X >12) = 0.0014(empirical) and P(X >12)
= 0.0011 (theoretical). Poisson model, again, fits the dated results very well,
and the Kolmogorov distance is even low®y (= 0.36%). As told before, this
almost perfect goodness-of-fit seems to give maielbility to these simulated
results.

Table 4: Simulated distribution oK™ (20 belfries) and comparison with Poisson model.

X* n; fi Fi Fe, Fe

0-1 266 8.87% 8.87% 8.52% 8.52%
2 402 13.40% 22.27% 14.00% 22.52%
3 575 19.17% 41.44% 19.09% 41.61%
4 583 19.43% 60.87% 19.52% 61.13%
5 481 16.03% 76.90% 15.97% 77.10%
6 323 10.77% 87.67% 10.88% 87.98%
7 208 6.93% 94.60% 6.36% 94.34%
8 91 3.03% 97.63% 3.25% 97.59%
9 43 1.43% 99.06% 1.48% 99.07%
10 20 0.67% 99.73% 0.60% 99.67%
11 4 0.13% 99.86% 0.22% 99.89%
12 2 0.07% 99.93% 0.08% 99.97%
13+ 2 0.07%] 100.00% 0.03%] 100.00%

Note — f and F are, respectively, the simple and cumulative obseérfrequencies; fand Fj are
the corresponding theoretical frequencies, undéd?oéssson model withi=4.09. The observed
value and its statistical features are writterbahd.

Moreover, this set of 12 APT’'s have a impressive®yevant network of
connections; again, we indicated with a starthe results when extended to 20
belfries:

« the total number i€; = 35 (the maximum is 66);
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« the minimum number i€~ = 4 (each triangle of the group is connected at
least with four other triangles).

We have then repeated the simulation procedureridbest above, generating

now twelve triangles and countin@® andC’ . We derived the joint frequencies
reported in Table 5.

Table 5: Simulated joint distribution o€; andC’ " with twelve triangles (% values).

Cr= |C'=0] 1 2 3 4 | 5+
< 20 0.16 | 1.16 | 0.60 | 0.00 | 0.00 | 0.00 | 1.92
20-24 | 1.44 |10.52/15.48| 1.64 | 0.00 | 0.00 | 29.08
25-29 | 1.76 [11.16|22.36| 9.80 | 0.28 | 0.00 | 45.36
30-34 | 0.44 |3.48|6.92|6.80 | 1.60 | 0.00 | 19.24
35-39 | 0.12 | 0.40 | 0.92 | 1.68 | 0.84 | 0.00 | 3.96
>40 0.04 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.44
3.96 |26.80(46.36|20.00| 2.80 | 0.08 | 100.00

In Table 5 we indicated, like in Table 3, oold the frequencies of simulated
values which are not less than the obsern@d € 35, C” =4). Considering the
simulated frequencies as probabilities for our,tes can write:

P(Cr >35,C">4| H) = 0.0100 = 1.00%

Considering, as done before, the variab¥egnumber of APT’s),Ct (total
number of connections) ar@ (minimum number of connections) simultaneously,
we derive the probability of having, due to meradam effects, a global result
greater or equal to the observed one:

Empirically simulated values:
P(X >12 | Hy) + P(X'=12,Cr >35,C" >4 | Hy) =
= 0.0007 + 0.00070.0100 = 0.0007 + 0.000007 = 0.000707.071% .

Theoretical values (Poisson model):
P(X >12 | Hy) + P(X'=12, Cf =235,C >4 | Hy) =
= 0.0008 + 0.00030.0100 = 0.0008 + 0.000003 = 0.0008030.080% .

This result induces us to reject, at a significalese| smaller than 1/1000, and
therefore with a dramatically reduced probability ®ype-1 error, the null
hypothesis of random location of belfries in Venkastorical kernel.
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5 Concluding remarks

The reported results, especially considering tlmugrof 20 belfries nearest to very
ancient Rialto bridge, show a frequency above etqiemn of Pythagorean
triangles and a remarkable network of connectiogtsvben them. This induces us
to reject the null hypothesis of random locatiomsus the hypothesis of existence
of a well determined systematic geometric patté&ctually, as written before, 48
out of 50 belfries, adjacent to ancient churcheit tefore the end of XI century,
are connected by a huge network of 61 Pythagoreangies. Evidently, it would
be worthwhile also to understand the motivationtlok pattern, thus opening a
new line of research.

It is likely that such a geometric pattern, linked belfries location, gives a
better urbanistic efficiency to the city, helping brder and rationalize the
topographic network and to improve the channels afal and visual
communication. Evidently, a sound network of acaustnd visual guidelines
could give a better sense of security to SereniadRepublic citizens.
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