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Improved Parameter Estimation in Rayleigh
Model

Smail Mahdt

Abstract

In this paper we describe and present results enpdwrameter point
estimation for the scale and threshold parametefsthe Rayleigh
distribution. Five estimating methods have beenegtigated, namely, the
maximum likelihood, the method of moment, the proltity weighted
moments method, the least square method and ths¢ #&solute deviation
method. Modified maximum likelihood estimators ftire parameters are
also proposed. Simulation studies have shown tth@tmodified likelihood
estimator outperforms the estimators obtained witle other methods
except in the case of very small samples.

1 Introduction

The two-parameter Rayleigh distribution is a contins probability distribution
which usually arises when a two dimensional vectas hts two orthogonal
components normally and independently distributede Huclidean norm of the
vector will then have a Rayleigh distribution. Thstdbution may also arise in the
case of random complex numbers whose real and maagicomponents are
normally and independently distributed. The modulégshese numbers will then
be Rayleigh distributed. The Rayleigh variabe with threshold parameterand
scale parameteéyis characterized by the cumulative function
(x-€)

F(x)=1-e 2 for £<x<wandd>0. (1.1)

This distribution plays an important in real lifp@ications since it relates to a
large number of distributions such as generalizetteene value, Weibull, chi-
square and rice distributions. In this paper weestigate the estimation of the
scale and threshold parameters using a modifiedimmax likelihood method
(ML), the moment method (MM), the probability weigd moment method
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(PWM), the ordinary least square method (OLS) #relleast absolute deviation
(LAD) method. The PWM method is a relatively receéathnique which is well
used by hydrologists in frequency analysis. Thehoe is strongly advocated in
Hoskinget al. (1985) and according to Davison and Smith (199@)pitstitutes the
most serious competitor to the ML method, espegialh the case of small
samples. The performance of this technique has beeently investigated in
Mahdi and Ashkar (2004) and Ashkar and Mahdi (2008)Weibull and Log-
logistic models, respectively. We organise this graps follows. In Section 1, we
have introduced the problem and in Section 2, ereve the parameter estimators
using the considered methods and also give resutthe asymptotic variances.
Simulations results are discussed and illustrane8action 3.

2 Estimation methods

We derive and present below estimators for the rpatarse andd by using the
five considered methods. We start with the probgbWweighted moments method.

2.1 Probability weighted moments

The probability weighted moment of ord€rj,k) is obtained from the inverse
cumulative function x(F)=¢+43,/- 2In(1-F
as

Mo s =E (X [FO - F ())]) = [ (x(F))' F (0~ F)* oF . (2.1)

0

We use the usual ordeiss1 and j=0 since this leads to a class of linear L-
moments, see, Hosking (1986; 1990), with asymptatemality. We denotey,

the corresponding probability weighted momgnt, . - After integration and
simplification, we obtain

_ T
a, —{£+5 /Z(r—ﬂ)}/(r +1) . (2.2)

Substituting two distinct orders and s into equation (2.2) gives the
probability weighted moment estimate fdras

5o (200, =511,

JZ(rli ) \/2(8”+ 1)

(2.3)
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where @, :n'lz% for r=0]1...,n-1, with the conventionC}‘ =0ifk<j,
i=1

r

is the unbiased estimators far, see Hosking (1989). Thus, the estimator fer
is given by

e=(r+la-0 " . (2.4)

2.1.1 Asymptotic variances of ¢ and &

The asymptotic variances ofand dare approximated by using the asymptotic
variances of the PWM estimates . We will use result (5.3), provided in Hosking

(1986), stating that the vector whose™ rcomponent iz;/ﬁ(frr -a,),
forr =0,....m-1, has a Gaussian limiting distribution with meanctee O and

m-1

covariance matrixA:(Ars) <o Where A =1 +I, and

=[], 0-F () @-F(y)* F()@-F (x))axdy. (2.5)

Using the approximation 26.2.10 in Abramowitz anedan (1970: 932), we
get after integration and simplification,

o L ey 4 ]
s+1\ 2/ V4r V4r+) | 2% & 22 (s+1) 2 (r+)™ r"

(2.6)

The first order approximations for the varianced anvariance of and o are
obtained from the equation

Cov(4,9) =n"'GAG’

where the terms of the 2 by 2 matrix G, derivednfrthe probability weighted
moment equations of the form (2.3) and (2.4), avery by

073
Gn:%:r"'l, (27)

r
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173
= =0, 2.8
G o (2.8)
00 r+1
G, = = , 2.9
5= 2 — T (2.9)
2(r +1) 2(s+1)
and
G, =2 - s+l . (2.10)

aa. T T
\/Z(r +1) \/2(s+1)

2.2 Maximum likelihood

Setting to zero the first derivative of the logdlkhood function with respect t@
gives the ML estimate fod for a given values as

(2.11)

The maximum likelihood estimate for the parametewhich is on boundary

of the distribution support is given b)éu*:min(xl,xz,...,xn). Note that this
estimator is biased sincé is distributed as a Rayleigh variable with thrdsho
parameter& and scale parametér/\/ﬁ. To prove that, let us denot® the

0
cumulative function of ¢ which is based on the distribution random

samplex,..., X . The functionG, evaluated a&: y,is given by

G(y) = P(min(X,,...,X,) < y) =1-P(min(X,,..., X,) > )
=1-{(P(X, = y)x..x P(X, = y)} =1~ [L- F(Y)I".

Substituting nowF(y) from equation(1.1), we get

__(y-o)*
G(y) —1-e 2(5/\/5)2
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which has the same form d9y). Therefore the Rayleigh variablé has the
means+£1l%. We propose then to use the modified maximum iiladd
Jn

estimatorsg and & that are solutions of the systems of equations

e % A (212)

(213)

™M

and which are based on the unbiased estingatoSquaring equation (2.13) and
expressing £ as function of & from equation (2.12) yield the second order

equation ob ,

(2_2_’:])5%2/% (£-%)3 +2%E-x2-£% = 0. (214)

The discriminant of the above equation is posiawel is given by
A:2(5—>—<)2+(F—xz)(2—2£)zo. (2.15)
n

Therefore, equation (2.14) has two distinct solusio Furthermore this
equation admits a unique positive solution sincee thoots product is

_(E=X7H(C %)
5 T
2n
respectively given by

0. Thus the modified estimators fod and & are

- T _ > T

5. (X_X(l))\/zn +\/2(X(1) =X)?+(x* _XZ)(Z_%)
_ T
2n

=0 (2.16)

2

and
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F=xy —%\/% (2.17)

where X and x* are the first and second sample moments, respégtarel Xq 1S

the first order statistic based on the random sampl.., X,,.

D —_—~
2.2.1 Varianceof 9 and€.

The asymptotic variance afis approximately given by

s _[ o) _ 3
Var (8) {E[ @) ]} T (2.18)
na4+—_-+ 2
25

obtained from the sample Fisher information édn On the other hand, we have
that Var(E):Var(é):(Z—ﬂz)J% by using the distribution &f. Thus, €is a

consistent estimator ef.

2.3 Method of moments

The moment about the origin of ordeis given by,

® (x-¢)?
U, = E(Xr): jxr%e 25 dx . (2.19)

After integration we get

i 2£§ f: e (20 r(k+1)/2]
k=0

_%i c; &(v2o) r(k+1)/2. (2.20)

This can be simplified as

r+l

g =Y Coy (ﬁa)“ M(k+1)/2]. (22)
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The first and second order non central moments lmarevaluated from either
equation (2.20) or (2.21). Using for instance equa(2.21), we get

U =2e+~2 T(3/2)0-¢€= g+5\/§ (2.22)
and
U, = €2+ 232 T(3/2) 0 + 202 =2 +/2m €5 + 252 (2.23)

This yields the following moment method estimatfos § ande,

i3]

5= =S (2.24)

g

O O
£=X-0 ’_27 (2.25)

and

wheres= \/F—iz is an estimator of the population standard devmatio

2.3.1 Asymptotic variances and covariance of ¢ and &

The asymptotic variances and covariance éofand o are estimated from the
variances and covariance of the sample general mmmg and j , see for
instance, Mahdi and Ashkar (2004), as follows:

Var (&) MZ M2 oMM, T var(a,)
Var(9) |5 Mz Mg 2M M, Var (1) | (2.26)
Cov(£,9)| [M uMo MMy MMy, + MMy, Cov(4, . /1)

where

;Var (1) =

_ 2
Var([lr): IUZr r(]lur)

— 2 [—
:UZI :]ILI') ;Cov(ﬁr,/:‘ll)::urﬂ nlurlul :

g 0 a J
Mll:%. M12 dllg ; MZl 0{2‘ andMZZ 0"_/2_

In the considered case=1and| =2, we have
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var ()= 4" 52 (2.27)
2n
_ 2 .2 3 4
Var(iL,) = 2(4-mo‘e +r2]\/2ﬂ5£+45 ’ (2.28)

3[(4-me+3d ’ZT]

Cov(ity . f1,) = - (2.29)
M, =1, (2.30)
M, =%, (2.31)
2
M,, =2+ 02T (2.32)
and finally:
M,, =40 +e&/2r. (2.33)

2.4 Regression methods

The parametersdands can also be estimated through the linear regrassio
technique from the relation=¢+dJd,-2In(l1-F(x). Ordinary least square

estimates as well as least absolute deviationimast¢s for dands are
obtained from the sample pointgx,y. IJwhere xis the " sample value

corresponding to the empirical quanifﬁ(ax(i) apd vy :\/—Zln(l—lf(xi) . Ordinary

least square estimates fdorands are obtained from the usual intercept and slope
linear regression estimates, see, for instance RIGO5). The least absolute
deviation or median regression estimate@nds are obtained as solution to the

minimization problem: MinZ|yi —a—bx | with respect toa and b. The
i=1

solution is obtained by applying the simplex methodthe linear programming

problem:

+

n
Min (r" +r”)under the constraintsy, —a-bx —r"+r” =Owhere r’ and

1
i=1
r.”are, respectively, the positive and negative resglassociated with the

observationx ,i =1,...,n.
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2.4.1 Variances of OL S estimators

The computation of the variances of the least alisobeviation estimators is
extremely tedious. However, we can find the varemof the ordinary least square
estimators under the assumptions of the standaatisstal models, see, for

instance Rice (1995). Let us denorffgS and &,, the OLS estimators o8 ande,
respectively The variances of these estimators are, respectigergn by

no?

Zniln(l— ﬁ()g)) + [Zﬁ:\/— 2In(1- If(x)))z}

Var (d,,) = - (2.34)

and
207y In(L- E(x))
Var (€y) = - = . 2
ZnZIn(l— F(x)) +[Z\/—2In(l— If(xi)))z}
(2.35)
where
o2 =Var(X) =2 5 (2.36)

is obtained from equations (2.22) and (2.23).

3 Discussion

We have assessed the performance of the consi@stedation methods through
simulation studies. Different values of the parasngthave been considered as
well as different sample sizes. Orders (1,2), XBR&d (2,3) are used in the PWM
method. The sample points were generated usingniberse cumulative function
technique. The probability weighted moments areneded with the plotting
method outlined in Hosking (1986), that il Is estimated by

~

M Luy — n(_l) Z X(i) Pi ) (1_ Pi )V

Lu,v

where
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i+y
. =—— for o'>y>-1.
P n+o' 4

We used the valueg =- 035 and 0'=0 which are recommended in Hosking

(1986) for the study of the generalized extreme eadistribution since the
Rayleigh is well related to it. Several values Joe and n were considered,
namelyd = 2,4, 6, 810; n=10,20,30,40,50,60,70,80,90100, and £=1, 3,5, 7, 9
and 11. Small sample sizes from 1 to 9 were also consdieand obtained
corresponding results are displayed in Table 3. Thet mean square errors
(RMSE) for the estimates were then computed andl w=e performance index.
Note that expressions for the asymptotic variancesatso obtained whenever it is
possible. These variances may be used, for instalmceompute approximate
confidence bounds for the underlying parametersstRive have found that the
variation of the ¢value does not affect the RMSE results. One cam thet,
without loss of generality,=1. However, the root mean square errors obtained
with all methods increase as the valgeincreases, as illustrated in Table 1 below.
On the other hand, the study has shown that the P&Wdé&rs 1 and 2 provide
better RMSE results.

Table 1: RMSE of 0 and¢ estimates obtained with the different methods
combined by averaging the sample sizes n=103Q040, 50,
60, 70, 80, 90 and 100 for various valuesdaf& =1 and PWM
orders 1 and 2 are used.

) 2 4 6 8 10

3PW 2 4 .68 .90 1.1
3 5 3

o 2 5 .75 .99 1.2
5 0 5

5 2 4 61 .82 1.0
ML 0 0 3

B 2 4 71 .95 1.1
3 7 9

5 2 4 72 .95 1.2
mm 3 8 0

Eun 4 .8 1.3 1.7 2.2
4 8 1 5 0

305 2 4 .69 .92 1.1
3 6 6

o 2 5 .84 1.1 1.4
8 6 2 1

5LAD 2 4 .70 .93 1.1
3 6 7

Lo 2 5 .85 1.1 1.4
8 6 4 2

Our investigation has also shown that the methochoments performs poorly
in comparison to the other methods. Table 2, diygdabelow, gives the root mean
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square errors as functions of the sample size shdws that the root mean square
values are monotonically decreasing with the sange n. Overall, all methods
have performed reasonably well except the methodrobments. However, the
modified maximum likelihood method provides betestimates fop, with any
sample size, and for bogh ands parameters when the sample sizes are not small,
sayn>10, as illustrated in Tables 2 and 3. Note that in ¢hse of small samples,
the PWM method outperforms the maximum likelihoodthod for the estimation
of ¢ and performs almost as good as the maximum likelth method for the
estimation op, see, Table 3 results. Consequently, we recommesidg the
modified maximum likelihood method for the paranregstimation of the Rayleigh
distribution in the case of non small samples. Hosve we notice that there is a
gain in using the PWM method for estimating the IRayh threshold parameter
when the sample size is small; this confirms Dariand Smith (1990) statement.

Table 2: RMSE of d ande estimatespbtained with the different methods,
combined by averaging over the valug#s= 2, 4, 6, 8 and 10 for various
sample sizes n£ =1 and PWM orders 1 and 2 are used.

n 10 20 30 40 50 60 70 80 90 100
5 1.34 .96 .78 .68 .61 57 .52 .48 4 .43
PWM 6
‘Z’:P\NM 1.45 1.05 .86 75 .67 .61 57 .53 .5 46
0
Y 1.25 .87 71 .61 .55 .49 46 .43 4 .39
ML 1
‘Z’:ML 1.46 1.03 .82 .70 .62 .56 .52 .48 4 .43
5
5 1.45 1.01 .82 71 .64 .58 .54 .50 A4 .45
mm 7
s 2.96 1.93 1.52 1.2 1.13 1.02 .93 .86 .8 .76
MM 8 1
5 1.37 .98 .80 .70 .63 57 .53 .50 4 44
OoLS 7
I 1.70 1.19 .97 .84 .75 .69 .64 .60 .5 .53
OLS 6
3 1.40 .99 .80 .70 .62 57 .53 .49 4 44
LAD 7
s 1.77 1.21 .98 .84 .75 .68 .63 .59 .5 .53
LAD 6
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Table 3: RMSE of d ande estimatespbtained with the different methods, combined by
averaging over the valued = 2, 4, 6, 8 and 10 for small values n=>5, 6, and 9.
&=1 and PWM orders 1 and 2 are used.

n 5 6 7 8 9

a“-PWM 1.8 1.7 1.5 1.4 1.4

5 0 8 9 1

o 1.9 1.8 1.7 1.6 1.5

6 2 0 1 3

5ML 1.8 1.6 1.5 1.4 1.3

4 6 2 2 3

£ 2.4 2.1 1.9 1.7 1.6

0 4 4 9 6

5 2.1 1.9 1.7 1.6 1.5
mm 0 0 5 3 3

Eun 4.6 4.1 3.7 3.4 3.1
7 3 3 2 7

3 1.9 1.7 1.6 1.5 1.4
oLs 4 7 3 4 4

o 2.4 2.2 2.0 1.9 1.8
9 4 6 1 0

5LAD 2.0 1.8 1.6 1.5 1.4
3 3 7 8 8

ELno 2.7 2.3 2.1 2.0 1.8
4 6 2 3 9

Note: The numerical studies have been carried out widlu€<d and SPSS, Release 11.
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