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Abstract

In a previous paper from this laboratory results from the solution of the Poisson-

Boltzmann equation for the spherical cell model of a fullerene molecule at which charged

groups are attached have been presented. The electrostatic internal and free energies,

degree of binding of counterions, osmotic coefficient, and distribution of counterions

around the charged fullerene shell have been calculated. Numerical computations have

shown that some properties tend to the well-defined limiting values for vanishing

concentrations. In this paper it is shown that limiting values of these properties can be

predicted by the analytical solution of the Poison-Boltzmann equation.

Introduction

Recently we have reported on the first experimental1 and theoretical2 results on

aqueous solutions of Th symmetric derivative of fullerene C60, at which six malonic acid

molecules have been attached, Th-C60(C(COOH)2)6. It has been found that

fullerenehexamalonic acid, C66(COOH)12, has properties of a diprotic acid. The first

carboxylic group, COOH(1), of the malonic acid functional group behaves as an almost

strong acid, whereas the second COOH(2) group is a weak acid with pK2 of about 5.5.

                                               
* Dedicated to Professor  Drago Leskovšek on his 80th birthday.
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We may expect that the salts of C66(COOH)12 with strong bases should have the

properties of a strong electrolyte, and could serve therefore as a good example of a

highly asymmetric electrolyte due to the high charge number of the bulky ion.

In the second article on this subject2 the theoretical results for some fundamental

thermodynamic properties of fullerenehexamalonate solutions have been presented: the

electrostatic internal and free energies, degree of binding, osmotic coefficient, and the

distribution function of counterions around the fullerene shell. The nonlinearized

Poisson-Boltzmann equation has been used for this purpose which is still a popular and

practical method of describing the electrical double layers in ionic solutions. Theoretical

computations have shown that in the limit of high dilution various properties studied tend

to the well defined limiting values. In this contribution we show that limiting values can

be elucidate also by the analytical solution of the theoretical expressions.

Theoretical model

The general equations derived here refer to a spherical cell model of a fullerene

electrolyte solution. The volume of the solution is divided by the number of fullerene

particles to obtain the average volume of solution per fullerene particle. This volume is

assumed to be spherical, and the spherical fullerene ion, which we shall call macroion, is

situated in the center of this cell.

The macroion of radius a carries P ionizable groups, and of these P groups ν  are

actually ionized, so that α = ν /P is degree of ionization. It is supposed that the charges

on the macroion are negative and that they are uniformly smeared over its surface. The

spherical cell of radius R contains ν /z positive counterions of radius rc and with the

charge number z. The exclusion radius from the centre of the macroion to the centre of

the counterion is denoted by b (= a + rc), or according to the equations below by a

dimensionless quantity t1 = ln (b/a). The Poisson-Boltzmann equation for this model has

two domains: model has two domains:

∇ =2
1 0Φ , a r b≤ ≤     (1)
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∇ =2
2

2
0 24Φ Φπ l z nB exp( ) , b r R≤ ≤     (2)

where dimensionless quantities Φ, t and γ are given by

Φ = − = =ze kT r a t R a0ψ γ/ , exp( ), exp( )     (3)

In these equations ψ is the electrostatic potential, eo is the proton charge, ε  is the

relative permittivity  of the solvent, no is the number density of counterions at ψ(R) = 0,

lB ( = e kT0
2/ε ) is the Bjerrum length, r ( a r R≤ ≤ ) is the radial distance from the centre

of the cell, and k and T have their usual significance.

For the later use we introduce the charge parameters, Θ0 and Θ:

Θ Θ Θ0 0
2

0= = =ν ε νe kTa l a zB/ / ,     (4)

The boundary conditions are

(dΦ1/dt) t = 0 = −Θ     (5)

Φ1(t1) = Φ2(t1) ; (dΦ1/dt)
t

1

= (dΦ2/dt)
t

1

    (6)

Φ2 (γ ) = 0 ; (dΦ2/dt) t =γ  = 0     (7)

Eq. (1) can be solved analytically, with the result

Φ1 = Φ1(0) − Θ (1 − exp(−t)) ; dΦ1/dt = −Θ exp(−t)     (8)

where Φ1(0) is the dimensionless potential at the surface of the macroion.

Limiting Values

The analytical concentration c  and the concentration parameter γ are related by

c exp (3γ) = 3/4π a3NA     (9)
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where c  is the concentration of the fullerene macroion, FM, in mol FM / L, and NA is the

Avogadro constant. In the limit of high dilution when c → 0 (γ → ∞) the number density

of counterions no → 0. In this case Eq. 2 resembles the form of Eq. 1 and can be solved

analytically, with the result

Φ2 = Θ (exp(−t) − exp(−γ)) = Θ exp(−t); dΦ2/dt = −Θ exp(−t)   (10)

Considering the boundary condition Eq. 6, we find from Eqs. 8 and 10 that

lim ( )
( )

Φ Θ1
0

0
γ →∞ →

=
c

  (11)

or

lim (a) =
c 0
ψ ν

ε→
-

e

a
0   (12)

which is the potential of the macroion itself in the absence of the ionic atmosphere

contribution.

The degree of counterion binding can be defined on various ways.3 The most

common property used for this purpose is the osmotic coefficient, ϕ, which is the

measure of the amount of free counterions and has been defined by4

ϕ = n

n
0   (13)

where n is the average number density of counterions. Obviously, in the limit when c → 0

the number density n n0 → , and the osmotic coefficient tends to one.

Following the idea of Bjerrum5 we can consider as bound counterions those ions

which are located in the region between the distance of closest approach of counterions

to the fullerene macroion, b, and the distance rm , at which the radial distribution function

of counterions has its minimum,2 i.e., for t1 ≤ t ≤ tm:
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b
t dt

t dt

t

t

t

m

=
+

+

∫
∫

exp( )

exp( )

3

3

2

2

1

1

Φ

Φ
γ   (14)

Evidently, the fraction of free counterions, fc, is

fc = 1 – b   (15)

When c → 0 (γ → ∞) the integral in the denominator tends to infinity, and

consequently b → 0 and fc → 1.

The fraction of fee counterions obtained from transport properties can be

approximated6 by the ratio Dc /Dc
0, where Dc and Dc

0 are the macroscopic self-diffusion

coefficients of the counterion in the presence and absence of the macroion, respectively.

In the previous paper2 we have obtained the following expression for Dc /Dc
0:

D

D

t

t dt

c

c
t

0
1

2

3 3

3 3
1

= −

−∫
ϕ γ

γ
(exp( ) exp( ))

exp( )Φ
  (16)

It can be shown that in the limit when γ → ∞ the integral in Eq. 16 equals 1/3

[exp(3γ ) − exp(3t1)] and the ratio Dc /Dc
0 equals to 1.

Numerical results2 have also pointed out that for highly diluted solutions of the

salts of fullerenehexamalonic acid, the distance rm or relative distance tm, at which the

radial distribution function of counterions dN /N dt has its minimum, tend to a definite

limiting value. The condition for the minimum has been found to be

d

dt tm

Φ2 3





= −    (17)

which according to Eq. 10 gives

lim ln
( )

tm
cγ →∞ →

=
0 3

Θ
  (18)



528

Similarly we can calculate the limiting values of the electrostatic energy function

u and free energy function f of the solution. By applying the limiting values for the

gradient dΦ2/dt (Eq. 10) and for the dimensionless potential at the surface of the

macroion Φ1(0) (Eq. 11) to Eqs. 30, 34 and 35 of Ref. 2 we find

lim lim
( ) ( )

u f
c cγ γ→∞ → →∞ →

= =
0 0

21

2
Θ

  (19)
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Figure 1. Dependence of the osmotic coefficient ϕ on the charge parameter Θ for various values

of the concentration parameter γ. 

Figures 1 and 2 show the dependence of the osmotic coefficient ϕ and the

electrostatic energy u, respectively, on the charge parameter Θ for various values of the

concentration parameter γ and for two values of the counterion radius (for point charges
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and for rc = 2.3 Å, which corresponds to the radius of the sodium counterion). The

highest value of the charge parameter, Θ = 11.12, is typical for fullerenehexamalonates.
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Figure 2. Dependence of the electrostatic energy function u on the charge parameter Θ for

various values of the concentration parameter γ.

It can be seen that dependence of ϕ  and u on the counterion radius is more significant at

higher concentrations (lower values of γ ), and  as expected, vanishes in the limiting

curve for γ = ∞ given for the osmotic coefficient by ϕ = 1 and for the electrostatic energy

by Eq. 19.
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Povzetek

V prejšnjem prispevku smo predstavili rezultate rač unov, ki so bili dobljeni z

rešitvijo Poisson-Boltzmannove enačbe za sferični celični model vodne raztopine fulerena,

na katerega so vezane ionske skupine. Izračunali smo elektrostatsko notranjo in prosto

energijo raztopine, stopnjo vezanja protiionov, osmozni koeficient ter porazdelitev

protiionov okrog nabitega fulerenovega skeleta. Numerični rač uni so pokazali, da težijo

pri nizkih koncentracijah nekatere lastnosti k dobro definiranim limitnim vrednostim. V

tem prispevku smo pokazali, da lahko limitne vrednosti teh količin napovemo z analitično

rešitvijo Poisson-Boltzmannove enačbe.


