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Abstract
In a previous paper from this laboratory results from the solution of the Poisson-

Boltzmann equation for the spherical cell model of a fullerene molecule at which charged
groups are attached have been presented. The electrostatic internal and free energies,
degree of binding of counterions, osmotic coefficient, and distribution of counterions
around the charged fullerene shell have been calculated. Numerical computations have
shown that some properties tend to the well-defined limiting values for vanishing
concentrations. In this paper it is shown that limiting values of these properties can be

predicted by the analytical solution of the Poison-Boltzmann equation.

Introduction
Recently we have reported on the first experimémtadl theoreticalresults on
agueous solutions df symmetric derivative of fullerenesg; at which six malonic acid
molecules have been attached;-Cso(C(COOH))e. It has been found that
fullerenehexamalonic acid, s§{COOH),, has properties of a diprotic acid. The first
carboxylic group, COOH), of the malonic acid functional group behaves as an almost

strong acid, whereas the second CQO#toup is a weak acid with pkof about 5.5.

" Dedicated to Professor Drago Leskovek on hist@hday.
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We may expect that the salts o0§s(COOH), with strong bases should have the
properties of a strong electrolyte, and could serve therefore as a good example of a
highly asymmetric electrolyte due to the high charge number dfutkg ion.

In the second article on this subfettie theoretical results for some fundamental
thermodynamic properties of fullerenehexamalonate solutions have been presented: the
electrostatic internal and free energies, degree of binding, osmotic coefficient, and the
distribution function of counterions around the fullerene shell. The nonlinearized
Poisson-Boltzmann equation has been used for this purpose which is still a popular and
practical method of describing the electrical double layers in ionic solutions. Theoretical
computations have shown that in the limit of high dilution various properties studied tend
to the well defined limiting values. In this contribution we show that limiting values can

be elucidate also by the analytical solution of the theoretical expressions.

Theoretical model

The general equations derived here refer to a spherical cell model of a fullerene
electrolyte solution. The volume of the solution is divided by the number of fullerene
particles to obtain the average volume of solution per fullerene particle. This volume is
assumed to be spherical, and the spherical fullerene ion, which we shall call macroion, is

situated in the center of this cell.

The macroion of radiua carriesP ionizable groups, and of theBegroupsv are
actually ionized, so that = v/P is degree of ionization. It is supposed that the charges
on the macroion are negative and that they are uniformly smeared over its surface. The
spherical cell of radiuR containsv /z positive counterions of radius and with the
charge numbez. The exclusion radius from the centre of the macroion to the centre of
the counterion is denoted ly (= a + r¢), or according to the equations below by a
dimensionless quantity = In (b/a). The Poisson-Boltzmann equation for this model has

two domains: model has two domains:

0@, =0, asr<b (1)
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0@, =4l z°nexp@®,), b<r<R (2)
where dimensionless quantiti®s t andy are given by
®=-zeyW/ KT, r= aexp(t), R= aexp{ ) 3)

In these equationg is the electrostatic potentia, is the proton charge, is the
relative permittivity of the solventy, is the number density of counterionsy4R) = O,
ls (= €2/ekT) is the Bjerrum lengthy, (a<r < R) is the radial distance from the centre

of the cell, andk andT have their usual significance.
For the later use we introduce the charge paramégi@ndo:
0O, =vei/ekTa=v |/ a 0= B, (4)

The boundary conditions are

(ddy/dt) (=g = -0 )
Py(ty) = Po(ty) ; (dPy/dt), = (db2/dl), (6)
®,(y)=0;  @Pdb),., =0 (7)

Eq. (1) can be solved analytically, with the result
®; = Py(0) - O (1 - exp(t)) ; dd,/dt=-O exp(t) (8)

where®,(0) is the dimensionless potential at the surface of the macroion.

Limiting Values
The analytical oncentratiorc and the concentratiqguarametetyare related by

c exp(3y) = 3/4a’Na (9)
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wherec is the concentration of the fullerene macroion, FM, in mol/EMandN, is the
Avogadro constant. In the limit of high dilution when- O (y — o) the number density
of counteriong1, — 0. In this case Eq. 2 resembles the form of Eq. 1 and can be solved

analytically, with the result
@, = O (exp(t) — expty)) = ©expt); dd,/dt = -0 exp(t) (20)

Considering the boundary condition Eq. 6, we find from Eqgs. 8 and 10 that

lim ®,(0) = © (11)
Y~ (C-0)
or
limy(a) =- LS (12)
c-0 Ea

which is the potential of the macroion itself in the absence of the ionic atmosphere

contribution.

The degree of counterion binding can be defined on various WBlys. most
common property used for this purpose is the osmotic coefficggntyhich is the

measure of the amount of free counterions and has been defined by

(13)

-
I
= | |o3

wherenis the average number density of counteri@iiously, in the limit wher - 0

the number density, — N, and the osmotic coefficient tends to one.

Following the idea of Bjerrufmwe can consider as bound counterions those ions
which are located in the region between the distance of closest approach of counterions
to the fullerene macroiot, and the distance, , at which the radial distribution function

of counterions has its minimu?’n’,e., fort;<t<ty
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b_E’"exp(?;tﬂbz dt

. (14)
ﬁ exp@Et + ®, xt
Evidently, the fraction of free counterioris, is
f.=1-b (15)

Whenc - 0 (y - o) the integral in the denominator tends to infinity, and

consequentlyp - O andf, - 1.

The fraction of fee counterions obtained from transport properties can be
approximated by the ratioD. /D.’, whereD. andD.’ are the macroscopic self-diffusion
coefficients of the counterion in the presence and absence of the macroion, respectively.

In the previous pap@mwe have obtained the following expression Bp¢D.’:

D, _ ¢ (expBy)- exp&, )) (16)
D¢ 3I:exp(3 -, Xt

It can be shown that in the limit whgn- o the integral in Eq. 16 equals 1/3
[exp(3/) — exp(31)] and the ratidD. /D equals to 1.

Numerical resulfshave also pointed out that for highly diluted solutions of the
salts of fullerenehexamalonic acid, the distang®r relative distancé,, at which the
radial distribution function of counteriomBN /N dt has its minimum, tend to a definite

limiting value. The condition for the minimum hasen dund to be

g%gm = -3 (17)

which according to Eq. 10 gives

limt,, =In9 (18)

y-»(c-0)



528

Similarly we can calculate the limiting values of the electrostatic energy function
u and free energy functioh of the solution. By applying the limiting values for the
gradient d®,/dt (Eq. 10) and for the dimensionless potential at the surface of the

macroion®,(0) (Eq. 11) to Egs. 30, 34 and 35 of Ref. 2 we find

limu = lim f :1@2
yowo(c0) y-w(c-0 2 (19)
1.1
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Figure 1. Dependence of the osmotic coefficignbn the charge paramet@rfor various values

of the concentration parameter

Figures 1 and 2 show the dependence of the osmotic coeffitiemtd the
electrostatic energy, respectivelyon the charge paramet@rfor various values of the

concentration parametgrand for two values of the counterion radius (for point charges
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and forr. = 2.3 A, which corresponds to the radius of the sodium counterion). The

highest value of the charge parame&rs 11.12, is typical for fullerenehexamalonates.
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Figure 2. Dependence of the electrostatic energy functioon the charge paramet@ for

various values of the concentration paramgter

It can be seen that dependence o&ndu on the counterion radius is more significant at
higher concentrations (lower values pj, and as expected, vanishes in the limiting
curve fory= o given for the osmotic &fficient by ¢ = 1 and for the electrostatic energy
by Eq. 19.

References

[1] J. Cerar, J. Cerkovnik, and J. SkerjahdPhys. Chenl998,102, 7377-7381.

[2] J. Skerjanc). Chem. Phy<.999 110, 6890-6895.



530

[3] D. Dolar and A. Peterlin]. Chem. Phys1969 50, 3011- 3015.
[4] A. Katchalsky,Pure Appl. Cheml971, 26, 327-373.
[5] N. Bjerrum,Det. Kgl. Danske videri92§ 9, 2.

[6] A. Schmitt and R. Varoqud. Chem. Soc. Faraday Trar&s1973 62, 1087-1103.

Povzetek

V prejSnjem prispevku smo predstavili rezulta#€ unov, ki so bili dobljeni z
reSitvijo Poisson-Boltzmannowaacbe zasferi¢ni celi¢ni model vodne raztopine fulerena,
na katerega so vezane ionske skuplae¢unali smo elektrostatsko notranjo in prosto
energijo raztopine, stopnjo vezanja protiionov, osmozni koeficient ter porazdelitev
protiionov okrog nabitega fulerenovega skel@fameri¢ni ratuni so pokazali, datezijo
pri nizkih koncentracijah nekatere lastnosti k dobro definiranim limitnim vrednostim. V
tem prispevku smo pokazali, da lahko limitne vrednostktéftin napovemo znaliti¢no

reSitvijo Poisson-Boltzmannowaacbe.



