
https://doi.org/10.31449/inf.v45i4.3819 Informatica 45 (2021) 517–529 517

Performance of Malware Detection Classifier Using Genetic

Programming in Feature Selection

Heba Al-Harahsheh, Mohammad Al-Shraideh and Saleh Al-Sharaeh.

King Abdullah II School for Information Technology, The University of Jordan, Amman, Jordan

E-mail: Heba.moh.h@gmail.com, mshridah@ju.edu.jo and ssharaeh@ju.edu.jo

Keywords: malware detection, machine learning, feature selection, classifier, genetic programming

Received: September 11, 2021

The term "malicious software," which is commonly referred to as malware, describes malicious software

that affects or harms computers, servers, or networks. While the numbers and complexity of malware have

rapidly increased, developing a malware detection system is required to detect malware in the world of

cybersecurity and test the behavior of its new features. While traditional techniques provide less efficiency

in detecting new malware, machine learning techniques are used to achieve rapid malware detection in

an intelligent way to improve detection performance, as malware and its application in the industry are

constantly increasing. In this study, we developed a malware detection model by detecting malware using

machine learning classifiers, after passing a new feature selection technique using genetic programming.

We also compared the performance of all classifiers using the most recent feature selection techniques.

Results show that Random Forest, Random Forest (4), and Random Tree give the best value in all

experiments, while Hoeffding Tree and Decision Stump give lower values for F1-score and accuracy in

all experiments. The feature selection method that proposed GPMP gives a better value than Filter-based

with little differences. The accuracy and F1-score have the values of 0.881066 and 0.867546 for GPMP,

and the values of 0.877624 and 0.862894 for Filter-based, respectively. The experimental results reveal

that GPMP used fewer features than Filter-based, and this affected the computation and complexity of the

model.

Povzetek: Analizirane so bile metode strojnega učenja za povečanje uspešnosti odkrivanja zlonamerne

programske opreme.

1 Introduction
Nowadays, the problem of cybersecurity is growing due to

the fact that all electronic devices are connected to the

Internet. In addition, cybersecurity affects our daily life

and the infrastructure of all fields because of the high

connectivity between millions of hosts over the Internet.

Malware is considered eligible to modify the target

device or application in order to gain full control of the

unauthorized access, and the device can have access to

other vulnerable devices to steal data.

The main reason of cyber-attack is malware.

Accordingly, a malware detection technology must be

developed to improve the legacy technology of the

industrial security software used for detection. According

to Kaspersky's research done in 2020, detecting new

malicious files is increased by a rate of 5.2% every day

[1].

Therefore, distinguishing between benign and

malicious files is the most cybersecurity challenging task,

which is used to detect suspicious files with higher

accuracy and less time and cost. There are no highly

efficient detection methods applied in the traditional

methods because malware spreads very quickly on the

network. Accordingly, most researchers try to use

machine learning to get the best detection accuracy and

reflect it in the new technologies or tools designed for

malware detection and network Intrusion [2] [3] [4].

In this paper, we propose a new model using feature

selection method and genetic programming that are used

in a set of parallel classifiers for a more accurate model to

detect malware at the lowest cost. The model is run using

five methods of selecting features across ten classifiers,

then they will be compared to show the best result at the

lowest cost.

2 Related studies
Recently, much attention has been given to finding and

developing new methods of malware detection, compared

to existing methods, to cover the gap of malware detection

challenges that arise by the increase of malware over time

[5].

Malware detection and analysis help the analyst

learning the type, category, and target of malware.

Malware detection can be classified into two categories,

mainly: static and dynamic analysis. Static analysis is the

primary category that analyzes malware and collects data

from a file without executing it. Dynamic analysis is the

opposite as it executes the suspicious file in an isolated

and controlled environment [6].

mailto:mshridah@ju.edu.jo
mailto:ssharaeh@ju.edu.jo

518 Informatica 45 (2021) 517–529 H. A.-Harahsheh et al.

There are many research papers done to develop

malware detection methods. In [7], for example, a

detection system using effective low-dimensional features

has been proposed. This system used ensemble algorithms

for analysis to get better performance. The model applies

detection technology to a large number of malwares with

faster detection time.

Another research [8] studies two categories of

classification in one model. Alotaibi proposed Multi-

Level Malware detection using Triad Scale (MLMTS)

model that work in multi stages. The first two levels of his

proposed method perform static analysis and the third

level performs dynamic analysis. The linear regression in

machine learning was used in this model as an input of

each level. Using MLMTS method in research

experiments increases the accuracy and decreases false

alarming, compared to other recent models.

The study done by [9] focuses on improving an

effective and efficient approach for malware detection by

using the behavior of malware families. The authors

proposed this methodology because they knew that the

attacker could modify API call features with no change in

overall behavior. So, they worked on three steps: studying

API calls to object operation by analyzing the malware,

generating a dependency graph based on the information

of these operations, and finally defining the family

dependency graph for each malware. The evaluation

results of the proposed approach showed that the approach

can help some anti-virus companies to detect malware

from a zero-day attack.

Multiple anti-virus scanners detection systems were

proposed for enhancement selection performance in the

work done by [10]. They proposed multiple anti-virus

scanners that attempt to check if increasing the number of

scanners affect detection results and how these scanners

are able to maximize the accuracy. The experiment shows

that there is a small effect of the number of scanners on

accuracy, and if the number was increasing, the overall

accuracy will be lowered rather than improved. Moreover,

the final ranking of the scanners depends on the accuracy

and gives the best chance to select the best combination of

scanners.

The malware detection model in this study uses a

specific feature selection method that is used in several

classifiers to compare the scores in order to show the effect

of contemporary feature selection on reducing the cost of

training time in balanced and unbalanced datasets. The

experimental results were obtained by comparing

Precision, Recall, Accuracy, and F1-scare in all classifiers

and by comparing the commuting time as well.

The following Table 1 provides a summary of the

related work done on this field of study.

Table 1: Summary of the Related Work.

Paper
Classifiers

Algorithms
Features

Feature

Selection

Method

Result Objective Limitations

[6] Chi-square APIs/System

calls

- Detecting

accuracy up

to 96.56%

Proposing a model

for recognizing and

detecting the

malware from

benign.

The limitations of this

model are related to

malware that have an

evasion detection

technique, and it was

used to detect 5 classes

of malware only.

[11] Evolutionary

Algorithm

Malware

OpCodes

- Detecting

accuracy for

all datasets

between

85.80% and

87.67%

Using Evolutionary

Algorithm to

generate graph and

compare the similar

graph to detect the

suspicious files. It

was used for

categorizing

malware and

detecting it.

The study shows that

the detection approach

was used to categorize

the malware and detect

it, but it does not show

if it can detect and

cover all classes of

malware.

[12] Hidden Markov

Model (HMM),

Support Vector

Machine (SVM),

Decision Tree

(J48), and

Random Forest

(RF)

API-call,

operations,

and usage

system library

Used term

and inverse

term

frequency

(TF-IDF)

Logarithm

for feature

extraction

Random

Forest

classifier

gives the best

results, while

HMM has

the lowest

performance

Evaluating

classification

approaches in terms

of distinctive

dynamic features

and finding the best

dynamic features.

Malware detection

approaches were used

to obtain the family

classification and

malware detection.

[7] AdaBoost,

random forest,

XGBoost,

rotation trees,

and

extra trees.

2-gram,

2-gramM,

API-DLL,

API, and

WEM

frequency

analysis and

Expert

knowledge

to select a

relevant

feature

XGBoost

reaches the

highest rank

in AUC-PRC

and accuracy

Developing a novel

technique to reduce

feature

dimensionality.

The study does not

represent the time used

to extract features by

frequency analysis and

expert knowledge.

Performance of Malware Detection Classifier Using ... Informatica 45 (2021) 517–529 519

3 Datasets information
This section presents all datasets used in our experiments

conducted for this study. Our approach needed several

datasets to study how they affect malware detection

performance. All datasets used are available online.

We used two types of balanced and imbalanced

datasets for malware detection domains. They were also

categorized into two groups: malicious or benign

software, each with a different number of instances and

features.

Table 2 shows in detail all information regarding each

dataset used in this study in terms of the number of

features, the number of classes, the number of instances,

characteristics of data, and the type of distribution datasets

whether they were balanced or imbalanced.

3.1 PE section headers

The "PE-section" header is a balanced dataset that was

developed by Angelo Oliveira to extract dataset features

from the "PE-section" portion of a group of PE malware

and PE goodware files that appeared in Cuckoo Sandbox

reports. This dataset was created for malware detection

and classification purposes [14].

3.2 Malware analysis datasets top1000 PE

imports

Angelo Oliveira generated “TOP-1000 PE Imports” which

is imbalanced dataset that was created from ‘pe_imports'

part of Cuckoo Sandbox reports for a group of PE malware

and PE goodware files [15].

3.3 API call sequence

The imbalanced “API Call Sequence” dataset contains

42,797 malware and 1,079 goodware of API call

sequences gathered by the extracted “calls” part of

Cuckoo Sandbox reports [16].

3.4 Malware detection data

This imbalanced dataset was created by Takbiri in June

2019 as a result of his study done on detecting malware

using Low-level Architectural Features of malware [17].

3.5 BIG malware dataset from Microsoft

Microsoft team created a balanced dataset from their

competition for Malware Classification Challenge which

is called “BIG 2015” [18].

[8] Proposed a model

with multi-level

linear regression

(MLAPAM and

MDMLA)

Call

sequences,

fallouts,

and arguments

MLMTS

method

used to

generate a

feature set

The proposed

method

(MLMTS)

gives the

maximal

accuracy and

minimum

false positive,

compared to

other

methods

Building a model in

a Multi-Level for

Malware detection

using Triad Scale

(MLMTS) based on

a regression

coefficient.

The experiment study

was performed using

one benchmark

malware dataset.

[9] Comparing the

object operation

of feature

dependency graph

and family

dependency graph

API call - The proposed

model gives

highly

efficient and

effective

results.

Building a malware

detection system

based on behavior of

the malware family.

The justification of

using the behavior-

based features and the

graphs is time

consuming.

[10] Comparing a

multi-scanner

as a black box

Features

extracted from

the malware

were not

considered.

Only the rates

from the

scanners were

- Combining

multi anti-

virus

scanners with

achieving

high

accuracy, and

the result is

having the

best

combination

of scanners

Proposing three

models to achieve

the best accuracy of

multi-scanner

detection system and

minimize the

scanning cost.

The internal

mechanism is not clear,

and it needs more

details about the

features and classifiers

used in all scanners.

[13] Gradient

Boosting

Algorithm

Malware

OpCodes

Deep

learning-

based

feature

extraction

method,

word2vec

Detecting

accuracy up

to 96%.

Developing a model

to represent malware

that mainly uses the

malware opcodes.

The work conducted

was on a short range of

malware classes. The

paper covered 8

different malware

classes.

https://ieee-dataport.org/authors/angelo-oliveira

520 Informatica 45 (2021) 517–529 H. A.-Harahsheh et al.

3.6 ClaMP (Classification of Malware with

PE headers)

The CLaMP balanced dataset is built from portable,

executable files in header field values and from a

combination of malware and benign samples to be used in

the detection system [19].

3.7 Malware executable detection

Rumao created a dataset containing a set of features

extracted from malware and goodware for Windows

executable files. It blends two features of Windows

executables: binary hexadecimal system calls feature, and

DLL calls as hybrid features, in order to create this dataset.

This imbalanced dataset contains 301 malicious programs,

while the goodware contains 72 cases [20].

3.8 Windows Malware Detection

(REWEMA)

Windows Malware Detection Dataset (REWEMA), as a

balanced dataset, contains 3136 malicious programs and

3135 benign executable files. Features were extracted

from disassembling executable files and selecting a set of

useful file attributes [21].

3.9 Malware classification

Malware classification dataset uploaded to Kaggle

website by Paul. Which is Imbalanced dataset, it contains

75503 malware and 140849 goodware features [22].

3.10 Malware goodware dataset

This dataset was uploaded to Kaggle in February 2021.

This Imbalanced dataset contains 50210 instances features

for malware and goodware files [23].

4 Method

4.1 Methodology design

The malware datasets described in Section 3 were

collected to test the proposed method for the detection

system. All ten datasets were classified and categorized

into two categories of malware and benign software. In

addition, these datasets have been further categorized into

two other types: balanced and imbalanced datasets, and

this categorization is based on the disproportion of the

malware and benign category in each dataset.

Five feature selection techniques, which are described

below in Section 4.2, were used in this study, and passed

through fourteen machine learning classifiers in parallel.

This objective model computes detection performance at

the lowest cost. In our approach, we divided the ten

datasets into a training and test set with percentages of

70% and 30%, respectively.

In this work, the model is designed and evaluated by

making the following main steps: [1] Data cleaning was

performed for all datasets before they are split for training

and testing to fix all problems in the datasets (missing

value, removing outliers, and resolving discrepancies,

among others), and [2] five feature selection methods were

used (Chi-Square, Filter-based, Wrapper-based, GPM,

and GPMP). Then, [3] The number of features was

selected for each feature selection method to compare

performance, then it was calculated based on the number

of features used in each method to test the performance

based on how this method extract relevant features that

reflect the effect in the overall performance of the

discovery model. After that, [4] excessive oversampling

SMOTE technique was applied in imbalanced datasets. [5]

The release of new datasets was then introduced after

applying feature selection and SMOTE methods in the

classification model (14 classifiers) to measure

Table 2: List of Used Datasets.

Dataset
Alias

Name

of

Feature

of

Instances

Used

of

Classes

Features

Characteristics

Dataset

Class Distribution

PE Section Headers BS1 5 43293 2 Integer, Float, Text Balanced

TOP-1000 PE Imports DS2 1001 47580 2 Integer, Float, Text Imbalanced

API Call Sequence DS3 101 43876 2 Integer, Float, Text Imbalanced

Malware Detection Data DS4 16 70 2 Integer, Float, Text Imbalanced

BIG Malware Dataset

from Microsoft
DS5 69 5210 2 Integer, Float, Text Balanced

ClaMP (Classification of

Malware with PE

headers)

DS6 55 5184 2 Integer, Float, Text Balanced

Malware Executable

Detection
DS7 531 373 2 Integer, Text Imbalanced

Windows Malware

Detection (REWEMA)
DS8 631 6271 2 Integer, Text Balanced

Malware Classification DS9 56 216352 2 Integer, Text Imbalanced

Malware Goodware

Dataset
DS10 27 50210 2 Integer, Float, Text Imbalanced

Performance of Malware Detection Classifier Using ... Informatica 45 (2021) 517–529 521

predictions. [6] The performance evaluation scale for this

detection model was accuracy, F1, accuracy, and recall.

[7] The rating scale was finally compared for all datasets

in all feature selection methods and all classifiers as well.

The result of the model focuses on the performance to

obtain the results of balanced and imbalanced datasets. All

these steps were performed for the ten datasets (whether

balanced or unbalanced) to study whether our proposed

approach will obtain good performance in all datasets with

different characteristics.

4.2 Feature selection.

In this work, two main steps were applied in datasets

before running the feature selection technique.

4.3 Data cleaning

In this study, we applied a data cleaning for all datasets. It

is about preparing raw data to start working on feature

selection by drop outliers, cleaning missing values,

encoding (text, integer, date, and float, among others), and

scaling data [24].

4.3.1 Using data augmentation technique

Synthetic Minority Over-sampling Technique (SMOTE)

algorithm is one of the well-known augmentation

techniques that are used in imbalanced datasets to solve

minority class problems. In the imbalanced dataset, there

are too few instances of minority classes that affect model

decisions [25].

In this study, we used the SMOTE over-sampling

technique to balance the number of classes in the datasets

by adding new synthesized instances of the minority class.

We also tested another SMOTE technology that is under-

sampling by removing the random instances of the

majority class, so that it is balanced against the minority

class. However, the detection efficacy decreased because

some datasets have too few minority classes which results

in decreasing the dataset, and this will affect the training

and testing phase. Therefore, the main augmentation

technique that we used in this study for all imbalanced

datasets is the SMOTE over-sampling technique [26].

4.3.2 Feature selection techniques

In this part of our study, we used five methods for feature

selection, where three of them were commonly used in

machine learning, and they are: Chi-Square, filter-based,

and wrapper-based. The remaining methods are Genetic

Programming Mean (GPM) and Genetic Programming

Mean Plus (GPMP). They were developed in our study

using genetic programming (GP) algorithm using the

open-source frame-work HeuristicLab (Heuristic and

Evolutionary Algorithms Laboratory) [27].

The GP method was used to create a weight for all

features in hidden computations and to release the feature

at relatively close values. We added two thresholds to the

output result of the GP algorithm to find the most

important and most relevant feature, in order to get more

accuracy in perdition. In the first threshold used in GPM,

the mean of all features values was computed, and all

features were greater than the threshold.

In GPMP, we changed the threshold by adding a

chance for the remaining features whose values are below

the mean, and that was done by creating another interim

threshold which was added to the original threshold value

to add a change for the features where their values are near

the original threshold. See equation (1) that defines Chi-

Square, where O is the observed value and E is the

expected value for all values.

Equation (2) represents the calculation of GPM

method, WFk is the weight for the feature, and the integer

number K represents all features y=1, 2, ..., K.

Equation (3) is similar to equation (2), but it subtracts

the mean of all weights of features under the total mean as

an interim threshold is used to increase the chance for

other features that have a value less than the original

threshold.

The main difference between these methods is that

when we apply them in our approach, we find that a

number of some specific features affect the computational

cost and model detection performance. Each method

evaluated feature values and compared them to the target

value to find the strongest relationship between the target

values depending on method statistical measures.

Table 3 shows the five feature selection methods used

in this study and their alias used in the charts.

We found that each method has its own set of features

that are identified to be used in the detection model. The

difference in the number of features and the identified

features themselves will be certainly reflected in the final

Table 3: Five Feature Selection Methods.

Feature Selection Method Alias name

1 Chi-Square Chi

2
Genetic programing Mean

(GPM)
GPM

3
Genetic programing

Mean Plus (GPMP)
GPMP

4 Filter-based Filter

5 Wrapper-based Wrapper

𝑋2 = ∑ (
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

)

𝑛

𝑖

 , 𝑖 = 1,2, . . , 𝑛 (1)

𝐺𝑃𝑀 = ∑(𝑊𝐹𝑘)/𝑘

𝑘

𝑖

 , 𝑖 = 1,2, … , 𝑘 (2)

𝐺𝑃𝑀𝑃 = (∑(𝑊𝐹𝑘)/𝑘) − (∑(𝑊𝐹𝑘−𝑙𝑜𝑤)/𝑧) , 𝑦 = 1,2, … 𝑘 | 𝑜 = 1,2, … , 𝑧 (3)

𝑧

𝑜

𝑘

𝑦

522 Informatica 45 (2021) 517–529 H. A.-Harahsheh et al.

results of the detection model. Table 4 shows the

differences between the number of features identified in

each method.

4.4 Evaluation metrics

To evaluate our proposed detection model approach, we

used the common evaluation metrics. These metrics are

accuracy, precision, and recall, and we added F1-score

because we tested two types of balanced datasets that can

be measured using accuracy. In another hand, imbalanced

datasets need to be measured using F1-score and accuracy.

Equations from (4) to (7) show how these metrics are

calculated [28].

F1-score mainly considers the values of both

Precision and Recall, while Accuracy represents the

percentage of the number of correct predictions in the

model to the total number of inputs.

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ precision ∗ recall

precision + recall
 (4)

𝐴𝑐𝑐𝑢𝑟𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (5)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7)

5 Experimental results
In this section, we present the results of our experiment to

evaluate the findings of detection over ten datasets.

Based on all experiments, we evaluated the detection

model and summarized the results of the study in the

conclusion section.

Table 5 shows 14 classifiers that were used in the

proposed detection model after applying five feature

selection methods in ten labeled malware datasets.

Based on the literature review examining the

performance of classifiers, we used 14 classifiers shown

in Table 5. We selected these classifiers depending on the

efficiency of the literature review. We chose them based

on 1) the most common classifier, 2) the least efficient

classifier to test our approach, and 3) the most efficient

classifier. The diversity of this chosen standardization

helps us studying the proposed detection system. In our

study, we applied our approach to build our model using

four main steps: pre-processing for data cleaning, using

augmentation technique for imbalanced datasets, using

five-feature selection methods, and applying the data on

Table 4: Number of features used for all feature selection methods.

 Number of Features used Percentage of Features used

Dataset
Chi-

Square
GPM GPMP

Filter-

based

Wrapper-

based

Total

Feature

NO

Chi-

Square
GPM GPMP

Filter-

based

Wrapper-

based

DB1 3 2 4 3 3 5 60% 40% 80% 60% 60%

DB2 948 802 829 113 518 1001 95% 80% 83% 11% 52%

DB3 100 20 33 99 29 101 99% 20% 33% 98% 29%

DB4 15 7 15 14 15 16 94% 44% 94% 88% 94%

DB5 55 12 20 50 61 69 80% 17% 29% 72% 88%

DB6 43 13 16 29 37 55 78% 24% 29% 53% 67%

DB7 483 70 70 133 201 531 91% 13% 13% 25% 38%

DB8 151 59 48 563 611 631 24% 9% 8% 89% 97%

DB9 54 15 18 34 46 56 96% 27% 32% 61% 82%

DB10 19 7 9 20 25 27 70% 26% 33% 74% 93%

Total 79% 30% 43% 63% 70%

Table 5: Classifiers used in proposed model.

NO. Classifiers
Alias name used

in charts

1 Ada Boost.M1 AdaBM1

2 Ada Boost.M1 (4) AdaBM1(4)

3 AdaBoost AdaB

4 CatBoost CatBoost

5 Decision Stump DStump

6 Hoeffding Tree HTree

7 k Nearest Neighbors KNN

8 Naive Bayes NB

9 Random Committee RComm

10 Random Committee (4) RComm4

11 Random Forest RF

12 Random Forest4 RF4

13 Random Tree RT

14 Support vector Machines SVM

Performance of Malware Detection Classifier Using ... Informatica 45 (2021) 517–529 523

the model using 14 classifiers.The main objectives of this

study focus on:

First: knowing if the new proposed feature selection

methods affect the overall performance of the detection

model.

Second: Knowing if the proposed methods give good

performance of detection in balanced and imbalanced

datasets.

Third: Determining which classifiers performs better

using new FS methods and comparing them to other state-

of-the-art performance methods.

Figure 1 shows the total number of features in all

datasets compared to the number of features used in all FS

methods in this study. As a Figure 1 appears almost in all

datasets, chi-square and wrapper-based used many

features in all datasets according to their calculation.

The proposed methods (GPM and GPMP) have a

close result to the number of the used features, compared

to filter-based. GPM and GPMP used fewer features than

filter-based features in seven datasets. Table 4 shows the

percentage of features used in ten datasets. GPM and

GPMP have the minimum percentage of features used,

with a value of 30% and 43%, respectively.

The highest number of features are used in Wrapper-

based, in DS8 the percentage of features used are 97% that

mean almost all the features are kept and used.

The highest number of features are used in Wrapper-

based, and in DS8, the percentage of the used features are

97%. This means that almost all features are kept and used.

Based on the percentages shown in Table 4, and by

applying FS on 14 classifiers, it can be noted, after

conducting the initial analysis of the results, that the best

results of F1-score and accuracy were found after applying

the features that were selected by GPMP and Filter-based,

with a little difference in values.

The first output of our results shows that the

comparison between GPMP and Filter-based must be

studied, while GPM gives less performance than these two

FS methods.

This finding guided us to check if accuracy and F1-

score were affected by these percentages. As shown in

figures (3) to (12), the results of the experiment conducted

for ten datasets show that we must study if these FS

methods give the same performance in balanced and

imbalanced datasets. Furthermore, we studied the overall

behavior of the performance in all datasets, and we

compared the values that were found in balanced and

imbalanced datasets after applying SMOTE oversampling

technique.

We noted, once we applied SMOTE augmentation

technique, that prediction model is able to obtain the best

performance based on F1-score and accuracy in the 14

classifiers that were used.

SMOTE is a common oversampling technique that is

mainly used to handle the imbalanced datasets, but it may

cause the model to need extra time for training and over-

fitting. However, in this study, oversampling technique

Figure 1: The number of features is used in all Datasets based on the FS methods.

Figure 2: Average accuracy and F1-score summary for ten DS using 14 classifiers.

0,000000

0,200000

0,400000

0,600000

0,800000

1,000000

C
h
i-
sq
u
ar
ed

Fi
lt
er
-b
as
ed

G
P
M

G
P
M
P

W
ra
p
p
er
-b
as
ed

C
h
i-
sq
u
ar
ed

Fi
lt
er
-b
as
ed

G
P
M

G
P
M
P

W
ra
p
p
er
-b
as
ed

Accuracy F1_score

524 Informatica 45 (2021) 517–529 H. A.-Harahsheh et al.

helps the model to give better performance when

compared to balanced datasets.

Figures (3) to (12) illustrate the performance of all of

our study objectives. In general, we can see that the

balanced and imbalanced datasets are illustrated in similar

shapes with little detailed differences occurred after

applying SMOTE technique. This means that FS methods

have a good result in all datasets regardless of whether

they are balanced or imbalanced.

In the final step of our study, we tried to determine

which classifier gives better detection performance using

the five FS features over ten datasets (balanced and

imbalanced).

After applying our approach on ten datasets, results

were summarized by computing the average values for F1-

score and accuracy for all experiments, as shown in Table

6 and Figure 2. The average of the highest calculated

values of F1-score and accuracy shows that it is significant

to rank the classifiers based on the efficiency.

We found that there were three datasets that held the

best ranks in the average of all conducted experiments.

Random Forest, Random Forest (4), and Random Tree are

in the lead in accuracy and F1-score values. They are then

followed by the other three classifiers, classified as group

B of performance, namely: AdaBoost, AdaBoost.M1, and

KNN. Additionally, both Hoeffding Tree and Decision

Stump give the lowest values of F1-score and accuracy in

all experiment. The remaining classifiers are categorized

in the middle of giving good performance results scales.

Figure 2 summarizes the average values of accuracy

and F1-score for ten DS using 14 classifiers. The average

values for all experiments help us concluding our study by

saying that GPMP and Filter-based give the best results in

all experiments with the average of f1-score values that

reach 0.867546 and 0.862894, respectively.

This finding leads us to examine the differences

between FS methods. Figure 1 shows the number of

features used in all datasets based on FS methods. The

Table 6: Average of accuracy and F1-score for ten DS using 14 classifiers and five FS methods.

GPM Filter-based GPMP Chi-squared Wrapper-based

Avg F1-

score
Accuracy F1_score Accuracy F1_score Accuracy F1_score Accuracy F1_score Accuracy F1_score

AdaBoost Avg 0.897007 0.892153 0.950888 0.950875 0.912717 0.909771 0.913025 0.912015 0.905135 0.910262 0.915015

AdaBoost.M1 Avg 0.877519 0.875979 0.931936 0.931577 0.933636 0.933926 0.897579 0.897521 0.911156 0.910161 0.909833

AdaBoost.M1(4) Avg 0.889907 0.887123 0.920886 0.920435 0.917216 0.920035 0.870939 0.868993 0.902101 0.901588 0.899635

CatBoost Avg 0.844995 0.854525 0.855918 0.855751 0.885714 0.885961 0.898815 0.898688 0.857265 0.857820 0.870549

Decision Stump Avg 0.797667 0.790254 0.793439 0.775139 0.819049 0.812602 0.752604 0.732342 0.771943 0.756560 0.773379

Hoeffding Tree Avg 0.519706 0.381524 0.587115 0.442341 0.548830 0.396545 0.526053 0.386072 0.623355 0.525731 0.426442

KNN Avg 0.904014 0.901189 0.932180 0.932396 0.954862 0.953708 0.932422 0.934905 0.862516 0.852418 0.914923

NB Avg 0.768505 0.736326 0.712549 0.670044 0.735392 0.705738 0.700059 0.648922 0.789419 0.769453 0.706096

Random Committee Avg 0.882569 0.880216 0.908151 0.908101 0.906350 0.906522 0.884793 0.884288 0.825369 0.792877 0.874401

Random Committee(4) Avg 0.877746 0.873598 0.870887 0.871200 0.871380 0.871454 0.887017 0.885551 0.861022 0.858908 0.872142

Random Forest Avg 0.957570 0.955435 0.976959 0.976194 0.979496 0.979747 0.945723 0.944170 0.959321 0.962125 0.963534

Random Forest(4) Avg 0.950536 0.947880 0.975251 0.975478 0.980718 0.979334 0.948085 0.944361 0.966235 0.966801 0.962771

Random Tree Avg 0.948175 0.942662 0.972579 0.972934 0.976031 0.974188 0.939855 0.939396 0.965424 0.962871 0.958410

SVM Avg 0.880227 0.872036 0.898003 0.898045 0.913536 0.916118 0.907813 0.907274 0.915233 0.919567 0.902608

Avg 0.856867 0.842207 0.877624 0.862894 0.881066 0.867546 0.857484 0.841750 0.865392 0.853367

Figure 3: Accuracy and F1-score for DS1.

Performance of Malware Detection Classifier Using ... Informatica 45 (2021) 517–529 525

Figure 4: Accuracy and F1-score for DS2.

Figure 5: Accuracy and F1-score for DS3.

Figure 6: Accuracy and F1-score for DS4.

Figure 7: Accuracy and F1-score for DS5.

526 Informatica 45 (2021) 517–529 H. A.-Harahsheh et al.

Figure 1 shows that in most of the datasets, the GPMP

used fewer features than Filter-based. This means that the

computation used in the model used less time in GPMP

than on Filter-based.

Figures (3) to (12) show the F1-score and accuracy of

all datasets. The analysis of the figures values shows the

same results summarized in Table 6. In all figures,

Random Forest, Random Forest (4), and Random Tree are

at the top of all experiments. The values of AdaBoost.M1,

and KNN are approximately similar, but the values of the

Hoeffding Tree and the decision stump are shown in all

figures below. These findings can be generalized for all

datasets, whether they are balanced or imbalanced, as

previously discussed.

To check the effectiveness of our study, we have

implemented our model on ten datasets to get the big

picture of our study and the reasons why the proposed

model is more effective and efficient.

It is difficult to compare the results of the proposed

model with other models because most of the models use

a limited number of malware detection features and

because there are other limitations such as using a single

dataset to make a comparison between the results. This

study also covers both balanced and imbalanced datasets

and applies the proposed model to them. Most of the

Figure 8: Accuracy and F1-score for DS6.

Figure 9: Accuracy and F1-score for DS7.

Figure 10: Accuracy and F1-score for DS8.

Performance of Malware Detection Classifier Using ... Informatica 45 (2021) 517–529 527

related works measure accuracy as a performance

measurement, but our study does the measures using

accuracy and F1-score because we use an imbalanced

dataset. However, the results of the proposed model can

be evaluated along with other related works by checking

the result of F1-score of 0.9635 while we use Random

Forest in the average of ten datasets, and this is considered

a good value for the detection rate.

We have proposed a malware detection model using

14 classifier algorithms and five feature selection

methods, two of which are proposed. Our feature selection

methods are compared to other recent methods by

applying them to the same datasets to check the

differences in accuracy. We found our proposed method

to be very effective for distinguishing between benign and

harmful programs in relation to their detection.

6 Conclusion
This paper presents a model for detecting malware to

enhance the detection rate by using five feature selection

methods in ten malware datasets and 14 classifiers.

This study examines if this proposed detection

method gives better detection value for balanced and

imbalanced datasets. The experiments shown throughout

the study have no difference in detection values while

using balanced and imbalanced datasets after applying

SMOTE overfitting technique in imbalanced datasets.

The results of this experiment have confirmed that the

proposed GPMP feature selection methods attained high

detection values in accuracy and F1-score.

The overall rankings of feature selection methods

depending on accuracy and F1-score in this experiment

are GPMP, Filter-based, Wrapper-based, and chi-square,

respectively.

Results show that GPMP methods used fewer features

than other methods with a percentage of 43% in the

average of ten datasets. Filter-based that compete GPMP

in detection rate used 63% features in an average of ten

datasets. This shows how Filter-based affects the

complexity and computation in the detection model. The

average values of detection rate summarize the

performance when using FS methods by saying that

GPMP and Filter-based give average F1-score values of

0.867546 and 0.862894, respectively.

The final findings in this study focus on performance

ranks for 14 classifiers in an average of all experiments.

Random Forest, Random Forest (4), and Random Tree

have the highest experiment results in accuracy and F1-

score values. The values for these classifiers in F1-score

are 0.963534, 0.962771, and 0.958410, respectively.

These values are followed by the values of AdaBoost,

AdaBoost.M1, and KNN, while Hoeffding Tree and

Decision Stump in all experiments give lower values for

F1-score and accuracy.

We intend, in our future work, to apply this presented

method in this model on android malware detection in

order to study the features of the datasets and the

performance of classifiers.

Figure 11: Accuracy and F1-score for DS9.

Figure 12: Accuracy and F1-score for DS10.

528 Informatica 45 (2021) 517–529 H. A.-Harahsheh et al.

Reference
[1] “The number of new malicious files detected every

day increases by 5.2% to 360,000 in 2020 |

Kaspersky.”

https://www.kaspersky.com/about/press-

releases/2020_the-number-of-new-malicious-files-

detected-every-day-increases-by-52-to-360000-in-

2020 (accessed Jun. 14, 2021).

[2] Y. Jian, X. Dong, and L. Jian, “Detection and

recognition of abnormal data caused by network

intrusion using deep learning,” Inform., vol. 45, no.

3, pp. 441–445, 2021, doi: 10.31449/inf.v45i3.3639.

[3] O. F.Y, A. J.E.T, A. O, H. J. O, O. O, and A. J,

“Supervised Machine Learning Algorithms:

Classification and Comparison,” Int. J. Comput.

Trends Technol., vol. 48, no. 3, pp. 128–138, 2017,

doi: 10.14445/22312803/ijctt-v48p126.

[4] A. Chaudhuri, “Parallel fuzzy rough support vector

machine for data classificatin in cloud environment,”

Inform., vol. 39, no. 4, pp. 397–420, 2015.

[5] K. Shaukat, S. Luo, V. Varadharajan, I. A. Hameed,

and M. Xu, “A Survey on Machine Learning

Techniques for Cyber Security in the Last Decade,”

IEEE Access, vol. 8, no. 01, pp. 222310–222354,

2020, doi: 10.1109/ACCESS.2020.3041951.

[6] O. Savenko, A. Nicheporuk, I. Hurman, and S.

Lysenko, “Dynamic signature-based malware

detection technique based on API call tracing,”

CEUR Workshop Proc., vol. 2393, pp. 633–643,

2019.

[7] S. Euh, H. Lee, D. Kim, and D. Hwang,

“Comparative analysis of low-dimensional features

and tree-based ensembles for malware detection

systems,” IEEE Access, vol. 8, pp. 76796–76808,

2020, doi: 10.1109/ACCESS.2020.2986014.

[8] S. S. Alotaibi, “Regression coefficients as triad scale

for malware detection,” Comput. Electr. Eng., vol.

90, no. December 2019, p. 106886, 2021, doi:

10.1016/j.compeleceng.2020.106886.

[9] B. Cheng et al., “MoG: Behavior-Obfuscation

Resistance Malware Detection,” Comput. J., vol. 62,

no. 12, pp. 1734–1747, 2019,

doi: 10.1093/comjnl/bxz033.

[10] M. N. Sakib, C. T. Huang, and Y. D. Lin,

“Maximizing accuracy in multi-scanner malware

detection systems,” Comput. Networks, vol. 169, p.

107027, 2020, doi: 10.1016/j.comnet.2019.107027.

[11] F. Manavi and A. Hamzeh, “A new approach for

malware detection based on evolutionary algorithm,”

GECCO 2019 Companion - Proc. 2019 Genet. Evol.

Comput. Conf. Companion, pp. 1619–1624, 2019,

doi: 10.1145/3319619.3326811.

[12] A. G. Kakisim, M. Nar, N. Carkaci, and I.

Sogukpinar, Analysis and evaluation of dynamic

feature-based malware detection methods, vol.

11359 LNCS. Springer International Publishing,

2019.

[13] C. H. Lo, T. C. Liu, I. H. Liu, J. S. Li, C. G. Liu, and

C. F. Li, “Malware classification using deep learning

methods,” Proc. Int. Conf. Artif. Life Robot., vol.

2020, pp. 126–129, 2020,

doi: 10.5954/ICAROB.2020.OS4-4.

[14] “Malware Analysis Datasets: PE Section Headers |

Kaggle.”

https://www.kaggle.com/ang3loliveira/malware-

analysis-datasets-pe-section-headers (accessed Mar.

07, 2021).

[15] “Malware Analysis Datasets: Top-1000 PE Imports |

IEEE DataPort.” https://ieee-dataport.org/open-

access/malware-analysis-datasets-top-1000-pe-

imports (accessed Mar. 07, 2021).

[16] “Malware Analysis Datasets: API Call Sequences |

IEEE DataPort.” https://ieee-dataport.org/open-

access/malware-analysis-datasets-api-call-

sequences (accessed Mar. 07, 2021).

[17] “Windows Malware Detection | Kaggle.”

https://www.kaggle.com/sidneylima/rewema

(accessed Mar. 07, 2021).

[18] Microsoft, “Microsoft Malware Classification

Challenge (BIG 2015) | Kaggle,” 2018.

https://www.kaggle.com/c/malware-

classification/data. (accessed Mar. 07, 2021).

[19] A. Kumar, “ClaMP (Classification of Malware with

PE headers),” vol. 1, 2020,

doi: 10.17632/XVYV59VWVZ.1.

[20] “Malware Executable Detection | Kaggle.”

https://www.kaggle.com/piyushrumao/malware-

executable-detection (accessed Mar. 07, 2021).

[21] “GitHub - rewema/REWEMA.”

https://github.com/rewema/REWEMA (accessed

Mar. 07, 2021).

[22] “Malware Classification | Kaggle.”

https://www.kaggle.com/kallolkumarpaul/malware-

classification (accessed Mar. 07, 2021).

[23] “Malware Goodware Dataset | Kaggle.”

https://www.kaggle.com/arbazkhan971/malware-

goodware-dataset (accessed Mar. 07, 2021).

[24] N. Iqbal and M. Islam, “Machine learning for dengue

outbreak prediction: A performance evaluation of

different prominent classifiers,” Informatica, vol. 43,

no. 3, 2019, doi: 10.31449/inf.v43i3.1548.

[25] S. A. Alsaif and A. Hidri, “Impact of data balancing

during training for best predictions,” Inform., vol.

45, no. 2, pp. 223–230, 2021,

doi: 10.31449/inf.v45i2.3479.

[26] J. L. P. Lima, D. MacEdo, and C. Zanchettin,

“Heartbeat Anomaly Detection using Adversarial

Oversampling,” Proc. Int. Jt. Conf. Neural Networks,

vol. 2019-July, no. July, pp. 1–7, 2019, doi:

10.1109/IJCNN.2019.8852242.

[27] A. Elyasaf and M. Sipper, “Software review: The

HeuristicLab framework,” Genet. Program.

Evolvable Mach., vol. 15, no. 2, pp. 215–218, 2014,

doi: 10.1007/s10710-014-9214-4.

[28] E. Amer and I. Zelinka, “A dynamic Windows

malware detection and prediction method based on

contextual understanding of API call sequence,”

Comput. Secur., vol. 92, 2020,

doi: 10.1016/j.cose.2020.101760.

