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The tensile strength and the fracture strain of particulate composites have been evaluated for the 
case that adhesion exists between the matrix and filler. Two models, each of three components on the 
basis of cube-within-cube formation, have been used as representative volume elements. By comparing 
the derived theoretical results of the strength with experimental data for treated and untreated particles 
in resin/filler systems, the first model can be characterised as corresponding to perfect adhesion quality 
between the matrix and filler, while the second one to low adhesion quality. The strength predicted by the 
first model is close to that of treated particles corresponding to high strength. This model corresponds to 
an upper bound of the strength in cube-within-cube models. The strength predicted by the second model is 
close to that of untreated particles corresponding to low strength, but this model does not correspond to a 
lower bound of strength. The systems used for comparison were resin/glass, resin/iron and resin/SiC 
particulate composites. For the case that adhesion exists between the matrix and filler, the strengths and 
fracture strains predicted by the present models are in agreement to those provided by an existing 
evaluation method in the literature. 
©2010 Journal of Mechanical Engineering. All rights reserved.  
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0 INTRODUCTION 
 

As pointed out by Nielsen [1], when there 
is no adhesion between matrix and filler, the 
tensile strength of particulate composites depends 
on the tensile strength of the matrix, the filler 
volume fraction and the stress concentration 
factor. When adhesion between the matrix and 
filler exists, the tensile strength depends on the 
fracture deformation and the elastic modulus of 
the composite. Consequently, in this latter case 
the tensile strength results from a complex 
interplay between the properties of the individual 
constituent phases; the resin, the filler and the 
interface [2]. 

In general, when adhesion exists between 
the matrix and filler, the mechanical properties of 
the composite are affected by a number of 
parameters; the size, the shape, the aspect ratio 
(ratio of the length to the side of the base), the 
distribution of the reinforcing particles, the 
interaction between the inclusions and the 
agglomerations of fillers. In the case of 
nonspherical inclusions the orientations of the 

fillers with respect to the applied stress are also 
essential [2]. Some significant parameters also 
play an important role upon the tensile strength; 
the quality of adhesion between the matrix and 
filler, air bubbles in the matrix, the stress 
concentration factor, the plastic behavior of the 
matrix near the filler and the crack pinning effect 
(that is when the crack propagation is embedded 
by a group of particles) [2] and [3]. 

In [4] and [5], tensile experiments in 
particulate composites prepared by treated and 
untreated particles, have shown that the adhesion 
quality between the matrix and filler considerably 
affects the strength behavior of the composites. 
The kind of adhesion also affects the values of the 
stress intensity factor [3] and [6]. 

In this study the tensile strength and the 
fracture strain of particulate composites are 
evaluated using two cube-within-cube models, 
each one consisting of three components. One of 
these models [7] gives a constant strength of the 
composite, independent of the filler content, 
which is equal to the strength of the matrix. Thus, 
this model is characterized as corresponding to 
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perfect adhesion quality between the matrix and 
filler. In the other model [8] the strength 
decreases as the filler content increases up to 
20%, attains a minimum and then increases 
steadily with a slow rate. A comparison to 
experimental results [4] and [5] shows that this 
model corresponds to low adhesion quality 
between the matrix and filler. The strength and 
fracture strain predicted by the above models are 
in agreement with the theory of Nielsen [1] for 
the case when adhesion exists between the matrix 
and filler. The theoretical results derived by the 
presented models are compared to the values of 
the strength predicted by existing equations in the 
literature and to experimental results in 
resin/glass particulate composites. A comparison 
of the theoretical values of strength and fracture 
strain is also made with experimental results in 
resin/iron and resin/SiC particulate composites.  

 
1 THEORETICAL CONSIDERATIONS 

 
The theoretical analysis is based on the 

following assumptions: 
1) The particles are perfectly cubic. 
2) The matrix volume distribution of each filler 

is also cubic. 
3) The volume fraction of the particles is 

sufficiently low, so that there is no 
interaction between the stress fields around 
the neighboring particles. 

4) The particles are uniformly distributed in the 
matrix, so that homogeneity can be assumed. 

5) Both the matrix and the inclusion are 
prepared from perfectly homogeneous, 
elastic and isotropic materials of known 
mechanical properties. 

6) The matrix is brittle and the stress-strain 
linearity is maintained up to the failure of the 
composite. 

7) There is no transverse variation of the strains 
in the components which are connected in 
parallel and have the same length in the load 
direction. 

8) The stresses do not vary in the direction of 
the applied load in the components which are 
connected in a series and have the same cross 
sections. 

 
Fig. 1. A schematic representation of the cube-

within-cube model 
 

 

 
Fig. 2. The two cube-within-cube models each consisting of three components, a) Paul’s model [7],  

b) Ishai-Cohen’s model [8] 
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As shown in Fig. 1 the filler volume 
fraction is given by: 

3

3

c
au f  . (1)

The components (1) and (2) of the model 
presented in Fig. 2a, called model 1, are 
connected in parallel and the resulting element is 
connected in a series with a component (3). 

When an external force acts in the 
direction shown in Fig. 2a the stress equilibrium 
and strain compatibility equations are: 

c 3
, (2)
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1 ffc uu   , (5)

where the indexes 1, 2 and 3 correspond to the 
components (1), (2), (3) and the composite 
respectively. The constitutive equations are: 

f11 E  , (6)

m22 E  , (7)

m33 E  , (8)

cEcc   , (9)

where the indexes correspond to the matrix and 
the filler respectively. 

Combining Eqs. (2) to (9) one obtains: 

231   c
. (10)

Assuming that failure in the component (3) 
corresponds to failure of the whole composite, the 
strength of the whole composite is given by: 

mucu   , (11)

where the index denotes strength. 
Eqs. (2) to (9) give: 
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where the index u  denotes fracture deformation 

and 
m

f

E
E

m  . 

On the other hand, in the model presented 
in Fig. 2b, called model 2, the components (1) 
and (2) are connected in a series and the resulting 
element is connected in parallel with component 

(3). When a load acts in the direction shown in 
Fig. 2b the governing stress-strain equations are: 
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The constitutive relations are given by 
Eqs. (6) to (9). Combining Eqs. (6) to (9) with 
Eqs. (13) to (16) it follows that: 

321   c
. (17) 

Assuming that failure of the composite 
coincides with failure of the component (2), Eqs. 
(6) to (9) and (13) to (16) give 
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Alternatively, in both models (1) and (2) 
strength can also be given by the relation: 

ccucu E  , (20) 

where the elastic modulus derived by model (1) is 
given [7] by: 
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while the elastic modulus derived by model (2) is 
given [8] by: 
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To take into account the effect of the 
matrix volume distribution of each filler on the 
values of the fracture constants, the models 3 and 
4 are introduced, shown in Figs. 3a and 3b, 
respectively. 

Following a similar procedure to that 
presented for models 1 and 2, model 3 gives: 

mucu   , (23) 

 



Strojniški vestnik - Journal of Mechanical Engineering 56(2010)10, 625-636 

 

Bourkas, G. – Sideridis, E. – Younis, C. – Prassianakis, I.N. – Kitopoulos, V.  628

 
a) b) 

Fig. 3. The two cube-within-prisma parametric models consisting of three components (models 3 and 4 
respectively) 
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Similarly for Model 4 the following is 
obtained: 
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Using Eqs. (23) to (28) the effect of 
inhomogeneous distribution of the fillers into the 
volume of the matrix can be estimated. 

 
2 MATERIALS AND EXPERIMENTAL WORK 

 
The first material used in the present work 

was derived from a basic diglycidyl ether of 
bisphenol-A resin epoxy matrix with an epoxy 

equivalent of 185 to 192 m mol/kg, a molecular 
mass between 370 and 384 and a viscosity of  
15 Ns/m2 at 25°C. A curing agent, 8 p.h.r. by 
weight triethylenetetramine was employed. This 
material was filled with iron particles of average 
radius 75 µm. The elastic moduli of the matrix 
and filler were 3.50 and 210 GPa respectively, 
their Poisson ratio were 0.35 and 0.29 
respectively and the densities were 7800 and 
1190 kg/m3 , respectively. The volume fraction 
was 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, and 0.4. 

The second material consisted of an epoxy 
resin with a viscosity of 10 to 12 Ns/m2 at 25 °C 
and an epoxy equivalent of 5340 to 5500  
m mol/kg and density of 1160 kg/m3. The used 
hardener was Epilink 177 with an equivalent of 
~95 and viscosity between 0.25 and 0.70 Ns/m2 at 
25 °C. The rate of mixture with the resin was 50 
p.h.r. Also, a plasticizer D.O.P. at a rate of 35 
p.h.r. was employed. 

A filler SiC particles of an average radius 
of 46 µm was used. The elastic modulus, the 
Poisson ratio and the density of the filler were 
400 GPa, 0.2 and 3170 kg/m3 , respectively. The 
elastic modulus and the Poisson ratio of the 
system matrix-hardener-plasticizer were 
determined from the experiments as 2.20 and 0.39 
GPa, respectively. The volume fraction of this 
material was 0, 0.05, 0.1, 0.2 and 0.3. 

In order to measure ultimate stress, 
fracture strain and the Elastic modulus of the 
materials, tensile experiments were carried out 
with an Instron-type testing machine at room 
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temperature. Specimens were tested at a rate of 
extension of 0.2 mm/sec. The specimens were of 
dog-bone type with dimensions at a measuring 
area of 50·10-3×20·10-3×9·10-3 m3 and of total 
length 150·10-3 m. In order to obtain the stress-
strain diagrams for each material, strain gauges 
(KYOWA type, gauge factor k = 1.99) were 
located on each specimen to measure the strain. 

 
3 RESULTS AND DISCUSSION 

 

 
Fig. 4. Ratio /cu mu   (strength of the composite 
over strength of the matrix) as a function of the 

volume fraction filler uf  4.5 µm particles:  
  treated with A187;    untreated;    DC 1107 

treated (after Spanoudakis and Young), (a)  
Nikolais and Narkis, Eq. (34), (b) B. Nielsen, Eq. 

(33), (c) model 2; (d) model 1 

 
In Figs. 4 and 5 the tensile strength in 

resin/glass particulate composites versus the filler 
content is plotted. The strength predicted by Eqs. 
(18) and (11) corresponds to the curves (c) and 
(d), respectively. In the same figures the 
theoretical values of the strength derived by Eqs. 

(33) and (34) (Appendix 1) are also shown. The 
experimental results come from [4] and [5] of 
Spanoudakis and Young for the following cases:  
1. treated particles with an improvement of the 

adhesion quality between matrix and filler, 
2. untreated particles, and 
3. treated particles with a result in a way that 

there is no adhesion between matrix and 
filler. 

 

 
Fig. 5. Ratio /cu mu   as a function of the volume 
fraction filler uf  62 µm particles;   treated with 
A187,    untreated;    DC 1107 treated (after 

Spanoudakis and Young); (a)  Nikolais and 
Narkis, Eq. (34); (b) B. Nielsen, Eq. (33);  

(c)  model 2; (d) model 1 
 

From Figs. 4 and 5 it is observed that the 
straight line which corresponds to model 1, curve 
(d), is close to the experimental results of treated 
glass particles with an improved adhesion 
between matrix and filler. The observed 
discrepancies are owed to the fact that the 
adhesion in the specimens is not perfect and due 
to too many parameters which affect the strength 
and which are referred to in the Introduction. For 
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the above reasons Model 1 is characterized as 
corresponding to perfect adhesion quality 
between the matrix and filler. 

From the above Figs. 4 and 5 it is also 
observed that the strength derived by Model 2 is 
close to the experimental curve corresponding to 
the lower values of untreated particles. Thus, 
Model 2 corresponds to low adhesion quality 
between matrix and filler. This model does not 
consist of a lower bound of the strength because 
there can be models with the same geometry of 
the components but with different dimensions that 
give lower values of the strength. In the case of 
Model 2 failure of the component (2) causes 
failure of the whole composite in which the local 
stress concentration factor is given by: 
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 (29)
The first term in the brackets is the stress 

in component (3), when failure takes place in 
component (2). The second term in the brackets is 
the stress in component (2) which is now 
transferred to component (3). The above 
procedure is based on the assumption that the 
stresses can be transferred to the inclusion 
through component (2). 

From the above expression the values of 
the stress concentration factor k, for different 

values of the filler volume fraction uf in resin/iron 
particulate composites are given in Table 1. 

 
Table 1. Stress concentration factor k versus filler 
volume fraction uf 

uf 0.05 0.10 0.15 0.20 0.25 

k 1.26 1.21 1.13 1.05 0.94 

 
The above values of k determine if failure 

of component (2) causes failure of the whole 
composite. 

In Figs. 6 to 9 the ratio of the strength of 
the composite to the strength of the matrix is 
plotted, versus the filler volume fraction in 
resin/iron composites (Figs. 6 to 8) and in 
resin/SiC particulate composites (Fig. 9). In the 
same figures the theoretical results derived from 
Eqs. (33) and (34) (Appendix 1) and by the 
models 1 and 2 are also presented. Especially in 
Figs. 7 and 8, the theoretical curves derived by 
models 3 and 4 for different values of n, are also 
depicted. In Figs. 6 to 8 the behavior of the 
strength can be divided into three ranges. In the 
first range, of low values of the filler content, it 
seems that fracture occurs at a finite number of 
individual inclusions, so that the strength can be 
related to the quality of the adhesion between the 
matrix and filler, while the crack pinning effect is 
not predominant. In the second range it seems 
that fracture occurs at a finite number of

 

 
Fig. 6. Ratio /cu mu   as a function of the volume fraction uf  in resin/iron particulate composites 
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Fig. 7. Ratio /cu mu   as a function of the volume fraction uf  in resin/iron particulate composites 

 
individual inclusions, and a combination of the 
quality of the adhesion between the matrix and 
filler with the crack pinning effect are 
predominant. In the third range it seems that 
fracture occurs in agglomerations-clusters. In 
Figs. 6 and 7 one can observe that inside the 
second range, the average value of the strength 
derived by the Models 1 and 2, approximates the 
experimental results. It seems that the quality of 
the adhesion between the matrix and filler 
corresponds to a mean value between the values 

of the adhesion qualities which are provided by 
the Models 1 and 2. This second region is 
characterized by an equilibrated-constant value of 
the strength given by the experimental results, 
which can be interpreted by the presence of 
adhesion and the crack pinning effect (crack 
arrest). It can be observed that this equilibrated-
constant value of the strength results from Eqs. 
(11) and (18) and not from Eqs. (33) and (34).
 

 
Fig. 8. Ratio /cu mu   as a function of the volume fraction uf  in resin/iron particulate composites 
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Fig. 9. Ratio /cu mu   as a function of the volume 
fraction uf  in resin/SiC particulate composites 

 
The values of the experimental points in 

Fig. 8 are lower compared to the values of the 
experimental points in Figs. 6 and 7. This can be 
interpreted with the remark that probably there is 
an inhomogeneous distribution of the filler in the 

volume of the matrix and the strength can be 
evaluated using Model 4 with n<1. Actually, 
Model 4 seems that corresponds to a single 
quality of the adhesion between matrix and filler, 
but it gives different values of the strength, 
depending on n. Thus one can say that this model 
can be characterized as an idealized model 
corresponding to different low and intermediate 
qualities of the adhesion. The local stress 
concentration factors of Model 4 are given in 
Appendix 2. 

The experimental results shown in Fig. 9 
can be interpreted considering an “optimal” 
combination of the quality of the adhesion 
between the filler and matrix, and the crack 
pinning effect since there can be a competing 
effect between a high adhesion quality and a low 
effect of the crack arrest, or between an 
intermediate adhesion quality and a high effect of 
the crack arrest [13]. It can be seen that in this 
case the experimental results are close to the 
theoretical results provided by Models 1 and 3. 
From the experimental results shown in Fig. 9 it 
can be concluded that agglomerations do not exist 
in the specimens. 

 

 

 

Fig. 10. Ratio /cu mu   as a function of the volume 
fraction uf  in resin/iron particulate composites 

Fig. 11. Ratio /cu mu   as a function of the volume 
fraction uf  in resin/iron particulate composites 
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It can be noticed that the theoretical results 
of the stresses furnished by Eqs. (33) and (34) 
correspond to the case that when there is no 
adhesion between the matrix and filler, which 
implies that stresses are not transferred to the 
inclusion. The deviation of these theoretical 
results from those predicted by the presented 
models can be explained by the fact that in the 
presented models there is adhesion between the 
matrix and filler and thus stresses are transferred 
to the inclusion. This can explain clearly why in 
the presented models the strength is not a 
decreasing function of uf as in the case of Eqs. 
(33) and (34). 

In Figs. 10 to 12 the ratio of the fracture 
strain of the composite to the fracture strain of the 
matrix is plotted, versus the filler volume fracture 
in resin/iron composites (Figs. 10 and 11) and in 
resin/SiC particulate composites (Fig. 12). In the 
same figures the theoretical results given by Eqs. 
(A3) and (A4) (Appendix 1) as well as those 
given by the used models are also presented. 

 

 
Fig. 12. Ratio /cu mu   as a function of the volume 
fraction uf  in resin/SiC particulate composites 

 
In Figs. 10 to 12 the ratio of the fracture 

strain of the composite to the fracture strain of the 
matrix is plotted, versus the filler volume fracture 
in resin/iron composites (Figs. 10 and 11) and in 
resin/SiC particulate composites (Fig. 12). In the 
same figures the theoretical results given by Eqs. 
(35) and (36) (Appendix 1) as well as those given 
by the used models are also presented. From these 

figures it can be verified that the above theoretical 
results are very close. This can be explained by 
taking into account the fact that in all those 
equations it was assumed that there is adhesion 
between the matrix and filler. In [1] Nielsen 
mentions that in the case of no adhesion, the 
fracture strain takes higher values than those 
provided by Eq. (35). In Figs. 10 and 11 it can be 
seen that the experimental results are 
approximated closer by the theoretical results 
provided by Model (1) than by the results of the 
other models. The high values of strength in Fig. 
(10) can be explained by the homogeneous 
distribution of the filler in the volume of the 
matrix (Model (4), n>1) and probably by 
viscoelastic and plastic phenomena taking place 
in the matrix. As can be easily verified from Eqs. 
(24) and (27), the fracture strain in Models 3 and 
4 is a decreasing function of n (the same holds in 
the case of strength). In Fig. 12 the theoretical 
results given by Eqs. (12), (19) and (35) coincide. 
This is due to the high value of /f mm E E . It is 

remarkable to notice that although Models 1 and 
2 correspond to different adhesion qualities as far 
as the strength is concerned, however both 
models give almost the same values for the 
fracture strain. This can be explained by taking 
into account that the values of the elastic moduli, 
provided by each of the above models, are 
different.  

The presented procedure for the evaluation 
of the strength and the fracture strain in both 
models is in agreement with Nielsen’s theory in 
which the strength is given by  

ccucu E  , (30) 

where cu  is given by Eq. (35) (Appendix 1). 

Thus, since the predicted strains by the presented 
models are close to the strains provided by Eqs. 
(35), (11) and (18), as well as Eqs. (30) and (35) 
give the same values of the strength respectively. 
 

4 MICROFAILURE EFFECTS 
 

In Fig. 9 the curve of the ultimate stress 
behavior versus the variation of the volume 
fraction for Epoxy-matrix-SiC particles is shown. 
By comparison with Figs. 6 to 8 referring to the 
case of Fe-particles, an overall shift of the first 
curve to higher values can be deduced, a fact 
which means an increasing microcrack-pinning-
arrest effect on the critical crack propagation in 
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the given composite. In [13] a detailed 
explanation of such effects by means of an 
elastic-small scale yielding microfracture-fracture 
toughness modeling approach, is presented. In 
[13] it was shown that similar ultimate stress 
behavior as observed in the above figures, can be 
explained by taking into consideration the degree 
of inhomogeneity expressed by some structural 
parameters such as the particle (inclusion) size as 
well as the interinclusion spacing. In the light of 
the mentioned reference it can be argued that the 
above observed shift may be also attributed to the 
difference of the SiC particle average size of ~75 
µm compared to Fe-particle size of ~150 µm. 
Furthermore, from the well-known relation for 
the fracture toughness 0 aK fc    taken as a 

constant material parameter, it is easy to deduce 
that an increase (decrease) of the defect 
(inclusion/particle) size a0, can lead to a decrease 
in the fracture stress σf. Therefore, for the same 
volume fraction and adhesion strength, the 
reduced particle size of SiC can also lead to a 
relative increase in the fracture (ultimate) stress 
of the composite and in this way to the observed 
shift to higher values compared to Fe-particle 
composite. At the same time the mechanism of 
microcrack-pinning and/or arrest can play a 
competing role. This means that for the same 
volume fraction and adhesion strength, the 
probability for a microcrack to become pinned 
and/or arrested around a particle is higher for a 
composite with finer dispersed particles (SiC), 
where the effective interinclusion spacing is 
smaller compared to Fe-composite, where the 
effective interinclusion spacing is greater. 

 
5 STRENGTH AND ULTRASOUNDS 

 
It is known that the strength is related with 

the hardness predicted by Brinel’s method. The 
existing relation is: 

30BHNk  , (31)

where BHN is Brinel’s hardness and k is a 
constant of the material. The index 30 
corresponds to the relation: 

2
30

D

P
 , (32)

where P is the applied load on the specimen and 
D is the diameter of the penetrator. 

It is also known that the hardness can be 
obtained by means of ultrasonic measurements. 

The constant  k of Eq. (31) can be determined by 
this method. 

An alternative way to estimate the strength 
of particulate composites is to use Eqs. (30) and 
(35) in which the value of the elastic modulus can 
be measured using ultrasounds. 

This study presents two models for the 
evaluation of the strength which can be used for a 
comparison to the strength evaluated by 
ultrasonic measurements. 

 
6 CONCLUSIONS 

 
1. The strength evaluated by Model 1 is 

independent of the filler volume fraction and 
equal to the strength of the matrix. This value 
of strength compared to experimental results 
is found to be close to the strength of treated 
particles and gives an upper bound of the 
strength of particulate composites predicted 
by cube-within-cube models. The model is 
characterized as corresponding to perfect 
adhesion quality. 

2. Comparing the strength obtained by Model 2 
to experimental results, it is found to be close 
to the lower values of the strength of 
untreated particles. Thus, the model is 
characterized as corresponding to low 
adhesion quality. The strength derived by 
Model 2 does not give a lower bound of the 
strength of particulate composites. 

3. The strength predicted by the presented 
procedure is in agreement to the strength 
predicted by Nielsen’s theory when there is 
adhesion between matrix and filler. 

4. In Model 2, when an initial failure takes 
place in the matrix, a local stress 
concentration factor is assumed by means of 
which the failure in the whole composite is 
considered. 

5. Although Models 1 and 2 correspond to 
different adhesion qualities as far as the 
strength is concerned, however they provide 
almost the same values of the fracture strain. 

6. When there are not agglomerations, the 
adhesion quality and the crack pinning effect 
seem to be predominant in the fracture 
behavior of the composite. As it arises from 
Models 3 and 4 and the experimental results, 
inhomogeneities in the composite influence 
the values of the strength and the fracture 
strain. 
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7  APPENDIX 1 
 

Equations of the strength used for 
comparison: 
1) Nielsen’s equation (no adhesion) [1] 

ku fmucu  )1( 3
2

 , (33)

where k is a stress concentration factor. 
 

2) Nikolais and Narkis equation (no adhesion) 
[10] and [11] 

) 21,11( 3
2

fmucu u  . (34)

3) Nielsen’s equation for fracture strain [1] 

) 1( 3
1

fmucu u  . (35)

4) Smith’s equation for fracture strain [12] 

) 106.11( 3
1

fmucu u  . (36)

 
 

APPENDIX 2 
 

Values of the Local Stress Concentration 
Factor in Model 4: 
1) In the case of Model 4 failure of the 

component (2) causes failure of the whole 
composite in which the local concentration 
factor K is given by: 

mn

f

f
mu

ff
mu

un

u

nm

uunm
K      

 

)(
 

3
21

3
2

3
1

3
1

3 




















(37) 
2) In Model 2 the values of the concentration 

factor K in epoxy/iron composites are given 
in the following Table 2, for different values 
of n and uf.  

As it turns out, the values of the 
concentration factor, when n < 1, are not too high, 
if one considers that at a circular hole in an 
infinite plate the concentration factor is n = 3 
[14]. 
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