
Informatica 17 (1993) 59-63 59

REGULAR GRAPHS ARE 'DIFFICULT' FOR COLOURING

Janez Žerovnik
University of Maribor, Faculty of Technical Sciences,
Smetanova 17, Maribor,
Slovenia

Keywords: graph colouring, decision problem, NP-completeness, rcgular graphs

Edited by: Rudi Murn

Received: December 19, 1992 Revised: February 16, 1993 Accepted: March 1, 1993

Abstract: Let k be 3 or 4. In this two cases we prove that the decision problem of
k-colourability when restricted to A-regular graphs is NP-complete for any A > k + 1.

1 Introduction

In this note we consider the time complexity of
the decision problem of (vertex) A;-colourability
restricted to regular graphs.

It is known that 'almost all /u-colourable graphs
are easy to colour', namely the proportion of 'dif-
ficult' graphs for the usual backtrack algorithm
vanishes with growing problem size [9]. Know-
ing this it is not surprising that there are algo-
rithms with average polynomial time complexity
[1], when average is taken over all graphs and even
when the average is taken over all 3-colourable
graphs with a given number of vertices[5].

If P^NP, then for every algorithm there has
to be a class of 'counterexamples', i.e. graphs on
which the algorithm either has superpolynomial
time complexity or it fails to produce a correct
answer.

For example, Petford and Welsh noticed that
one of the situations in which the 3-colourable
graphs were not efficiently coloured by their ran-
domised algorithm is when graphs are approxi-
mately regular of a low vertex degree [8]. Sim-
ilarly, approximately regular graphs of a rel-
ative low vertex degree are 'difficult' also for
the fc-colouring generalisation of their algorithm
[10]. Petford and Welsh conjectured that 'dense'
graphs are easy. Indeed, Edwards showed that,
when restricted to class of graphs with lovvest ver-
tex degree 6 > an for arbitrary a > 0, the deci-
sion problem of 3-colouring is polynomial [4].

This may be understood that the 'difficult'
graphs are likely to be found among 'sparse'
graphs. It is known that the problem of 3-

colouring is NP-complete (even) when restricted
to graphs of maximal vertex degree 4 [6]. Here we
show that the problem can be further 'simplified',
proving that the decision problem of 3-colouring is
NP-complete when restricted to A-regular graphs
(for A > 4). We also show that the decision prob-
lem of 4-colouring is NP-complete when restricted
to A-regular graphs (for A > 5).

We assume that the reader is familiar with some
standard definitions of graph theory and of com-
putational complexity theory (given, for example,
in [2] and [7]).

2 3-colourability of 4-regular
graphs is NP-complete

Let us define the problem Tl(k, A) as follows:
Input: A-regular graph G
Question: Is G &-colourable?

Lemma 1 For any graph G there is a graph G'
with no vertex of degree 1 or 2 such that:

G is 3-colourable iff G' is 3-colourable

Remark: G' in the Lemma is either a graph with
minimal vertex degree > 3 or the empty graph,
which is the case when G is, for example, a cycle.
If G' is empty, it is trivially 3-colourable, and from
the proof of the Lemma 1 it follows that also G is
3-colourable.
Proof (of Lemma 1): It is easy to see that the
following assertions are true:

(a) If there is a vertex v G V(G) with degree
1, then G is 3-colourable if and only if the
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Figure 1: Vertices of degree 1 or 2 may be omitted

The construction, given in Fig. 2, can be done
as follows. Take two sets, say M and N, of three
vertices each. Connect every pair x,y; x € M
and y € N. Add two vertices, say u and v and
connect u to all the vertices of N and v to all
the vertices of M. Now choose arbitrary pair of
distinct vertices of G, say w and z, and connect
u with w and v with z to get the graph G'.
Proof: Since the graph H is bipartite, it is easy
to see that 3-colouring of arbitrary graph (G on
Fig. 2) can be extended to 3-colouring of graph
G'. On the other hand, since G is subgraph of G',
G is 3-colourable if G' is. Q.E.D.

Now we shall prove

Figure 2: G is 3-colourable ifF G' is 3-colourable

induced graph on V \ {v} is 3-colourable (see
Fig. l(a)).

(b) If there is a vertex v € V(G) with degree
2, then G is 3-colourable if and only if the
induced graph on V \ {v} is 3-colourable (see
Fig.

In this way we can reduce any graph G to a
graph G' with minimal vertex degree at least 3
which is 3-colourable exactly when G is. Q.E.D.

Remark: Extracting G' successively using (a)
and (b) can clearly be done efficiently.
Remark: It is obvious that maximal vertex de-
gree of the graph G" is not greater than maximal
vertex degree of the original graph G.

Lemma 2 G is 3-colourable iff G' is 3-
colourable

where G' is a graph, obtained from G by the
construction given in Fig. 2.

Lemma 3 The problem 11(3,4) is NP-complete.

Proof: We will reduce the problem of 3-
colourability of graphs with vertex degree at most
4 (which is known to be NP-complete [6]) to the
problem 11(3,4).

Let G be arbitrary graph with maximal degree
A < 4. By Lemma 1 there is a graph G\ (which
has at most as many vertices as G) and G\ is 3-
colourable exactly when G is 3-colourable. If G\
is empty, then we know that G is 3-colourable.

Now consider the case when G\ is nonempty.
By construction, G\ is a graph with vertex degrees
3 and 4. Since the sum of all the vertex degrees is
twice the number of edges (^vev^" = 2|JE7|), the
number of vertices with degree 3 must be even.

Now couple vertices of degree 3 in G\ arbitrar-
ily. Connect a copy of the graph H to each cou-
ple of vertices of degree 3, as defined in Fig. 2.
By Lemma 2, this construction gives a graph
Gi which is 3-colourable exactly when G\ is 3-
colourable. Q.E.D.

Remark: Graph H has 8 vertices. Since we
added at most ^ 8 new vertices, the resulting
graph G2 has at most a constant factor more ver-
tices than G\.

Remark: The construction can clearly be done
efficiently.

Thus 3-colourability of 4-regular graphs is NP-
complete. Now we reduce the problem of 3-
colourability of A-regular graphs to the same
problem on A + 1-regular graphs.
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g(u)g(v)9(G)

c f(G)
f(u)f(v)

Figure 3: Joining two copies of a A-regular graph
we get a A + 1-regular graph

3 3-colourability of A-regular
graphs is NP-complete

Lemma 4 11(3, A) oc 11(3, A + 1)

Proof: Let G be arbitrary A-regular graph. Now
we give a construction of a graph G".

Take two copies of G, Gx = {VuEi) and G2 =
(V2, E2). Denote with / : G -> G\ and g : G ->
G2 the corresponding isomorphisms.

Graph G' = (V',E') is defined with: V = V^ U
V2 and E' = E^ U E2 U {{/(«), g(v)} \ v e V}
(see Fig. 3).

If G' is 3-colourable, then also G is 3-colourable,
since it is isomorphic to a subgraph in G'.

On the other hand, if we have a 3-colouring 6 of
G, it is easy to construct a 3-colouring b' of G", for
example with a 'shift' of colours: b'(f(v)) =-b(v)
and b'(g(v)) = (b(v) mod 3) + 1.

Since for any A size blow up is a constant fac-
tor, the assertion of the Lemma follows. Q.E.D.

By induction, from Lemma 3 and Lemma 4 we
have:

4 4-colourability of Regular
Graphs

Here we discuss an attempt to generalise the
proposition 1 on the problem of fc-colouring. With
analogous proof as for the case of 3-colourings
we prove a proposition for 4-colouring, while for
k > 4 the time complexity of the decision problem
of fc-colouring of A-regular graphs remains open
for some A.

Two of the previous lemmas are easily gener-
alised:

Lemma 5 Let G' be any subgraph of G obtained
by the folloiving process: if there is a vertex of de-
gree less than k, delete it. Graph G is k-colourable
if and only if graph G' is k-colourable.

Proof: Assume we coloured the graph G' with
A;-colours. It is easy to see that there is algorithm,
which properly extends the proper colouring of
G' to a proper colouring of G. (Take, for exam-
ple, vertices of G in opposite order as they were
deleted from G. When a vertex was deleted, it
had less than k neighbours, therefore there is at
least one free colour for it.) Q.E.D.

Lemma 6 For any graph G voith vertex degrees
k and k + 1 there is a k + 1-regular graph G', such
that:

G is k-colourable iff G' is k-colourable

H

Proposition 1 The decision problem of 3-
colouring restricted to A-regular graphs 11(3, A)
is NP-complete for A > 4.

It is known that for graphs of maximal vertex
degree 3 the problem is polynomial [6]. Hence we
know for all problems 11(3, A) whether they are
polynomial or NP-complete.

Figure 4: G is 4-colourable iff G' is 4-colourable

Proof: If there are at least two vertices of de-
gree k in G, then we add a copy of graph H. For
given k the graph H is defined as follows. Take a
complete bipartite graph Kk,k- Add two vertices
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and connect one vertex with all the vertices of one
independent set of the Kk,k and the other vertex
with the second independent set of the Kk,k (for
the case k = 4 see Fig. 4). In this way we reduce
the number of vertices of degree k by two.

If there is only one vertex of degree k in G,
then we coristruct a new graph as follows: Take
two copies of G, connect the two vertices of de-
gree k with an edge. The resulting graph is ob-
viously k + 1-regular and it is easy to see that
it is fc-colourable exactly when G is fc-colourable.
Q.E.D.

For a proof of a generalization of the proposi-
tion 1 we need a lemma of the following type: de-
cision problem of fc-colouring on arbitrary graph
can be reduced to the same problem on a graph
of maximal vertex degree k + 1.

In the proof of the proposition for 3-colouring
we used tlie result of Garey, Johnson and Stock-
mayer. Here we give the idea of a proof for k = 4.
We were not able to generalise the idea for k > 4.

Lemma 7 The decision problem of 4-colouring
of graphs of vertez degree < 5 is NP-complete.

Figure 5: Graph for substituting vertices of de-
gree 6

Proof (outline): The key of the proof is the
idea of how to substitute vertices of large degree
with a graph of small enough maximal vertex de-
gree and with property that any 4-colouring of
the resulting graph Gf defines a 4-colouring of the
original graph G. Such graphs are given in Fig-
ures 5,6 and 7. The graphs in Fig. 5 and Fig. 6
are used for substituting vertices of degrees 6 and
7, respectively. For vertices of larger degrees, a
longer chain is used, as indicated on Fig. 7. The
graphs given have the property, that in any proper
4-colouring all the vertices with 'free edges' have
to be coloured with the same colour. (This colour

Figure 6: Graph for substituting vertices of de-
gree 7

can be then assigned to the substituted vertex in
the original graph. The other vertices of G can
then be assigned the same colours as they had
in the 4-colouring of Gt.) We omit the details.
Q.E.D.

With a straightforward generalization of the
proof of Lemma 4 we have also:

Lemma 8 U(k, A) oc U(k, A + 1)

Therefore:

Proposition 2 The decision problem of 4-
colouring of A-regular graphs 11(4, A) is NP-
complete for any A > 5.

Again, because of the theorem of Brooks [3],
the problem 11(4, A) has polynomial time com-
plexity for A < 4. Thus for all the problems
11(4, A) we know whether they are polynomial or
NP-complete. Let us conclude with a couple of
conjectures. Since we were unable to generalise
the Lemma 7 we state

Conjecture 1 The decision problem of
k-colouring of graphs with vertez degree < k + 1
is NP-complete.

If the first conjecjure was true, then we would
have a nice classification of time complexity for
all the problems E(k, A).

Conjecture 2 For any k > 2, A > 2 the deci-
sion problem of k-colourability of A-regular graphs
II(fc, A) is NP-complete if A > k and is polyno-
mial othertvise.

Let us conclude with a simple consequence of
the proposition. Assume we have an algorithm



REGULAR GRAPHS ARE 'DIFFICULT' FOR COLOURING Informatica 17 (1993) 59-63 63

Figure 7: Graph for substituting vertices of degree > 5

A for 3-colouring and we want to characterise
graphs, for which the algorithm does not provide
the correct solution in polynomial time. If P^NP
then for any algorithm A for each A > 4 there
exists an iniinite family F(A,A) of A-regular
graphs such that the algorithm A has superpoly-
nomial complexity on each family F(A, A). If this
were not the case for some A then A would be a
polynomial algorithm for 3-colouring of A-regular
graphs, which would imply P=NP!
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