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POVZETEK

Meritve upogibne trdnosti kerami¢nih vzorcev navadno analizi-
ramo z dvoparametri¢no Weibullovo porazdelitveno funkcijo. Ker
pomeni lomljenje testnih vzorcev za kontrolo kakovosti serijske
proizvodnje izdatek, si ne moremo privosciti prevelikega Stevila
vzorcev. Pri majhnem Stevilu vzorcev (manj od 30) pa postane
zanesljivost ocene Weibullovih prostih parametrov dokaj omejena,
razen tega pa ne moremo z gotovostjo izkljuciti kake druge
porazdelitve, na primer Gaussove, posebno ¢e je porazdelitev
ozka. Vendar pa se je v vec letih proizvodnje keramic¢nih izdelkov
in meritev trdnosti vzorcev v tolminskem podjetju nabralo veliko
Stevilo podatkov, tako da lahko na njihovi osnovi zanesljivo
potrdimo veljavnost Weibullove porazdelitve.

Kljucne besede: Weibullova porazdelitev, upogibna trdnost,
metoda maksimalne verjetnosti, diagram Q-Q

Weibull and other strength distributions of
ceramic materials

ABSTRACT

Measurements of the bend strength of ceramic samples are
usually analysed with the two-parameter Weibull distribution
function. Since the breaking of test samples for the quality control
of serial production means cost, we cannot afford a too large
number of samples. However, for a small number of samples (less
than 30) the reliability of the estimation of free Weibull parame-
ters is rather limited; in addition we cannot disregard with
certainty other possible distributions, such as Gaussian, particu-
larly when the distribution is narrow. But in several years of
manufacturing ceramic products and strength measurements in the
company from Tolmin a large amount of data has been gathered,
and on their basis we can reliably confirm the validity of the
Weibull distribution.

Keywords: Weibull distribution, bend strength, maximum likeli-
hood method, Q-Q diagram

1 UVOD

Weibullova porazdelitev je znana Ze od sredine
prejSnjega stoletja in je osnovana na principu »naj-
Sibkejsega Clena, to je, material oz. izdelek se zlomi,
ko popusti njegov najSibkejsi del [1]. Weibullova
porazdelitvena funkcija, ki v najosnovnejsi obliki
vsebuje dva prosta parametra, Weibullov modul in
karakteristicni parameter, je bila neStetokrat eksperi-
mentalno potrjena na razliénih podroc¢jih: od mikro-
elektronskih komponent do gradbenih materialov. V
znanosti o materialih se na podrocju krhkih struk-
turnih materialov, kot je keramika, Weibullova poraz-
delitev veliko uporablja za karakterizacijo merjenj
trdnosti. Zanesljivost in uporabnost te porazdelitve je
bila preverjena za zelo Sirok razpon eksperimentalnih
pogojev in podprta s teoreti¢nimi raziskavami [2—10].

12

Priljubljena teoreticno-raziskovalna metoda je
simulacija Monte Carlo, pri kateri si pomagamo z
racunalniskim generatorjem naklju¢nih Stevil med O in
1, o Cemer smo v Vakuumistu ze pisali [11]. Navadno
uporabimo simulacijo Monte Carlo za to, da iz vnaprej
danih prostih parametrov (npr. obeh Weibullovih
parametrov) ustvarimo povsem teoreti¢ne vrednosti
naklju¢ne spremenljivke, in sicer toliko, kolikor jih
hoc¢emo (lahko na milijone zaradi velike hitrosti racu-
nalnikov), brez kakrSnega koli eksperimenta. Druga
zanimiva moZnost pa je, da iz velike mnoZine eksperi-
mentalnih vrednosti trdnosti z uporabo generatorja
nakljuc¢nih Stevil dobimo serijo naklju¢nih kon¢nih
grup podatkov in preverjamo zanesljivost statisticnih
napovedi na osnovi tak$nih grup.

V tem prispevku opisujemo statisticno obdelavo
5100 izmerjenih trdnosti keramicnih vzorcev iz
korundne keramike (Al,O;), kombinirano s
simulacijami Monte Carlo [12—-14]. Za oceno obeh
Weibullovih parametrov iz omejenega vzorca meritev
se najve¢ uporabljata metoda linearne regresije (LR)
in metoda maksimalne verjetnosti (angl. maximum
likelihood, ML), in vsaka od njiju ima svoje prednosti
in slabosti. Tu se omejimo na uporabo metode ML,
metodo LR za primerjavo pa le na kratko oriSemo.
Weibullovo porazdelitev bomo primerjali z nekaj
drugimi alternativami: normalno, log-normalno in
gama-porazdelitvijo. Pri vizualizaciji rezultatov, ko
gre za direktno primerjavo med izmerjenimi
vrednostmi trdnosti in teoreti¢nimi vrednostmi, ki nam
jih podajata ocenjena parametra, bomo uporabljali
verjetnostne diagrame Q-Q (Q — quantile), katerih
pomen bomo podrobneje opisali v nadaljevanju.

2 EKSPERIMENT

Keramicni izdelki iz aluminijevega oksida (Al,O5)
z gostoto 95 % teoreti¢ne vrednosti so bili narejeni v
podjetju Hidria AET, d. o. o., z nizkotla¢nim injekcij-
skim brizganjem v kalupe [14]. ZaCetni material za
injekcijsko brizganje je bil iz dveh prahov: 96 % Al O,
(dip = 0,7 um, dsy = 1,9 ym, d,y = 4,2 um) in 4 %
masnega deleza materiala na osnovi silicijevega
oksida (d;, = 0,7 um, ds, = 4,8 um, doy = 9,5 um) za
laZje sintranje. Stevilke v oklepajih podajajo premere
delcev, pri katerih doseZe kumulativna velikostna
porazdelitev vrednosti 10 %, 50 % in 90 % (Steto od
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Slika 1: Fotografija 4-tockovnega upogibnega preizkusa (na-
prava podjetja Instron)

najmanjsih delcev navzgor). Keramika je bila priprav-
ljena s sintranjem tri ure pri temperaturi 1 640 °C. Za
kontrolo kakovosti je bilo v vsaki seriji zlomljenih po
12 testnih vzorcev v obliki kvadra dimenzij 4 mm X
3 mm X 45 mm. Upogibno trdnost ¢ pri 4-tockovnem
preizkusu smo izracunali takole [15, 16]:

g 3F(L, ~Ly)
2ah?

kjer je F zlomna sila, L, = 40 mm razmik med zu-
nanjima nosilnima valjckoma (na njiju sloni poravnan
vzorec), Ly = 20 mm pa razmik med notranjima
valjckoma, s katerima vzorec obremenjujemo. Sirina
vzorca je a = 4 mm, debelina pa 4 = 3 mm, kot smo Ze
omenili, dolZina pa se v enacbi za trdnost ne pojavlja.
Slika 1 prikazuje znacilno geometrijo 4-tockovnega
upogibnega testa.

ey

3 STATISTICNI MODEL IN GRAFICNA
PONAZORITEV

NaSa statisticna (naklju¢na) spremenljivka je
4-to¢kovna upogibna trdnost (na kratko trdnost), 0. V
raCunih uporabimo obe porazdelitveni funkciji:
verjetnostno gostoto p(o) in kumulativno verjetnostno
funkcijo:

P(0) = [ p(x)dx

Obe funkciji za vse $tiri primerjane porazdelitve so
podane spodaj.

3.1 Postopek za oceno veljavnosti teoreticne
porazdelitve

Veljavnost (primernost, natan¢nost) izbrane teore-
ticne porazdelitve za neki nabor eksperimentalnih
podatkov lahko ocenimo z verjetnostnimi diagrami
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Q-Q. Vizualizacija primerjave teoreti¢ne porazdelitve
z eksperimentom ima vecjo vrednost kot samo goli
podatek (Stevilka, indeks itd.), ki nam pove kvanti-
tativho ujemanje teorije z meritvami. Postopek za to
lahko nekako razdelimo na naslednje Stiri korake:

1) Prosta parametra (vsaka od Stirih obravnavanih
porazdelitev ima po dva) neke porazdelitvene funkcije
izraCunamo z metodo ML. N (v naSem primeru 5 100)
izmerjenih trdnosti, 0, i = 1-N vstavimo v verjetnost-
no gostoto p(a, b; 0), kjer sta a in b prosta parametra.
Z. ML-proceduro pois¢emo maksimum naslednje
funkcije z variacijo parametrov a in b:

Yzln[ﬂ p(a,b;ai)]=iln pabio) @)

i=1 i=1

tako da sta parcialna odvoda funkcije Y po a in b enaka
ni¢. Tako dobimo oba parametra: v nekaterih primerih
ju lahko izraCunamo analiti¢no, pri nekaterih poraz-
delitvah pa moramo ustrezne enacbe resiti numericno.
V enacbi (2) smo torej uporabili naravni logaritem
verjetnostne gostote p, npr. logaritem funkcije (5a)
spodaj, itd.

2) Eksperimentalne trdnosti o; uredimo po velikosti
od najmanjSe do najvecéje. Potem dodelimo vsaki
vrednosti o; kumulativno verjetnost (P;) glede na
standard [15, 16]:

=05
N

Vrednost P; je blizu ulomku i/N, in preprost
razmislek pokaZze, da to res ustreza kumulativni
verjetnosti, kjer je med N vrednostmi i-ta vrednost na
i-tem mestu. V literaturi se uporabljajo Se druge pre-
proste funkcije P; namesto (3), vendar se pri velikem
Stevilu vzorcev pokaze, da je koncni rezultat neodvi-
sen od tega, katero od njih izberemo.

3) Za vsako po prejSnji tocki izra¢unano vrednost
P; naredimo obrat funkcije P(a.b;0) in tako izracu-
namo trdnost g; to je teoreti¢cno simulirana trdnost,
zato jo ozna¢imo s simbolom 0. Pri tem racunu si
torej pomagamo s kumulativno verjetnostno funkcijo,
npr. (5b) spodaj, uporabimo pa vrednosti parametrov a
in b, ki smo ju dobili v prvem koraku celotnega
postopka.

4) V zadnjem koraku uporabimo diagram Q-Q za
vizualizacijo ujemanja teoreti¢no napovedanih posa-
meznih trdnosti z izmerjenimi vrednostmi, hkrati pa
izracunamo korelacijski koeficient ali tako imenovani
R>-faktor. Na§ diagram Q-Q ni povsem v skladu z
natan¢no definicijo, vendar pa je v bistvu podoben in
precej enostavnejS$i za razumevanje in uporabo; vec
informacij o Q-Q in njim analognih diagramih P-P
lahko bralec najde na spletu. Vsakemu »teoreti¢no-
eksperimentalnemu« paru trdnosti (0;.,,0;) ustreza
tocka v diagramu z absciso 0;;; in ordinato o, Ce je

P,

1

3)
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ujemanje teorije z eksperimentom zelo dobro, potem
lezijo vse te tocke blizu simetrale kvadranta, ki oklepa

kot 45° z vodoravno osjo (premica y = x). Faktor R*
nam to ujemanje poda kvantitativno:

N 2
Z(Oi ~Oim )
i=1

N 2
Y.(0,-<0,>)
i=1

R>=1- 4)

kjer <o> pomeni povprecno vrednost eksperimen-
talnih (izmerjenih) trdnosti. Pri natanénem ujemanju
velja R* = 1.

3.2 Stiri porazdelitve

Enega od obeh parametrov za vse Stiri porazdelitve
bomo oznacili podobno: Gy, O, Toy ali 0y (gl. spo-
daj), zato da bi poudarili njegov podoben pomen v
vseh primerih. Ta parameter ima fizikalno dimenzijo
trdnosti (paskal) in je sorazmeren s pri¢akovano vred-
nostjo trdnosti. Porazdelitve so omejene na fizikalno
smiselne pozitivne trdnosti, vklju¢no z vrednostjo nic.
Izjema je le normalna porazdelitev s teoreticno mogo-
¢imi negativnimi trdnostmi, kar pa nima prakti¢nih
posledic, saj je verjetnost za negativni interval trdnosti
povsem zanemarljiva.

a) Weibullova porazdelitev

Pri Weibullovi porazdelitvi sta obe verjetnostni
funkciji, p in P (sliki 2 in 3), enaki:

m—1 m
OOW OOW OOW
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Slika 2: Grafi funkcije p(o) Weibullove porazdelitve za
razlicne module m: 2 (polna ¢rta), 5 (¢rtkana ¢rta), 10
(¢rtkano pikcasta ¢rta) in 15 (pikcéasta crta)
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Slika 3: Grafi funkcije P(o) Weibullove porazdelitve za
enake module m kot pri sliki 2

z Weibullovim modulom m in karakteristicnim para-
metrom Ogy.

Pri sliki 2 smo spremenljivki delili oz. zmnozili s
karakteristicnim parametrom oy, da bi ju pretvorili v
brezdimenzijsko obliko in hkrati izlo¢ili vpliv tega
parametra na obliko grafov. Cim ve&ji je modul m, tem
vi§ji in oZji je maksimum grafa. S slike 3 pa je raz-
vidno, da ¢im vecji je modul m, tem strmej$i je prehod
grafa od verjetnosti ni¢ do ena.

Ker je Weibullova porazdelitev tako pomembna pri
opisu mehanskih lastnosti keramic¢nih strukturnih
materialov, jo opiSimo nekoliko podrobneje kot druge
tri porazdelitve. Dobri kerami¢ni materiali imajo visok
Weibullov modul m, na primer 10 ali celo 20. V tem
primeru se povprecna trdnost vzorcev ne razlikuje
bistveno od karakteristi¢nega parametra o [11].
Relativna standardna deviacija, to je razmerje med
standardno deviacijo in pri¢akovano vrednostjo
trdnosti, pa je odvisna samo od parametra m: ¢im visji
je m, tem manjSa je relativna standardna deviacija
trdnosti, kar je za zanesljivost keramicnih izdelkov
Zelena lastnost. Torej si pri izdelavi keramic¢nih izdel-
kov Zelimo doseci ¢im vec¢jo vrednost obeh parame-
trov, m in Ooy.

Proizvajalec keramic¢nih izdelkov si Zeli ne samo
tega, da bi bila njihova povprecna trdnost ¢im vecja.
Pravzaprav mu je pomembnejsSe, da je verjetnost za
nastanek slabih izdelkov, to je tak$nih, ki se zlomijo Ze
pri mehanskih napetostih, precej manjsih od pov-
precne trdnosti, zanemarljiva oziroma ¢im manjsa.
Da bi nazorno prikazali zvezo med Weibullovim
modulom in verjetnostjo za zlom izdelkov pri raz-
licnih obremenitvah, vzemimo kar vrednost obeh
Weibullovih parametrov iz tabele 2 spodaj: m = 9,048
in oy = 305,54 MPa. V tabeli 1 podajamo na osnovi
funkcije (5b) izracunano verjetnost, da se bo
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nakljucno izbran vzorec zlomil pri manjSi mehanski
napetosti, kot je zapisana. Ugotovimo, da se ta verjet-
nost zelo hitro zmanjs$uje, ko napetost zmanjSamo
bistveno pod vrednost karakteristicnega parametra oy.
Za primerjavo vzamemo Se precej manjSi Weibullov
parameter, m = 5 (dokaj slab material), ali pa vecjega,
m = 15, pri enakem karakteristi¢nem parametru.

Tabela 1: Verjetnost za zlom naklju¢nega vzorca pri
mehanskih napetostih pod podano napetostjo za tri razli¢ne
vrednosti Weibullovega modula, izracunana z enacbo (5b)

Napetost /  Verjetnost za zlom pod podano napetostjo / %
MPa m=5 m = 9,048 m=15
305,54 63,21 63,21 63,21
300 59,85 57,15 53,23
280 47,60 36,49 23,66
260 35,99 20,72 8,50
240 25,85 10,64 2,64
220 17,60 4,99 0,72
200 11,32 2,14 0,17

Pogled na tabelo je res poucen. Pri¢akovana vred-
nost trdnosti <o> se v vseh treh primerih ne razlikuje
bistveno. IzraCcunamo jo po enacbi:

<0> = Ogy - I'(1+1/m),

kjer je I' matemati¢na funkcija gama; tako dobimo
vrednost <o> = 280,54 MPa pri m = 5, vrednost
289,41 MPa pri m = 9,048 in vrednost 295,05 MPa pri
m = 15. Veliko bolj se z Weibullovim modulom spre-
meni Sirina porazdelitve, to je standardna deviacija
[11], to pa se izraZa tudi v porazdelitveni funkciji P(0)
v enacbi (5b). Poglejmo na primer zadnjo vrstico
tabele 1: pri naSem materialu z m = 9,048 je verjetnost
za zlom izdelkov in vzorcev pri manjsi napetosti kot
200 MPa malo ve¢ kot dva odstotka. Ce bi nam uspelo
pri proizvodnji doseci ve¢ji modul, m = 15, potem bi
padla ta verjetnost na samo slaba dva promila.
Nasprotno, pri m = 5 je ta verjetnost nekaj ve¢ kot
11 %, in to utegne biti za proizvajalca in seveda tudi
naroc¢nika nesprejemljivo. V praksi so najbolj proble-
maticni izdelki z najniZjo trdnostjo v seriji in zanje si
Zelimo, da je verjetnost za zlom pri sorazmerno
majhnih obremenitvah ¢im manjsa.

b) Normalna (Gaussova) porazdelitev
Tu sta funkciji p in P:

1 exp Ifo—oyy ’
N 2 0

P(o) =;(1 + erf(g _;ON D

s preprostim pomenom obeh parametrov: og je
povpre¢na (pri¢akovana) trdnost, d pa njena stan-
dardna deviacija. V enacbi za funkcijo P(0) pomeni

p(o)= (62)

(6b)
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erf znano in v raznih programskih orodjih (Mathema-
tica, Excel itd.) tabelirano error funkcijo.

c) Log-normalna porazdelitev

Ime log-normalna porazdelitev pove, da pri njej
niso normalno (po Gaussovi porazdelitvi) porazde-
ljene trdnosti same, temve¢ njihovi naravni logaritmi.
Natan¢ni bralec bi se lahko vprasal, kako lahko sploh
govorimo o logaritmu neke koli¢ine s fizikalno enoto,
npr. s paskali za trdnost. Vendar podrobnejsi matema-
ti¢ni premislek pokaze, da ko izberemo isto enoto za
vse vrednosti trdnosti, lahko na enoto pozabimo in
racunamo dalje samo s Stevilom pred njo. Lahko bi za
porazdelitveni funkciji pisali neposredno kar enacbi
(6) za normalno porazdelitev, samo namesto o bi
morali kot spremenljivko pisati In 0. Vendar pa pisimo
zaradi doslednosti tudi tu obe funkciji za direktno

spremenljivko o:

2
p(0)=l 1 exp _1fIno—Inoyy (Ta)
O wAl 27T 2 w

P(0) :;[Herf(l“"_l““omn (7b)

w

Opazimo dodatni faktor 1/0 v enacbi (7a) za p(0),
¢e ga primerjamo z enacbo (6a) za normalno poraz-
delitev. Enacba (7b) za kumulativno funkcijo P pa je v
bistvu enaka kot (6b), ker gre za verjetnost samo, ne za
njeno gostoto.

¢) Gama-porazdelitev

Pri gama-porazdelitvi sta obe funkciji:

1 1 o
- L . . __ Y 8
pe) OJ(;G -T'(k) ? eXP[ (e ) e

1 0l

P(0) T B ! 1 exp(—1)dt (8b)

z brezdimenzijskim parametrom k in karakteristi¢cnim
parametrom 0O,s. P smo zapisali kar po definiciji z
integralom, ker nima analiticnega zapisa; v enacbi (8b)
smo uporabili tudi znano gama-funkcijo I' (tudi tabe-
lirano v marsikaterem racunalniSkem orodju) kot
funkcijo parametra k.

3.3 Metoda linearne regresije (LR)

Metoda LR je poleg metode ML drug pogosto
uporabljen nacin ocene Weibullovih parametrov iz
meritev trdnosti relativno majhnega Stevila vzorcev.
Medtem ko za izracun parametrov m in Oyy pri
ML-metodi uporabimo verjetnostno gostoto p(o) iz
enacbe (5a), uporabimo pri metodi LR kumulativno
funkcijo P(0) iz enacbe (5b). Koncept LR je mate-
mati¢no nekoliko nazornejSi kot pri metodi ML.
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Najprej izmerjene vrednosti trdnosti uredimo po
velikosti, od najmanjSe do najvecje, in jih potem
indeksiramo z oznako o;, i = 1 do N. Potem uporabimo
preprosto funkcijo za oceno ustrezne verjetnosti P,
kot npr. v zgoraj zapisani enacbi (3). Nazadnje pa
izraCunamo oba parametra tako, da se funkcija (5b)
najbolje prilega vsem N parom vrednosti (o;, P;). To
najlaze storimo tako, da prej zvezo (5b) zapiSemo v
linearni obliki:

Inln

=mlno —mlnw, )

Izraz na levi strani enacbe (9) oznacimo kot
spremenljivko y, za neodvisno spremenljivko pa
vzamemo x = In 0. Tako dobimo linearno funkcijo, e
namesto parov (o;, P;)) vzamemo ekvivalentne pare
(x;,y:), koeficient premice pa je kar enak Weibullovemu
modulu m. Postopek za iskanje linearne funkcije, ki se
najbolje prilega dani mnozici tock, je preprost. Defini-
ramo lahko tudi korelacijski koeficient, ki pove, kako
dobro se tocke prilegajo premici, tako pa lahko tudi
ugotovimo, ali se eksperimentalna porazdelitev trdnosti
dobro sklada z Weibullovo statistiko. Naj poudarimo
Se, da pri metodi LR minimiziramo vsoto kvadratov
razdalj vseh tock do premice, pri tem pa imamo tri
moznosti: gledamo lahko vertikalne, horizontalne ali
pa pravokotne razdalje tock do premice. Seveda, Ce je
toc€k veliko in se relativno dobro prilegajo premici, je
rezultat za dobljena parametra prakti¢no neodvisen od
tega, katere razdalje gledamo.

4 REZULTATI IN DISKUSIJA

Podajamo rezultate na osnovi 5 100 izmerjenih
trdnosti, to je 425 proizvodnih ciklov po 12 testnih

500 500
(a) (b)
400 400 o
© T
L300 300
S S
200 200
o C)
100 100 . .
100 200 300 400 500 100 200 300 400 500
0;, 10 [MPa] 0;, 1 [MPa]
500 500
(c) (€)
400 ° 400 o
& T
o
=300 | 300
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200 1 200
o
100 . : 100 . .
100 200 300 400 500 100 200 300 400 500
0, [MPa] 0, m [MPa]

Slika 4: Diagrami Q-Q za vse &tiri porazdelitve: (a) Weibul-
love, (b) normalne, (c) log-normalne in (¢) gama
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vzorcev za zlom. Povprecna trdnost (aritmeti¢na sre-
dina vseh 5 100 vrednosti) je <o> = 289,56 MPa. Ta
vrednost ni natancno enaka zgoraj izracunani in
omenjeni vrednosti 289,41 MPa na osnovi izraCunanih
parametrov za Weibullovo statistiko. Tabela 1 prika-
zuje oba ocenjena parametra vsake porazdelitve na
osnovi metode ML, razen tega pa Se faktor R*, ki je
najvecji pri Weibullovi porazdelitvi. Pri tej porazde-
litvi se tocke diagrama Q-Q najlepse prilegajo premici
y = x (slika 4).

Tabela 2: ML-parametra in faktor R? za §tiri porazdelitve

Porazdelitev 1. parameter 2. parameter R?
Weibullova m = 9,048 oow = 305,54 MPa  0,9984
Normalna 0 = 37,49 MPa oon = 289,56 MPa 0,9855
Log-normalna w = 0,1372 ooLN = 286,86 MPa 00,9468
Gama k = 55,60 0o = 5,208 MPa 0,9645

Omenimo samo Se, da smo poleg obdelave 5 100
eksperimentalnih rezultatov naredili zelo veliko
numeri¢nih simulacij Monte Carlo, kjer smo med
drugim pokazali, da se z nara$¢anjem velikosti testne
grupe vzorcev zanesljivost napovedi parametrov
Weibullove in drugih statistik hitro povecuje. Na pri-
mer, za majhno Stevilo vzorcev metoda ML siste-
mati¢no (v povprecju) nekoliko preceni vrednost
Weibullovega parametra m, medtem ko je vrednost
izraCunanega karakteristicnega parametra nekoliko
premajhna. Vendar pade Ze pri 50 vzorcih sistemati¢na
napaka precenitve Weibullovega modula na nekaj
odstotkov; razen tega jo lahko v okviru standarda
odpravimo z znanim korekcijskim faktorjem glede na
testno Stevilo vzorcev.

Hkrati pa se moramo zavedati, da obstaja poleg te
sistemati¢ne napake, ki je v bistvu napaka ocenjevalne
metode same, Se naklju¢na napaka ocene m. Prakti¢no
pomeni ta naklju¢na napaka tole: Ce iz velike serije
narejenih izdelkov naklju¢no vzamemo majhno sku-
pino testnih vzorcev, ki imajo v povpre¢ju nekoliko
vi§jo trdnost kot celotna serija, bomo zaradi te
nakljuc¢nosti dobili nekoliko previsok Weibullov
modul m; nasprotno dobimo za nekoliko manj trdne
naklju¢ne vzorce nekoliko premajhno vrednost m v
primerjavi s celotno serijo izdelkov. To naklju¢no
napako zmanjSamo na zanemarljivo vrednost Sele pri
veC sto testnih vzorcih, kar pa je seveda zaradi
stroSkov povsem nesprejemljivo. Tako se moramo
vedno zadovoljiti z omejeno natan¢nostjo ocene naj-
pomembnejSega parametra Weibullove porazdelitve,
to je Weibullovega modula m.

Se nekaj lahko ugotovimo: z mnogokrat (npr. mili-
jonkrat) ponovljeno numeri¢no simulacijo trdnosti
dobimo vsaki¢ nekoliko drugacno vrednost m, ker pac
vsaki¢ dobimo drugacne trdnosti za doloceno Stevilo
vzorcev. Izkaze se, da je porazdelitev tako dobljenih
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vrednosti parametra m log-normalna (enako velja tudi
za karakteristi¢ni parameter). 1z te porazdelitve Se
najlaze ocenimo zanesljivost racunanja parametra m
za omejeno Stevilo vzorcev. Do log-normalne porazde-
litve obeh parametrov pridemo tudi, ¢e zelo veliko
mnozico izmerjenih trdnosti velikokrat naklju¢no
porazdelimo v majhne testne skupine, za kar spet
uporabimo racunalnik in njegov generator naklju¢nih
Stevil.

Za primerjavo smo vzeli prvih 1 000 meritev od
vseh 5 100 in izracunali Weibullova parametra z obe-
ma metodama, ML in LR. Dobili smo nekoliko
razli¢ni vrednosti Weibullovega modula: m = 9,08 pri
metodi ML in m = 9,11 pri metodi LR. Obe vrednosti
sta samo nekoliko vecji kot vrednost 9,048 za ML
metodo za vseh 5 100 vzorcev. Kot smo omenili, je iz
simulacij Monte Carlo znano, da za majhno Stevilo
vzorcev ML-metoda daje nekoliko prevelike vrednosti
m, LR-metoda pa nekoliko premajhne. Vendar velja to
v povprecju za veliko Stevilo ponovitev serij, zato ni
ni¢ narobe, da smo dobili v naSem primeru pri metodi
LR nekoliko vecji m kot pri ML.

Velja Se poudariti, da tu ne gre za sistemati¢no
napako, temve¢ za majhno naklju¢no napako ocene m,
saj imamo 1 000 vzorcev. Ce vzamemo razliko
ML-vrednosti m = 9,08 pri N = 1 000 in m = 9,05 pri
N =5 100, ocenimo negotovost ocene m na tri promile
pri N = 1 000. Ce pa upostevamo izid LR-metode, je
negotovost dvakrat ve&ja. Ceprav je za majhno Stevilo
vzorcev ocena karakteristiCnega parametra navadno
bolj zanesljiva kot ocena Weibullovega modula, pa v
nasem primeru za 1 000 vzorcev ni tako. Pri obeh
metodah, LR in ML, smo za 1 000 meritev sicer dobili
enako vrednost, gy, = 316,48 MPa, kar pa nam da
napako okrog 4 % glede na vrednost 305,54 MPa za
5 100 meritev.

Vzrok za takSno sorazmerno veliko napako pa je
najbrz drugje in je povezan s stalno dilemo proizva-
jalcev glede kontrole kakovosti izdelkov. Ena stvar je
namreC¢ ocena statisticnih parametrov za relativno
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kratko ¢asovno obdobje (1 000 vzorcev), Ceprav gre za
ve¢ proizvodnih serij, druga pa za veliko daljSe
obdobje (5 100 vzorcev!), ko lahko kvaliteta proiz-
vodnje pocasi variira zaradi razli¢nih vzrokov.

5 SKLEP

S primerjavo Stirih razliénih teoreticnih porazde-
litev in 5 100 izmerjenih upogibnih trdnosti kera-
micnih vzorcev iz aluminijevega oksida smo pokazali,
da meritve najbolje opisuje dvoparametricna Wei-
bullova porazdelitev. Faktor R’, povezan z diagrami
Q-Q na osnovi prostih parametrov, ocenjenih z
metodo maksimalne verjetnosti (ML), je pri Weibullo-
vi porazdelitvi najvedji: R* = 99,84 %. Z dodatnimi
simulacijami Monte Carlo smo pokazali log-normalno
porazdelitev vrednosti ocenjenih Weibullovih para-
metrov v primeru, da veliko serijo teoreti¢nih, kot tudi
eksperimentalnih trdnosti razbijemo na naklju¢ne
majhne testne gruce.
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