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Abstract

The stability of quantum systems to perturbations of the Hamiltonian
is studied. This stability is quantified by the fidelity, an overlap of an
ideal state obtained by the unperturbed evolution, and a perturbed state
obtained by the perturbed evolution, both starting from the same initial
state. Dependence of fidelity on the initial state as well as on the dynamical
properties of the system is considered. In particular, systems having a
chaotic or regular classical limit are analysed. The fidelity decay rate is
given by an integral of the correlation function of the perturbation and is
thus smaller the faster correlation function decays. Quantum systems with
a chaotic classical limit can therefore be more stable than regular ones. If
the perturbation can be written as a time derivative of another operator,
meaning that the time averaged perturbation vanishes, fidelity freezes
at a constant value and starts to decay only after a long time inversely
proportional to the perturbation strength. In composite systems stability
of entanglement to perturbations of the Hamiltonian is analysed in terms
of purity. For regular systems purity decay is shown to be independent of
Planck’s constant for coherent initial states in the semiclassical limit. The
accelerated decoherence of macroscopic superpositions is also explained.
The theory of fidelity decay is applied to the stability of quantum compu-
tation and an improved quantum Fourier transform algorithm is designed
and shown to be more stable against random perturbations.

Keywords: quantum stability, fidelity, purity, quantum chaos, de-
coherence, entanglement, quantum computation, quantum Fourier
transformation, the kicked top, Jaynes-Cummings model.

PACS numbers:

03.65.Sq Semiclassical theories and applications
03.65.Yz Decoherence; open systems; quantum statistical methods
03.67.Lx Quantum computation
03.67.Mn Entanglement production, characterization, and manipulation
03.67.Pp Quantum error correction and other methods for protection

against decoherence
05.45.-a Nonlinear dynamics and nonlinear dynamical systems
05.45.Mt Quantum chaos; semiclassical methods
05.45.Pq Numerical simulations of chaotic systems
42.50.Ct Quantum description of interaction of light and matter; related

experiments
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Povzetek

V tem delu smo študirali stabilnost kvantnih sistemov na motnje v
hamiltonovi funkciji. Mera za stabilnost je kvantna zvestoba, ki je kvadrat
skalarnega produkta med moteno valovno funkcijo, dobljeno z evolucijo
generirano z moteno hamiltonovo funkcijo, in nemoteno valovno funkcijo,
dobljeno z nemoteno evolucijo, obakrat pa začnemo iz istega začetnega
stanja. Raziskali smo odvisnost pojemanja kvantne zvestobe od začetnega
stanja in od dinamike, pri čemer smo si podrobno ogledali primera
sistemov s kaotično in regularno klasično limito. Hitrost pojemanja
kvantne zvestobe je sorazmerna z integralom kvantne korelacijske funkcije
motnje in je torej manǰsa, tem hitreje pojema korelacijska funkcija.
Navidez presenetljiva posledica tega je, da so lahko kvantni sistemi s
kaotično klasično limito bolj stabilni kot pa regularni sistemi. Zanimiv
poseben primer so motnje, ki jih lahko zapǐsemo kot odvod nekega drugega
operatorja in katerih časovno povprečje je nič. Za takšne motnje so kvantni
sistemi bistveno bolj stabilni, saj kvantna zvestoba dolgo časa ostane
konstantna in začne pojemati šele po zelo dolgem času. Raziskali smo
tudi stabilnost kvantne prepletenosti v sklopljenih sistemih. Za regularne
sisteme in lokalizirana stanja smo pokazali, da je dekoherenca bistveno
hitreǰsa, če je začetno stanje superpozicija makroskopsko ločenih stanj, t.i.
stanja Schrödignerjeve mačke. Teoretična spoznanja o pojemanju kvantne
zvestobe smo uporabili za izbolǰsanje stabilnosti kvantnega računanja.
Sestavili smo izbolǰsan algoritem za kvantno Fourierovo transformacijo, ki
je bolj stabilen ob prisotnosti naključnih motenj.

Ključne besede: kvantna stabilnost, kvantna zvestoba, kvantna čistost,
kvantni kaos, dekoherenca, prepletenost, kvantno računanje, kvantna
Fourierova transformacija, brcana vrtavka, model Jaynes-Cummings
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I

Razširjeni povzetek

I.1 Zgodovina

Navidezni paradoks ireverzibilnosti je zaposloval fizike vse od rojstva termodinamike. Osnovo
drugega zakona termodinamike, ki pravi, da lahko entropija sistema s časom le narašča, je postavil
Boltzmann (1872). To naraščanje entropije je v navideznem nasprotju z mikroskopskimi zakoni,
ki so reverzibilni. Če je nek potek dogodkov rešitev enačb gibanja, potem je tudi obraten potek,
ko čas “teče” nazaj, tudi možna rešitev enačb gibanja. Torej, če pade kozarec na tla in se razbije,
potem je tudi obraten potek možen, črepinje se na tleh sestavijo in “skočijo” nazaj na mizo.
Takega dogodka seveda še nikoli ni nihče opazil, kar nam ravno pripoveduje drugi zakon termodi-
namike, razbit kozarec na tleh ima večjo entropijo kot pa cel kozarec na mizi. Ta tako imenovani
paradoks reverzibilnosti ponavadi pripisujejo Josefu Loschmidtu, ki ga je bežno omenil na koncu
članka (Loschmidt, 1876) v katerem je poskušal ovreči Maxwellsko porazdelitev hitrosti molekul v
termičnem ravnovesju. Lotil se je tudi Boltzmannovega zakona o naraščanju entropije in v zaljučku
članka zapisal: “...Das berühmte Problem, Geschehenes ungeschehen zu machen, hat damit zwar
keine Lösung...”. Boltzmann (1877) je že naslednje leto odgovoril na očitke Loschmidta in poudaril
ključno vlogo verjetnosti pri interpretaciji drugega zakona ter pomen začetnega pogoja, ki je de-
jansko odgovoren za “zlom simetrije” na obrat časa. Velika večina začetnih pogojev je takih, pri
katerih se kozarec ne bo sam od sebe sestavil, tako da če izberemo neko naključno začetno stanje,
se bo sistem z veliko verjetnostjo obnašal tako kot veleva entropijski zakon.

Prva zapisana omemba paradoksa ireverzibilnosti pa ni bila Loschmidtova, temveč jo je objavil
William Thompson (pozneje Lord Kelvin), dasiravno je možno, da je Loschmidt omenil paradoks v
privatnih diskusijah z Boltzmannom. Boltzmann in Loschmidt sta bila namreč dobra prijatelja in
sta delala na Fizikalnem Inštitutu na Dunaju v času, ko je bil direktor Jožef Stefan. Leta 1869 se je
Boltzman sicer preselil v Graz, a je v obdobju 1873–1876 ponovno delal na Dunaju. Za podrobneǰso
Boltzmannovo biografijo glej Cercignani (1998). V članku iz leta 1874 je Thompson (Thompson,
1874) podal presenetljivo moderen pogled na ireverzibilnost in drugi zakon termodinamike. Ob
opisovanju prevajanja toplote in izenačevanja temperatur je zapisal: “...If we allowed this equal-
ization to proceed for a certain time, and then reversed the motions of all the molecules, we would
observe a disequalization. However, if the number of molecules is very large, as it is in a gas, any
slight deviation from absolute precision in the reversal will greatly shorten the time during which
disequalization occurs... Furthermore, if we take account of the fact that no physical system can
be completely isolated from its surroundings but is in principle interacting with all other molecules
in the universe, and if we believe that the number of these latter molecules is infinite, then we
may conclude that it is impossible for temperature-differences to arise spontaneously...”. Zanimivo

ix



x I. Razširjeni povzetek

vprašanje, ki se zastavlja je, kakšen je ta “kratki čas” v katerem bo obrnjena evolucija še sledila
prvotni? Odgovor na to nam da zvestoba (fidelity). Zvestobo ali Loschmidtov odmev dobimo kot
razdaljo med dvema stanjema dobljenima z malenkost različnima evolucijama, pri čemer obakrat
začnemo iz istega začetnega stanja. Zanimivi sta tako kvantna kot klasična zvestoba. Pri kvantni
zvestobi je razdalja med stanjema določena s skalarnim produktom med obema kvantnima stanjema,
pri klasični pa s prekrivalnim integralom med ustreznima gostotama v faznem prostoru. Predmet
tega dela bo izključno kvantna zvestoba. Kljub temu, da je zvestoba pomembna za razumevanje
osnov termodinamike, pa je originalna motivacija za njen študij prǐsla iz kvantne mehanike.

Kvantna mehanika je gotovo najuspešneǰsa fizikalna teorija 20. stoletja. Že samo industrija
polprevodnikov je izrednega pomena. Kljub temu pa vse te naprave, ki sicer temeljijo na principih
kvantne fizike, ne izkorǐsčajo posameznih kvantov, temveč so mezoskopske narave. Šele v osemde-
setih letih 20. stoletja je eksperimentalna fizika toliko napredovala, da so postali mogoči zares
kvantni poskusi s posameznimi kvanti. Relativno mlado področje fizike, ki se ukvarja s tem kako
takšne kvantne pojave izkoristiti za procesiranje in prenašanje informacij je kvantna informacijska
teorija (Nielsen & Chuang, 2001). Kvantna informacijska teorija je združila kvantno mehaniko z in-
formacijsko teorijo in računalnǐstvom. Ob uporabi kvantnih sistemov je mogoča npr. teleportacija
kvantnih stanj, varna kominikacija preko javnih povezav ali pa kvantno računanje. Nobeno izmed
teh stvari ni mogoče doseči samo s klasičnimi sredstvi. Kvantno računalnǐstvo je zaenkrat še v
povojih in omejeno na laboratorijske eksperimente z le nekaj qubiti. Glavno oviro predstavljajo
nezaželene motnje v evoluciji, ki naredijo proces računanja izredno nestabilen. Želeli bi si torej
karseda stabilen kvantni računalnik. Mera za stabilnost je kvantna zvestoba, torej moramo najprej
razumeti kako se obnaša kvantna zvestoba, če jo hočemo izbolǰsati. Prve študije kvantne zvestobe
so bile narejene v okviru kvantnega kaosa.

Kaos v klasičnih sistemih ponavadi opredelimo kot eksponentno občutljivost na variacijo začetnih
pogojev, oddaljenost dveh bližnjih orbit s časom eksponentno narašča. Ker so naravni zakoni v
osnovi kvantni, se postavi vprašanje, kako je s to karakterizacijo kaosa v kvantni mehaniki. S
tem se ukvarja področje kvantnega kaosa. Kljub dinamični definiciji klasičnega kaosa pa so bile
karakteristike klasičnega kaosa najprej raziskane v stacionarnih lastnostih kvantnih sistemov kot so
lastne vrednosti in lastne funkcije (Haake, 1991; Stöckmann, 1999). Prvi je kvantno zvestobo F (t)
študiral Peres (1984),

F (t) := |〈ψ(t)|ψδ(t)〉|2 = |〈ψ(0)|U †0(t)Uδ(t)|ψ(0)〉|2, (I-i)

kjer je |ψ(t)〉 = U0(t)|ψ(0)〉 stanje ob času t dobljeno z nemoteno evolucijo U0(t) = e−iH0t/h̄ in stanje
|ψδ(t)〉 = Uδ(t)|ψ(0)〉 dobljeno z moteno evolucijo Uδ(t) = e−iHδt/h̄, kjer je motena hamiltonova
funkcija Hδ = H0+ δ ·V . Ključen korak je bil, da je opazoval občutljivost na spremembo dinamike,
to je na variacijo hamiltonove funkcije, in ne na spremembo začetnega pogoja, kot je to v navadi
v klasični mehaniki. Zaradi nakoliko ponesrečeno izbranih začetnih pogojev pa ni prǐsel do najbolj
splošnih zaključkov. Po Peresovem članku je več kot deset let vladalo zatǐsje, ponovno pa je
zadeva postala zanimiva ob koncu ’90 (Ballentine & Zibin, 1996). Najprej je skupina Pastawskega
izvedla serijo NMR eksperimentov, v katerih so merili kvantno zvestobo oziroma polarizacijski
odmev (Levstein et al. , 1998; Usaj et al. , 1998; Pastawski et al. , 2000). Na teoretičnem področju
sta Jalabert & Pastawski (2001) semiklasično izpeljala t.i. Lyapunovo pojemanje kvantne zvestobe
v kaotičnih sistemih, F (t) ∼ e−λt, ki je neodvisno od jakosti motnje δ. Ta režim je prisoten za
dovolj velike motnje δ in je popolnoma klasične narave (Veble & Prosen, 2004). Lyapunov režim
pojemanja kvantne zvestobe so študirali tudi Cucchietti et al. (2002a). Kot zelo uspešen pristop
k študiju kvantne zvestobe se je izkazal razvoj po korelacijskih funkcijah motnje V (Prosen, 2002),
glej tudi Prosen & Žnidarič (2001). Pojemanje kvantne zvestobe v kaotičnih sistemih so študirali
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tudi Jacquod et al. (2001) in Cerruti & Tomsovic (2002). Glede na jakost motnje δ lahko kvantna
zvestoba pojema kot eksponentna funkcija ali pa kot gaussova za zelo majhne motnje. Vsi ti režimi,
skupaj z obnašanjem v primeru regularne dinamike, so bili podrobno obdelani glede na pojemanje
korelacijskih funkcij (Prosen & Žnidarič, 2002). Jedro pričujočega dela se napaja predvsem iz tega
članka, v katerem je bila prvič uporabljena tudi klasična zvestoba. Po teh člankih je bilo v manj
kot 3 letih objavljenih več kot 50 del na temo kvantne in klasične zvestobe. Za podrobneǰsi pregled
literature glej zgodovinski pregled v angleški verziji (Section 1.1). Na tem mestu bom na kratko
podal le pregled klasične zvestobe, ki sicer ni tema tega dela, je pa zelo poučna primerjava med
klasično in kvantno zvestobo, saj je, kot bomo videli, obnašanje obeh lahko zelo različno.

Klasična zvestoba

Klasična zvestoba je definirana kot prekrivalni integral med nemoteno in moteno gostoto v faznem
prostoru (Prosen & Žnidarič, 2002),

Fklas(t) :=

∫

dxρ0(x, t)ρδ(x, t), (I-ii)

kjer je ρδ(x, t) gostota dobljena z moteno evolucijo, ρ0(x, t) pa z nemoteno, x pa je točka v faznem
prostoru.

V kaotičnih sistemih ostane klasična zvestoba blizu ena vse do časa tν ∼ ln(ν/δ)/λ (Benenti &
Casati, 2002; Benenti et al. , 2003b), kjer je ν velikost začetnega stanja, λ pa eksponent Lyapunova.
Za tem se začne eksponentno pojemanje Fklas(t) = e−λ(t−tν) (Veble & Prosen, 2004). V sistemih z
difuzijo nastopi po koncu režima Lyapunova difuzijsko pojemanje. Asimptotsko pojemanje klasične
zvestobe za velike čase je določeno z največjo lastno vrednostjo Perron-Frobeniusovega operatorja in
je lahko eksponentno ali pa potenčno (Benenti et al. , 2003b). Hitrost pojemanja klasične zvestobe
v kaotičnih sistemih ni odvisna od jakosti motnje δ v nobenem od naštetih režimov, so pa od δ
odvisni časi ob katerih le ti nastopijo. Kvantna zvestoba na drugi strani je odvisna od δ, tako da se
ujemanje med klasično in kvantno zvestobo konča že po kratkem Ehrenfestovem času tE, ki narašča
le logaritemsko s Planckovo konstanto, tE ∼ − ln h̄.

V regularnih sistemih (npr. integrabilnih) in za lokalizirana začetna stanja je pojemanje klasične
zvestobe lahko dveh tipov (Benenti et al. , 2003a). Če motnja povzroči predvsem spremembo
frekvence torusa na katerem je začetno stanje, potem je pojemanje enostavno posledica balističnega
oddaljevanja nemotenega in motenega paketa. Časovna skala na kateri zvestoba pojema skalira
kot ∼ 1/δ, sama funkcijska oblika pa je odvisna od oblike začetnega stanja, npr. za koherentna
stanja je ta gaussova. Na drugi strani, če motnja spremeni predvsem obliko torusa (frekvenca pa
ostane v povprečju enaka), je pojemanje klasične zvestobe potenčno, in sicer Fklas(t) ∼ 1/(δt)d za
sistem z d prostostnimi stopnjami. Katerega od obeh tipov pojemanja bomo imeli, je odvisno od
motnje ter od lege začetnega stanja, ne pa od jakosti motnje δ. V grobem lahko rečemo, da bo
pojemanje potenčno za motnje katerih časovno povprečje je nič, za take z neničelnim povprečjem
pa bo pojemanje balistično. Kot bomo videli, bomo tudi za kvantno zvestobo imeli dva različna
režima pojemanja glede na časovno povprečje motnje, vendar z eno veliko razliko. Medtem ko se
pri klasični zvestobi spremeni le funkcijska odvisnost, glede na to ali je povprečna motnja nič ali ne,
se pri kvantni zvestobi zgodijo veliko bolj dramatične stvari. Če je povprečna motnja nič, kvantna
zvestoba “zamrzne” na konstantni vrednosti–platoju, in ponovne začne padati šele po zelo dolgem
času. Od sedaj naprej bo beseda tekla le o kvantni zvestobi, klasična bo na nekaj mestih služila le
za primerjavo.
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I.2 Splošna motnja

Pojemanje kvantne zvestobe je odvisno od tega ali je časovno povprečje motnje nič ali pa je
neničelno. V splošnem bo časovno povprečje motnje neničelno in to bo prvi primer, ki si ga bomo
ogledali. Zaradi enostavnosti se bomo v celotnem delu omejili na propagatorje U(t), ki se dajo
zapisati kot potenca nekega osnovnega propagatorja za “en korak”. Tak osnovni propagator bomo
zapisali kot U0 za nemoteno evolucijo in Uδ za moteno, propagator za t korakov pa bo enostavno
U t
0 in U t

δ . Časovni indeks t bo torej tekel po celih številih, ki bodo merila število osnovnih enot
časa. S tem formalizmom zajamemo dve pomembni skupini sistemov, take s časovno periodično
hamiltonovo funkcijo, v tem primeru je U0 kar propagator čez eno periodo, in pa časovno neodvisne
hamiltonske sisteme, pri katerih je čas t sicer zvezen indeks. Z našim formalizmom dobimo zvezen
primer z enostavno zamenjavo vsot čez diskreten indeks t z integralom po času. Poljubno moteno
evolucijo Uδ (za en korak) lahko zapǐsemo kot

Uδ = U0 exp (−iV δ/h̄), (I-iii)

kjer je δ brezdimenzijska jakost motnje, V pa generator motnje.

Kvantna zvestoba – splošna teorija

Kvantno zvestobo (I-i) lahko zapǐsemo kot pričakovano vrednost operatorja odmeva Mδ(t),

F (t) = |〈ψ(0)|Mδ(t)|ψ(0)〉|2, Mδ(t) := U−t0 U t
δ . (I-iv)

Na nekaj mestih bo ugodno zapisati kvantno zvestobo kot sled produkta začetne gostotne matrike
ρ(0) in gostotne matrike po odmevu ρM(t)

ρ(0) = |ψ(0)〉〈ψ(0)|, ρM(t) =Mδ(t)ρ(0)M
†
δ (t), (I-v)

kot
F (t) = tr

[

ρ(0)ρM(t)
]

= |f(t)|2, f(t) = tr[ρ(0)Mδ(t)]. (I-vi)

Tukaj smo vpeljali tudi kompleksno amplitudo zvestobe f(t). Operator odmeva je ugodno izraziti
z operatorji motnje v interakcijski sliki. Če imamo nek operator A, potem je njegova interakcijska
slika A(t) enaka ∗

A(t) := U−t0 AU t
0. (I-vii)

Če to naredimo za V , lahko operator odmeva Mδ(t) zapǐsemo kot

Mδ(t) = exp (−iV (t− 1)δ/h̄) · · · exp (−iV (0)δ/h̄) = T exp (−iΣ(t)δ/h̄), (I-viii)

kjer je T operator časovne ureditve, Σ(t) pa je

Σ(t) :=
t−1
∑

j=0

V (j). (I-ix)

V zveznem primeru imamo preprosto Σ(t) :=
∫ t
0dt

′V (t′). Če uporabimo Baker-Campbell-Hausdoffovo
(BCH) formulo eAeB = exp (A+B + [A,B]/2 + · · ·), lahko operator odmeva zapǐsemo z eno ek-
sponentno funkcijo,

Mδ(t) = exp

{

− i

h̄

(

Σ(t)δ +
1

2
Γ(t)δ2 + · · ·

)}

, (I-x)

∗A(t) lahko smatramo tudi kot Heisenbergovo sliko dobljeno z nemoteno evolucijo.
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s hermitskim operatorjem Γ(t)

Γ(t) :=
i

h̄

t−1
∑

j=0

t−1
∑

k=j

[V (j), V (k)]. (I-xi)

To zadnjo obliko operatorja odmeva (I-x) bomo uporabili za praktično vsa teoretična razglabljanja.
Če ima operator motnje V dobro klasično limito, potem imata tudi operatorja Σ(t) in Γ(t) dobri
klasični limiti, ki ju lahko preprosto dobimo, če zamenjamo kvantni komutator s Poissonovim
oklepajem, (−i/h̄)[•, •]→ {•, •}.

Praktično glavni rezultat, ki vsebuje večino fizike, se da dobiti že s preprostim razvojem ope-
ratorja odmeva po potencah δ. Če tak razvoj vstavimo v izraz za kvantno zvestobo, dobimo v
najnižjem redu

F (t) = 1− δ2

h̄2

t−1
∑

j,k=0

C(j, k) +O(δ4) = 1− δ2

h̄2

{

〈Σ2(t)〉 − 〈Σ(t)〉2
}

+O(δ4), (I-xii)

kjer smo pričakovano vrednost v začetnem stanju označili kratko 〈A〉 := 〈ψ|A|ψ〉, C(j, k) pa je
kvantna korelacijska funkcija motnje,

C(j, k) := 〈V (j)V (k)〉 − 〈V (j)〉 〈V (k)〉 . (I-xiii)

V zveznem primeru časovno neodvisnih hamiltonskih sistemov je ta preprost izraz enak

1− F (t) = δ2

h̄2

∫ t

0

∫ t

0
C(t′, t′′) dt′ dt′′. (I-xiv)

Zadeva ni nič drugega kot izraz za kvantno zvestobo v približku linearnega odziva, tudi sama oblika
zelo spominja na razne Green-Kubove formule. Padec kvantne zvestobe 1−F (t), oziroma “disipacija
kvantne informacije”, je dana z integralom korelacijske funkcije motnje. Do sem vse lepo in prav,
presenečenje pa nastopi, ko pomislimo kako se te korelacijske funkcije obnašajo za različne sisteme.
V kaotičnih sistemih (oz. takih z lastnostjo mešanja) korelacijske funkcije pojemajo proti nič in
to v splošnem hitreje tem bolj kaotičen je sistem. To pomeni, da bo dvojni integral korelacijske
funkcije tem manǰsi čim bolj kaotičen je sistem in bo torej kvantna zvestoba pojemala počasneje
tem bolj kaotična je dinamika! To se zdi nekako v nasprotju s klasičnimi pričakovanji. Nenazadnje
smo videli, da klasična zvestoba v kaotičnih sistemih pojema z Lyapunovim koeficientom in torej
pojema hitreje čim bolj kaotičen je sistem. Na tem mestu naj povemo le, da s kvantno-klasično
korespondenco seveda ni nič narobe, vso to “kontradiktorno” obnašanje se namreč zgodi šele po
koncu ujemanja med kvantno in klasično zvestobo.

Poglejmo si sedaj podrobneje kvantno zvestobo v kaotičnih sistemih.

Kaotični sistemi

Za kaotično dinamiko z lastnostjo mešanja bodo korelacijske funkcije v splošnem pojemale, tako da
lahko definiramo transportni koeficient σ

σ :=
1

2
C(0) +

∞
∑

j=1

C(j) = lim
t→∞

〈

Σ2(t)
〉− 〈Σ(t)〉2
2t

, (I-xv)

kjer smo predpostavili, da je korelacijska funkcija homogena v času, C(j) = C(k, k + j). V semi-
klasični limiti se bo kvantna korelacijska funkcije ujemala s klasično in σ bo skonvergiral za čase
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večje od nekega klasičnega časa mešanje tmix. Dvojni integral korelacijske funckije bo za t À tmix

naraščal linearno s časom, kvantna zvestoba pa bo v približku linearnega odziva linearno pojemala,

F (t) = 1− 2(δ/h̄)2σt. (I-xvi)

Ob nekoliko strožji zahtevi, da imamo t.i. n-točkovno mešanje, to pomeni da je korelacijska funkcija
〈V (j1) · · ·V (j2m)〉 v limiti j2m−j1 →∞ znatna le kadar so indeksi sparjeni, z razlikami j2k−j2k−1 <
tmix, lahko izračunamo kvantno zvestobo do vseh redov v δ in dobimo eksponentno pojemanje

F (t) = exp (−t/τm), τm =
h̄2

2δ2σcl
, (I-xvii)

kjer lahko v semiklasični limiti uporabimo kar klasični σcl dobljen iz klasične korelacijske funkcije.
Hitrost pojemanja kvantne zvestobe τm je v tem režimu odvisna od jakosti motnje δ, torej se kvantna
in klasična zvestoba ne bosta ujemali. Enak režim eksponentnega pojemanja je bil izpeljan tudi
na precej drugačen način ob uporabi Fermijevega zlatega pravila (Jacquod et al. , 2001; Cerruti &
Tomsovic, 2002), zato včasih to eksponentno pojemanje zvestobe imenujejo tudi režim Fermijevega
zlatega pravila.
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Slika I.1: Kvantna zvestoba za kaotično dinamiko v brcani vrtavki in tri različne jakosti motnje,
δ = 5× 10−4, 1× 10−3 in 3× 10−3 (polna, črtkana in pikčasta krivulja). Ravna črta je teoretična
napoved (I-xvii).

Da bi tudi numerično preverili napovedano eksponentno pojemanje, smo z numerično simulacijo
izračunali kvantno zvestobo v sistemu brcane vrtavke. Propagator za osnovni korak je

U0 = U(α) = exp (−iπSy/2) exp
(

−iαS
2
z

2S

)

, (I-xviii)

kjer so Sx,y,z standardni spinski operatorji, [Sk, Sl] = iεklm Sm. Velikost spina S določa efektivno
Planckovo konstanto h̄ = 1/S. Moten sistem je dobljen tako, da za δ spremenimo parameter α,
Uδ := U(α+ δ), kar pomeni, da je klasična limita operatorja motnje V kar

Vcl =
1

2
z2, (I-xix)
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če je z koordinata na sferi, torej normalizirana klasična vrtilna količina. Na sliki I.1 so numerični
rezultati za S = 4000 in α = 30, ko je ustrezna klasična dinamika popolnoma kaotična. Vidimo, da
se teoretična napoved (I-xvii) ujema z numeriko. Za izračun teoretičnega τm smo uporabili klasično
izračunan σcl = 0.00385. Poudariti je tudi potrebno, da v tem režimu kvantna zvestoba ni odvisna
od začetnega stanja.

Obnašanje za dolge čase

Eksponentno pojemanje kvantne zvestobe smo izpeljali ob predpostavki kvantnega mešanja, to je
da korelacijska funkcija pojema proti 0. Ta predpostavka pa je upravičena le v limiti neskončno
dimenzionalnega Hilbertovega prostora, N → ∞. Za končne dimenzije Hilbertovega prostora N
bomo po dovolj dolgem času imeli efekte zaradi končnega prostora. Integral korelacijske funkcije
ne bo skonvergiral h σ, temveč bo naraščal linearno s časom. Korelacijska funkcija C(j, k) bo
imela namreč plato zaradi končnega N . V takem primeru lahko definiramo povprečno vrednost
korelacijske funkcije C̄,

C̄ = lim
t→∞

1

t2

t−1
∑

j,k=0

C(j, k). (I-xx)

Za kvantne sisteme s kaotično klasično limito lahko C̄ izrazimo s klasičnim σcl, in sicer

C̄ =
4σcl
N . (I-xxi)

Dvojna korelacijska vsota (I-xiv) bo torej naraščala kot 2σclt le do časa tH, ko bo postal del C̄t2

dominanten. Če izenačimo oba prispevka, dobimo za tH

tH =
1

2
N . (I-xxii)

To je t.i. Heisenbergov čas, ki je dan kar z dimenzijo Hilbertovega prostora, ki skalira kot N ∼ h̄−d.
Za čase večje od tH je torej pričakovati kvadratično naraščanje korelacijske vsote s časom. To smo
preverili z numeričnim eksperimentom, katerega rezulati so na sliki I.2. Vsi podatki za brcano
vrtavko so enaki kot prej, le S = 1500. Vidimo, da do časov okoli tH dvojna korelacijska vsota
sledi σcl, nato pa se zaradi končnega N in s tem neničelnega C̄ začne naraščanje C̄t2. Za dovolj
dolge čase bo torej kvantna zvestoba pojemala kvadratično in ne linearno kot pri eksponentnem
pojemanju. Ob dodatni predpostavki, ki se izkaže za upravičeno v semiklasični limiti kaotičnih
sistemov, da so matrični elementi motnje porazdeljeni po gaussovi porazdelitvi, lahko izpeljemo
pojemanje kvantne zvestobe do vseh redov v δ. Rezultat je gaussovo pojemanje

F (t) = exp
(

−(t/τp)2
)

, τp =

√

N
4σcl

h̄

δ
. (I-xxiii)

Takšno pojemanje nastopi šele po Heisenbergovem času tH, do tam pa je pojemanje eksponentno
(I-xvii).

Podoben efekt zaradi končne dimenzije N kot smo imeli pri korelacijski funkciji, bomo imeli tudi
pri sami zvestobi. Za velike čase kvantna zvestoba ne bo padla popolnoma k vrednosti 0, temveč bo
fluktuirala okoli neke asimptotske vrednosti določene s končno velikostjo prostora. To asimptotsko
vrednost zvestobe lahko izračunamo kot časovno povprečeno vrednost kvantne zvestobe F̄ . Račun
je enostaven, z rezultatom

F̄ =
1

N µ
, (I-xxiv)
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Slika I.2: Korelacijska vsota σ(t) =
∑t−1

j,k=0C(j, k)/2t (polna krivulja) in ustrezna klasična vsota

σcl(t) =
∑t−1

j,k=0Ccl(j, k)/2t (črtkana krivulja) za kaotično brcano vrtavko. Linearno naraščajoča

premica daje asimptotsko naraščanje zaradi C̄ 6= 0.

pri čemer je µ med 1/2 in 1, odvisno od začetnega stanja. Zgornji rezultat velja, če je začetno
stanje sestavljeno iz veliko lastnih stanj nemotenega propagatorja.
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Slika I.3: Kvantna zvestoba za δ < δp in kaotično brcano vrtavko. Črtkana in pikčasta krivulja sta
za δ = 1 · 10−6 in 5 · 10−6, polna krivulja pa je teoretično gaussovo pojemanje (I-xxiii).

Kvantna zvestoba bo torej pojemala le do asimptotskega platoja F̄ . Če hočemo opaziti gaussovo
pojemanje zvestobe (I-xxiii), mora le ta biti še vedno blizu 1 ob Heisenbergovem času. Od tod
vidimo, da bomo imeli gaussovo pojemanje le za dovolj majhne jakosti motnje, ko je eksponentno
pojemanje dovolj počasno. Mejni δp je

δp =
h̄√
σclN

. (I-xxv)
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Spet smo teoretično napoved o gaussovem pojemanju za δ < δp preverili z numerično simulacijo
taiste brcane vrtavke pri S = 1500. Rezultati so na sliki I.3. Režim gaussovega pojemanja kvantne
zvestobe za kaotične sisteme imenujemo včasih tudi perturbacijski režim.

Regularni sistemi

Z regularnimi sistemi imamo v mislih sisteme, pri katerih bo dvojna vsota korelacijske funkcije
naraščala kvadratično s časom, torej kadar ima korelacijska funkcija neničelni plato C̄. Pri tem
imamo v mislih sisteme, kjer je C̄ neničeln zaradi dinamike in ne zaradi končne dimenzije N , kot je
to pri kaotičnih sistemih. Neničelni C̄ bomo imeli tipično v integrabilnih sistemih ali pa v sistemih
blizu integrabilnosti. Če označimo s tave (klasični) čas po katerem povprečna korelacijska funkcija
(I-xx) skonvergira k C̄, potem lahko za tÀ tave definiramo povprečno motnjo V̄ ,

V̄ = lim
t→∞

1

t

t−1
∑

k=0

V (k) = lim
t→∞

Σ(t)

t
. (I-xxvi)

Označimo z |φk〉 lastna stanja nemotenega propagatorja U0. Neničelni matrični elementi V̄ so enaki
kar diagonalnim elementom operatorja V ,

V̄ =
∑

k

Vkk|φk〉〈φk|, (I-xxvii)

kjer so Vkk = 〈φk|V |φk〉. Povprečna korelacijska funkcija ni nič drugega kot C̄ = 〈V̄ 2〉 − 〈V̄ 〉2. Za
izračun kvantne zvestobe lahko za tÀ tave operator odmeva aproksimiramo z

Mδ(t) = exp (−iV̄ δt/h̄), tÀ tave, (I-xxviii)

pri čemer smo zanemarili vǐsji red δ2Γ(t), ki postane pomemben za velike čase t ∼ 1/δ2. Kot
bomo videli, se bo zvestoba spreminjala na kraǰsi časovni skali ∼ 1/δ, tako da je ta približek
upravičen. Izračun kvantne zvestobe lahko v regularnih sistemih precej poenostavimo, če uvedemo
akcijsko kotne spremenljivke j in θ. Lastne vektorje ustreznih kvantnih akcijskih operatorjev lahko
označimo z vektorjem kvantnih števil n, torej |n〉, z lastnimi vrednostmi h̄n. Ker je operator
povprečne motnje V̄ diagonalen, to pomeni da komutira z nemoteno evolucijo, ga lahko izrazimo
samo z akcijskimi operatorji. Pričakovano vrednost operatorja odmeva, ki je enaka amplitudi
zvestobe f(t) (I-vi), lahko tedaj zapǐsemo

f(t) =
∑

n

exp
(−iδtV̄ (h̄n)/h̄

)

Dρ(h̄n), Dρ(h̄n) = 〈n|ρ|n〉, (I-xxix)

kjer je ρ gostotna matrika začetnega stanja. Če sedaj v vodilnem semiklasičnem redu nadomestimo
kvantni V̄ z ustrezno klasično limito v̄ ter zamenjamo vsoto po kvantnih številih n z integralom po
akcijah, dobimo semiklasični izraz

f(t) ∼= h̄−d
∫

ddj exp

(

−i δ
h̄
tv̄(j)

)

dρ(j), (I-xxx)

kjer je dρ(j) klasična limita Dρ(h̄n). Približek z integralom čez akcije velja do časov ∼ 1/δ.
Za razliko od kaotičnih sistemov je kvantna zvestoba za regularno dinamiko odvisna od začetnega

stanja. Ogledali si bomo dva primera, koherentna in naključna začetna stanja. Pri naključnih
začetnih stanjih je vsak koeficient v razvoju naključno gaussovo število.



xviii I. Razširjeni povzetek

Koherentna stanja

Za koherentna stanja ima klasična gostota v prostoru akcij dρ(j) gaussovo obliko,

dρ(j) = (h̄/π)d/2 |detΛ|1/2 exp(−(j − j∗) · Λ(j − j∗)/h̄). (I-xxxi)

Matrika Λ dimenzije d × d nam poda obliko začetnega koherentnega paketa v sistemu z d pro-
stostnimi stopnjami, j∗ pa lego sredǐsča začetnega stanja. Integral v izrazu za amplitudo zvestobe
(I-xxx) lahko izračunamo z metodo stacionarne faze. Rezultat za kvantno zvestobo je

F (t) = exp
{

−(t/τr)2
}

, τr =
1

δ

√

2h̄

v̄′ · Λ−1v̄′ , (I-xxxii)

kjer smo z v̄′ označili vektor odvodov po akcijah, izvrednoten v začetni točki j∗

v̄′ =
∂v̄(j∗)
∂j

. (I-xxxiii)

Kvantna zvestoba za koherentna stanja v regularnih sistemih pojema gaussovo. Za numerično
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Slika I.4: Kvantna zvestoba za regularno brcano vrtavko in koherentno začetno stanje, δ = 0.0025.
Polna črta je teoretična napoved (I-xxxv), plusi pa rezultat simulacije. Navpična črta podaja
teoretično vrednost za periodo utripanja tb (I-xxxvi).

demonstracijo smo ponovno vzeli brcano vrtavko, vendar tokrat z α = 0.1, tako da smo v regu-
larnem režimu. Dinamika za α = 0 je enostavna rotacija za π/2 okoli osi y, tako da povprečno
motnjo in njen odvod v tem približku zlahka izračunamo,

v̄ =
1

4
(1− j2), v̄′ = − j

2
. (I-xxxiv)

Akcijska spremenljivka j je kar koordinata y. Ob upoštevanju Λ = 1/(1 − y2) takoj dobimo
teoretično napoved (I-xxxii)

F (t) = exp
(

−δ2St2y2(1− y2)/8
)

. (I-xxxv)
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Slika I.5: Kvantna zvestoba za regularno brcano vrtavko in naključno začetno stanje, δ = 0.01.
Ravna pikčasta črta je asimptotsko potenčno pojemanje ∼ t−1, črtkana nihajoča krivulja je nu-
merika za eno naključno stanje, polna črta je numerika za povprečje čez cel Hilbertov prostor, pikice
pa so razlika s teoretičnim rezultatom (I-xxxviii).

Na sliki I.4 so numerični rezultati za S = 100 in koherentno stanje pri y = 0.77. Ujemanje s
teoretično napovedjo je odlično. Opazimo pa, da se po določenem času kvantna zvestoba ponovno
povrne do približno 1. Ta efekt je opazen le v sistemih z eno prostostno stopnjo (d = 1), kjer imamo
lahko utripanje zaradi dveh bližnjih frekvenc nemotenega in motenega torusa. Teoretična napoved
za ta čas utripanja tb je za naš primer

tb =
2π

δy
, (I-xxxvi)

in se lepo ujema z eksperimentom. V več kot eni dimenziji, zaradi v splošnem inkomenzurabilnih
frekvenc, utripanja ne bo.

Naključna stanja

Za naključno začetno stanje lahko v vodilnem semiklasičnem redu kvantno zvestobo povprečimo
kar čez cel akcijski prostor, torej vzamemo konstanten dρ(j) = (2πh̄)d/V, s prostornino klasičnega
faznega prostora V. Integral po akcijah lahko ponovno izvrednotimo z metodo stacionarne faze.
Asimptotsko je pojemanje zvestobe za velike čase potenčno

F (t) ³ (2π)3d

V2
(

h̄

δt

)d

. (I-xxxvii)

Za naš enostavni numerični primer regularne brcane vrtavke (enak primer kot za koherentna
stanja) lahko za α = 0 eksplicitno izračunamo akcijski integral (I-xxx) in dobimo

F (t) =
π

δSt

∣

∣

∣

∣

erfi(
1

2
eiπ/4
√
δSt)

∣

∣

∣

∣

2

, (I-xxxviii)

kjer je erfi(z) = 2
i
√
π

∫ iz
0 e−t

2
dt kompleksna erf funkcija z limito limx→∞ |erfi(12eiπ/4

√
x)| = 1, h ka-

teri se oscilirajoče približuje. Vidimo, da imamo v primerjavi s semiklasičnim rezultatom (I-xxxvii)
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nihajoče popravke v obliki funkcije erfi. Takšni nihajoči popravki so splošna lastnost stacionarne
faze na končnih prostorih.

I.3 Motnja s časovnim povprečjem nič

Za nedegeneriran spekter nemotenega propagatorja U0 smo videli (I-xxvii), da ima povprečna mo-
tnja V̄ le diagonalne matrične elemente. To pa pomeni, da lahko tako motnjo V definiramo s
časovnim odvodom novega operatorja W kot

V =W (1)−W (0), W (t) := U−t0 WU t
0. (I-xxxix)

V primeru zveznega časa je ta definicija V := (d/dt)W = i
h̄ [H0,W ]. Hitro vidimo, da so matrični

elementi operatorja W v bazi nemotenega propagatorja preprosto

Wjk :=
Vjk

exp (i(φj − φk))− 1
, (I-xl)

kjer so e−iφj lastne vrednosti nemotenega propagatorja U0. V tem razdelku se bomo ukvarjali z
motnjami katerih časovno povprečje je nič, torej imajo ničelne diagonalne matrične elemente, in jih
lahko izrazimo z operatorjemW . Takšna motnja je lahko npr. posledica simetrije, vendar pa morajo
matrični elementi V naraščati gladko vstran od diagonale, če hočemo, da W nima singularnosti.

Če izrazimo količine z W namesto z V , se marsikateri izraz poenostavi. Vsota Σ(t) je preprosto

Σ(t) =W (t)−W (0). (I-xli)

Za motnje z neničelnim časovnim povprečjem smo potrebovali le operator Σ(t), da smo izračunali
pojemanje kvantne zvestobe. Sedaj temu ni tako. Za dolge čase bo postal pomemben tudi člen
Γ(t) (I-xi) v izrazu za operator odmeva. Ta operator lahko zapǐsemo kot

Γ(t) = ΣR(t)−
i

h̄
[W (0),W (t)], R :=

i

h̄
[W (0),W (1)], (I-xlii)

kjer je

ΣR(t) :=
t−1
∑

t′=0

R(t′), R(t) := U−t0 RU t
0. (I-xliii)

Ker sedaj norma operatorja Σ(t) (I-xli) ne narašča s časom, bo kvantna zvestoba do nekega
časa t2 ∼ 1/δ, ko postane pomemben tudi Γ(t), “zamrznila” na neki ne-padajoči vrednosti, dani z

Fplat(t) =

∣

∣

∣

∣

〈

exp

(

−i δ
h̄
{W (t)−W (0)}

)〉∣

∣

∣

∣

2

. (I-xliv)

To konstantno vrednost, za katero bomo videli da ni odvisna od časa, bomo poimenovali plato
zvestobe. Vidimo tudi, da bomo imeli plato ne glede na to kakšna je dinamika ali začetno stanje.
Mi si bomo ogledali primera kaotične in regularne dinamike, ko lahko eksplicitno izračunamo vse
količine. Za čase večje od t2 bo postal dominanten člen δ2Γ(t)/2, ki zaradi svoje enostavne oblike (I-
xlii) nudi zanimivo interpretacijo. Če zanemarimo člen [W (0),W (t)], ki ne bo pomemben za velike
čase, potem je Γ(t) = ΣR(t) tak, kakor je bil Σ(t) v primeru splošnje motnje (I-ix) z neničelnim V̄ , če
le V zamenjamo z R. Pojemanje kvantne zvestobe po platoju bo torej enako kot “renormalizirana”
zvestoba, ki je posledica motnje R z jakostjo δR := δ2/2. Uporabimo lahko kar vso teorijo iz
preǰsnjega razdelka.
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Kaotična dinamika

Plato zvestobe
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Slika I.6: Plato kvantne zvestobe za kaotično brcano vrtavko in jakost motnje δ = 10−2. Zgornja
krivulja je za koherentno začetno stanje, spodnja pa za naključno. Vodoravni črti sta teorija (I-li),
navpična črta pa podaja lego teoretičnega t2 (I-lvi). S črnimi pikami je označen numerični izračun
klasične zvestobe za koherentno začetno stanje.

V primeru kaotične dinamike (Prosen & Žnidarič, 2004) nam računanje poenostavi pojemanje
korelacij za čase večje od tmix. Za vrednost platoja (I-xliv) lahko tako zapǐsemo

Fplat ∼= |G(δ/h̄) 〈exp (iWδ/h̄)〉|2 , (I-xlv)

kjer je G(z) generatrisa definirana s klasičnim povprečjem

G(z) := 〈exp(−iz w)〉cl =
1

V

∫

ddq ddp exp {−iz w(q,p)}, (I-xlvi)

w je klasična limita† operatorjaW . Za koherentna začetna stanja (CIS) nam drugi del v Fplat samo
vrti fazo, tako da imamo

FCIS
plat
∼= |G(δ/h̄)|2, (I-xlvii)

neodvisno od lege začetnega koherentnega stanja. Na drugi strani dobimo za naključna začetna
stanja

FRIS
plat
∼= |G(δ/h̄)|4. (I-xlviii)

Med obema velja zanimiva univerzalna relacija FRIS
plat
∼= (FCIS

plat )
2. V približku linearnega odziva,

z ¿ 1, je razvoj G(z)

G(z) = 1− 1

2
z2κ2cl, κ2cl := 〈w2〉cl − 〈w〉2cl, (I-xlix)

s klasičnim koeficientom κ2cl izračunanim s klasičnim povprečjem 〈•〉cl. Na drugi strani pojema
generatrisa za velike z potenčno, in sicer kot G(z) ³ z−N/2, če ima w izolirano stacionarno točko v
N dimenzijah.

†Klasične limite operatorjev vedno pǐsemo z majhnimi črkami, npr. v̄, w, r...
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Za numerično demonstracijo smo ponovno vzeli brcano vrtavko (I-xviii) z α = 30 in S = 1000.
Motnja je tokrat W = S2

z/2S, torej

V =
S2
x − S2

z

2S
. (I-l)

Generatriso za naš primer zlahka izračunamo in je

G(δS) =

√

π

2δS
erfi

(

eiπ/4
√

δS/2

)

. (I-li)

Na sliki I.6 smo namerno izbrali veliko motnjo δ, da smo lahko preverili analitični izraz za gene-
ratriso G(z). Ujemanje je odlično tako za koherentno kot za naključno začetno stanje. Narisana je
tudi klasična zvestoba, ki se ujema s kvantno le do kratkega Ehrenfestovega časa, po tem pa pada
potenčno, medtem ko kvantna zvestoba zamrzne.

Pojemanje po platoju

Za pojemanje po platoju smo že povedali, da bo dano z ΣR(t). Dodatna olaǰsava je, da lahko za
tÀ tmix faktoriziramo prispevka Σ(t) in ΣR(t), tako da imamo

F (t) ∼= Fplat

∣

∣

∣

∣

∣

〈

exp

(

−i δ
2

2h̄
ΣR(t)

)〉∣

∣

∣

∣

∣

2

, t > t2, tmix. (I-lii)

Postopek izračuna pričakovane vrednosti drugega člena je popolnoma enak kot za splošno motnjo,
le renormalizirano motnjo R in jakost δR = δ2/2 moramo vzeti. Prvi faktor, Fplat, je odvisen
od začetnega stanja, kot smo izračunali v preǰsnjem razdelku, drugi pa ne. Za čase manǰse od
Heisenbergovega časa je pojemanje eksponentno

F (t) ∼= Fplat exp

(

− δ4

2h̄2
σRt

)

, t < tH (I-liii)

z σR

σR := lim
t→∞

〈

Σ2
R(t)

〉

cl − 〈ΣR〉2cl
2t

. (I-liv)

Po Heisenbergovem času pa imamo perturbacijsko gaussovo pojemanje

F (t) ∼= Fplat exp

(

− δ4

2h̄2
σR

t2

tH

)

, t > tH. (I-lv)

Če primerjamo obe možni obliki asimptotskega pojemanja zvestobe z vrednostjo platoja (I-xlix),
lahko ocenimo čas t2, ko se plato zvestobe konča,

t2 ≈ min







√

tHκ2cl
σR

1

δ
,
κ2cl
σRδ2







. (I-lvi)

Ker lahko imamo eksponentno pojemanje le če je t2 < tH, nam to ob zahtevi Fplat ∼ 1 (torej
δ/h̄ < 1), ter da je eksponentna zvestoba ob tH majhna, da pogoj za število prostostnih stopenj
sistema d ≥ 2, če hočemo v semiklasični limiti imeti eksponentno pojemanje. V sistemih z eno
prostostno stopnjo eksponentnega pojemanja torej ni mogoče videti. Zaradi tega smo tokrat za
numerični model izbrali sklopljen sistem dveh brcanih vrtavk z unitarnim propagatorjem

U = exp (−iεSz1Sz2) exp (−iπSy1/2) exp (−iπSy2/2), (I-lvii)
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za motnjo pa smo vzeli

W = A⊗ �
+

� ⊗A, A = S2
z/2S

2. (I-lviii)

Velikost spina je S = 100 za obe vrtavki, sklopitev pa je ε = 20, tako da smo v kaotičnem režimu
(klasično). Na sliki I.7 je primerjava med tremi izračuni kvantne zvestobe: teoretično napovedjo
za eksponentno (I-liii) oz. gaussovo (I-lv) pojemanje, “renormalizirano” dinamiko, pri kateri smo
vzeli za operator motnje R z jakostjo δ2/2, ter neposrednim numeričnim izračunom. Pri teoretičnih
napovedih smo uporabili klasično izračunan σR = 9.2 · 10−3 in pa teoretično izračunano vrednost
platoja Fplat.
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Slika I.7: Kvantna zvestoba po platoju za sistem dveh brcanih vrtavk. Za močno motnjo δ =
7.5 · 10−2, slika (a), dobimo eksponentno pojemanje (I-liii), za majhno motnjo δ = 2 · 10−2, slika
(b), pa gaussovo (I-lv). Polna črta je numerika, krogci so numerika za “renormalizirano” dinamiko
z motnjo R in jakostjo δ2/2, prekinjena krivulja pa je teorija.

Regularna dinamika

V primeru regularne dinamike bomo uporabili akcijsko-kotne spremenljivke (Prosen & Žnidarič,
2003b), kot smo to storili že za splošno motnjo. Vrednost platoja zvestobe bo dana z operatorjem
Σ(t). V vodilnem redu lahko uporabimo kar klasično limito operatorja W , torej w(j,θ), tako da
imamo

Σ(t) −→ w(j,θ + ωt)− w(j,θ). (I-lix)

Podrobneǰsi račun pokaže, da je za t > t1 vrednost platoja neodvisna od časa, tako da lahko
časovno odvisen Σ(t) nadomestimo z njegovim časovnim povprečjem, kar nam da amplitudo kvantne
zvestobe

fplat ∼=
〈

exp

(

i
δ

h̄
w(j,θ)

)∫

ddx

(2π)d
exp

(

−i δ
h̄
w(j,x)

)

〉

cl

, (I-lx)

kjer je povprečje vzeto čez klasični fazni prostor, časovno povprečje pa smo nadomestili s povprečjem
po kotih. Kot smo povedali, je ta izraz upravičen za t > t1, ki je za naključna stanja t1 ∼ δ0h̄0, za
koherentna stanja pa nekoliko dalǰsi,

t1 =

(

h̄

4
min
m6=0

(

m · ΩΛ−1ΩTm
)

)−1/2
∝ h̄−1/2, (I-lxi)
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kjer je minimum vzet čez vse nihajne načine m spremenljivke w, matrika Ω pa je matrika odvodov
frekvenc po akcijah, Ωjk := ∂ωj(j

∗)/∂jk. Za koherentna stanja ima čas t1 nazorno razlago. To je
t.i. regularni Ehrenfestov čas, po katerem se začetni paket velikosti

√
h̄, zaradi različnih frekvenc

torusov na katerih se razteza, razleze na klasično velikost ∼ h̄0. To je tudi čas, do katerega se
ujemata klasična in kvantna zvestoba. Vidimo tudi, da t1 divergira, torej uporaba časovnega
povprečja za fplat ni upravičena, za sisteme z Ω = 0, to je za harmonski oscilator. Ta primer bomo
obravnavali posebej.

Pojemanje zvestobe po platoju bo na drugi strani določeno z Γ(t), ki ga bomo za dolge čase
nadomestili z R̄t oziroma klasičnim r̄t. Uporabili bomo teorijo za splošne motnje na tej “renor-
malizirani” dinamiki. Poglejmo si kar konkreten primer za brcano vrtavko. Nemoten propagator
vzamemo kar

U0 = exp
(

−iαS2
z/2S

)

, (I-lxii)

tako da je akcijska spremenljivka koordinata z, j = z, za motnjo pa vzamemo

V = Sx/S, v =
√

1− j2 cos θ. (I-lxiii)

Klasična limita operatorja W je

w(j, θ) =
1

2

√

1− j2 sin (θ − ω/2)
sin (ω/2)

, (I-lxiv)

s frekvenco ω = αj.

Plato zvestobe

Za koherentna začetna stanja (CIS) nam da klasično povprečje v izrazu (I-lx) kar vrednost argu-
menta na mestu paketa, tako da takoj dobimo

FCIS
plat
∼= 1

(2π)2d

∣

∣

∣

∣

∫

ddθ exp

(

− iδ

h̄
w(j∗,θ)

)∣

∣

∣

∣

2

. (I-lxv)

Izraz je podoben tistemu za kaotično dinamiko (I-xlvii), le da smo tam imeli v formuli za generatriso
povprečje čez cel fazni prostor, medtem ko imamo sedaj le povprečje čez kote, akcija pa je določena
z lego začetnega stanja j∗. Plato je sedaj odvisen od lege začetnega koherentnega stanja. Za našo
motnjo w (I-lxiv) je integral elementaren, z rezultatom

FCIS
plat = J2

0

(

δS

√

1− j∗2
2 sin (αj∗/2)

)

, (I-lxvi)

kjer je J0 ničta Besselova funkcija z razvojem za majhne argumente J 2
0 (x) = 1 − x2/2 + · · ·. Naj

omenimo, da je rezultat integrala Besselova funkcija za vse motnje z le enim Fourierovim nihajnim
načinom.

Za naključna začetna stanja (RIS) je klasično povprečje v izrazu za fplat kar fazno povprečje,
kar nam da

FRIS
plat
∼=
∣

∣

∣

∣

∣

(2π)d

V

∫

ddjFCIS
plat (j)

∣

∣

∣

∣

∣

2

. (I-lxvii)

Torej je plato zvestobe za RIS povprečje platoja za CIS. Tukaj pa se lahko pojavi težava, če imamo
v akcijskem prostoru točke, kjer je frekvenca enaka nič, ω(j) = 0 (oz. m · ω = 0), saj bomo imeli
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tedaj v izrazu za w (I-lxiv) divergentne člene. Za naš numerični primer se to zgodi v j = 0. Rešitev
je enostavna, le spomniti se je treba, da je integral dejansko zamenjava za vsoto čez h̄n in da so
frekvence semiklasični izrazi za razlike lastnih vrednosti φj − φk. Ker ima naša motnja ničelno
časovno povprečje to pomeni, da so vsi členi kjer bi imeli φj = φk (oz. ω = 0) dejansko nič. Torej
moramo namesto integrala zapisati vsoto, divergentne člene pa preprosto izpustiti,

FRIS
plat
∼=

∣

∣

∣

∣

∣

∣

1

N

m·ω(h̄n)6=2πk
∑

n

FCIS
plat (h̄n)

∣

∣

∣

∣

∣

∣

2

. (I-lxviii)

Na sliki I.8 so numerični rezultati za S = 1600, α = 1.1 in δS = 0.32, ter koherentno in naključno
začetno stanje. Zaradi bližnje divergence pri j = 0 je plato veliko nižji za naključno začetno stanje
kot pa za koherentno. Za koherentno začetno stanje opazimo tudi resonance, ob katerih je zvestoba
blizu 1. Te resonance odmeva so posebnost sistemov z eno prostostno stopnjo in lokaliziranih
začetnih stanj. Pojavijo se ob večkratnikih osnovnega časa tr,

tr =
2π

h̄ω′(j∗)
. (I-lxix)
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Slika I.8: Plato kvantne zvestobe za regularno vrtavko. Na levi je plato za koherentno začetno
stanje, na desni pa za naključno začetno stanje. Vodoravna črta je teorija za koherentno (I-lxvi) in
naključno stanje (I-lxviii). Krogci na sliki za koherentno stanje podajajo ustrezno klasično zvestobo,
ki sledi kvantni le do t1 ∝ 1/

√
h̄.

Po platoju

Po koncu platoja je pojemanje kvantne zvestobe dano z “renormalizirano” dinamiko. Če je plato
znaten, je potrebno upoštevati tudi vrednost platoja, ki pa ga ne moremo faktorizirati tako kot za
kaotične sisteme. Tukaj se bomo omejili na primer, ko je plato majhen in ga lahko zanemarimo.

Za koherentna začetna stanja je pojemanje po platoju gaussovo,

F (t) ∼= exp
{

−(t/τrr)2
}

, τrr =
1

δ2

√

8h̄

r̄′ · Λ−1r̄′ , (I-lxx)
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z odvodom klasične limite r̄ časovnega povprečja operatorja R. Čas t2, ko se plato neha, lahko za
koherentna stanja ocenimo kot

t2 = min{const h̄1/2δ−2, const h̄−1/2δ−1}. (I-lxxi)

Za naključna začetna stanja bo pojemanje po t2 ∼ 1/δ potenčno,

F (t) ³
(

tran
t

)d

, tran = const× h̄

δ2
. (I-lxxii)

Rezultati numerične simulacije za S = 1600, α = 1.1 in δS = 0.064, skupaj s teoretičnimi
napovedmi, so na sliki I.9.
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Slika I.9: Kvantna zvestoba po platoju za regularno vrtavko. Levo je gaussovo pojemanje za
koherentno začetno stanje, desno pa potenčno za naključno stanje. V obeh primerih je prekinjena
črta teoretična napoved.

I.4 Sklopitev z okolico

Kvantna zvestoba ni vedno najbolj primeren kriterij stabilnosti. Ponavadi je sklopitev sistema z
okolico neizogibna, četudi je majhna. V takem primeru je evolucija unitarna le, če obravnavamo
naš centralni sistem skupaj z okolico. Pri tem bomo z okolico imenovali del celotnega sistema,
ki nas ne zanima, centralni sistem pa je tisti, ki nas zanima. Hilbertov prostor celotnega sistema
je tenzorski produkt H = Hc ⊗ He, kjer indeks “c” pomeni centralni podsistem, “e” pa okolico.
Kvantna zvestoba, ki je skalarni produkt valovnih funkcij na celotnem sistemu, prav gotovo ne bo
prava mera za stabilnost, če nas zanima le stabilnost centralnega sistema. Zvestoba je namreč lahko
majhna tudi, če se samo del valovne funkcije, ki se nanaša na okolico razlikuje, centralni del pa je
enak. Zaradi teh pomanjkljivosti bomo vpeljali dve novi meri za stabilnost, reducirano zvestobo
(reduced fidelity) (Žnidarič & Prosen, 2003) in čistost odmeva (purity fidelity) (Prosen & Seligman,
2002).

Najprej definirajmo reducirane gostotne operatorje sistema, ki vsebujejo vso informacijo o stanju
centralnega sistema,

ρc(t) := tre[ρ(t)], ρMc (t) := tre[ρ
M(t)], (I-lxxiii)
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kjer je tre[•] sled čez okolico. Začetno stanje sistema bo vedno produktno stanje

|ψ(0)〉 = |ψc(0)〉 ⊗ |ψe(0)〉 =: |ψc(0);ψe(0)〉. (I-lxxiv)

Če smo kvantno zvestobo definirali kot sled na celotnem prostoru (I-vi), F (t) = tr[ρ(0)ρM(t)],
potem je smiselni kriterij za stabilnost centralnega podsistema sled produkta reduciranih matrik –
reducirana zvestoba,

FR(t) := trc[ρc(0)ρ
M
c (t)]. (I-lxxv)

Reducirana zvestoba FR(t) meri “bližino” med prvotno reducirano matriko in reducirano matriko
po odmevu.

Ena najbolj čudnih lastnosti kvantne mehanike so prepletena stanja. Zanimivo vprašanje je, ali
je neko stanje prepleteno ali ne. Za čista stanje je kriterij za prepletenost preprost. Če je čistost
(purity) I enaka 1, potem je stanje produktno, sicer pa je prepleteno. Čistost je definirana kot

I(t) := trc[ρ
2
c(t)], ρc(t) := tre[|ψ(t)〉〈ψ(t)|]. (I-lxxvi)

Zanimiva je tudi čistost odmeva FP, ki nam pove ali je stanje po odmevu ρM(t) prepleteno,

FP(t) := trc[{ρMc (t)}2]. (I-lxxvii)

Vse tri količine, zvestoba, reducirana zvestoba in čistost odmeva merijo stabilnost na motnje.
Če je motena evolucija enaka nemoteni, so vse enake 1, sicer pa manǰse. Zvestoba meri stabilnost
celotnega sistema, reducirana zvestoba le centralnega podsistema, čistost odmeva pa le faktorizacijo
stanja (prepletenost). Zdi se, da je zvestoba najstrožji kriterij stabilnosti. To domnevo potrdi
neenakost, ki jo lahko dokažemo za te tri količine (Žnidarič & Prosen, 2003; Prosen et al. , 2003a).
Velja naslednja neenakost

F 2(t) ≤ F 2
R(t) ≤ FP(t). (I-lxxviii)

Zanimiva netrivialna posledica te neenakosti je, da bomo v primerih ko zvestoba zamrzne, torej za
motnje z ničelnim časovnim povprečjem, imeli enak efekt tudi za reducirano zvestobo in za čistost
odmeva.

Pogosto je zaželjena nemotena evolucija taka, v kateri sta centralni podsistem in okolica nesklo-
pljena, torej je U0 faktoriziran

U0 = Uc ⊗ Ue. (I-lxxix)

V tem primeru lahko reducirano zvestobo in čistost odmeva še poenostavimo. Reducirano zvestobo
lahko, namesto kot primerjavo med začetnim stanjem in stanjem po odmevu, smatramo tudi kot
primerjavo med nemotenim in motenim reduciranim stanjem,

FR(t) = trc[ρc(0)ρ
M
c (t)] = trc[ρc(t)ρ

δ
c(t)]. (I-lxxx)

Podobno lahko vidimo, da je čistost odmeva v tem primeru nesklopljene nemotene dinamike enaka
kar čistosti motene dinamike I(t),

FP(t) = trc[{ρMc (t)}2] = trc[{ρδc(t)}2] = I(t). (I-lxxxi)

Ker je ta poseben primer fizikalno še posebej zanimiv, bomo v numeričnih simulacijah vedno vzeli
nesklopljeno nemoteno dinamiko.
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Linearni odziv

Velikokrat nam za analizo stabilnosti zadostuje že linearni odziv, saj so zanimive vrednosti ravno
v okolici 1. Podobno kot zvestobo lahko do najnižjega reda v δ razvijemo tudi FR(t) in FP(t),

1− F (t) =

(

δ

h̄

)2

〈Σ(t)( � ⊗ � − ρc ⊗ ρe)Σ(t)〉
1− FR(t) =

(

δ

h̄

)2

〈Σ(t)( � − ρc)⊗ � Σ(t)〉
1− FP(t) = 2

(

δ

h̄

)2

〈Σ(t)( � − ρc)⊗ ( � − ρe)Σ(t)〉, (I-lxxxii)

kjer sta ρc,e reducirani matriki začetnega produktnega stanja ρ(0) = ρc ⊗ ρe.

Kaotični sistemi
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Slika I.10: Pojemanje F 2(t), F 2
R(t) in I(t) za kaotični sistem dveh brcanih vrtavk. Polna črta je

teoretična napoved (I-lxxxiii), kjer smo uporabili klasično izračunan σcl = 0.056. Vodoravni črti
podajata asimptotsko vrednost reducirane zvestobe in čistosti, 1/4002 in 1/200.

Za kaotične sisteme bodo vse tri količine pojemale na začetku linearno s časom. Za dovolj dolge
čase bo matrika Σ(t) blizu naključni matriki. V tem primeru lahko ocenimo razliko FR(t)−F (t) ∼
1/Ne in FP(t) − F 2(t) ∼ 1/Nc + 1/Ne. Torej lahko za dovolj velike dimenzije obeh podsistemov
Nc,e pričakujemo, da bodo vse tri količine pojemale enako. Za kvantno zvestobo smo izpeljali, da
ta pojema eksponento (I-xvii), torej bo

FP(t) ≈ F 2
R(t) ≈ F 2(t) = exp (−2t/τm), (I-lxxxiii)

s τm = h̄2/2δ2σcl neodvisnim od začetnega stanja. Vse to smo preverili z numeričnim eksperimen-
tom. Za nemoten sistem smo vzeli dve nesklopljeni brcani vrtavki s propagatorjem

U0 := U(αc, γc)⊗ U(αe, γe), (I-lxxxiv)
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kjer je U(α, γ) propagator za eno brcano vrtavko

U(α, γ) = exp (−iγSy) exp
(

−iαS2
z/2S

)

. (I-lxxxv)

Da smo v kaotičnem režimu, vzamemo αc,e = 30, za kota pa γc,e = π/2.1. Velikost spina je S = 200,
motnja pa

V =
1

S2
Sz ⊗ Sz, (I-lxxxvi)

z jakostjo δ = 8 · 10−4. Na sliki I.10 vidimo, da je ujemanje s teorijo odlično.

Regularni sistemi

Za regularne sisteme se bomo omejili na produktna koherentna začetna stanja. Oblika koherentnega
paketa za centralni podsistem je določena z matriko Λc dimenzije dc, za okolico pa z Λe dimenzije
de, v sistemu z dc + de prostostnimi stopnjami. Postopek za izračun FR(t) in FP(t) je podoben kot
za F (t). Za dovolj dolge čase lahko operator odmeva aproksimiramo z Mδ(t) → exp (−iδV̄ t/h̄),
V̄ nadomestimo s klasičnim v̄(j) in zadevo razvijemo okoli lege začetnega paketa. Za reducirano
zvestobo je rezultat gaussova funkcija, podobno kot za zvestobo,

FR(t) = exp

(

− δ
2

h̄2
C̄Rt

2

)

, C̄R =
1

2
h̄
(

v̄′cΛ
−1
c v̄′c

)

, (I-lxxxvii)

kjer je matrika v̄′c dana z

v̄′c :=
∂v̄(j∗)

∂jc
, (I-lxxxviii)

če razdelimo vektor akcij na del ki pripada centralnemu podsistemu in del za okolico, j =: (jc, je).

S čistostjo odmeva je nekoliko več dela, rezultat pa je

FP(t) =
1

√

det { � + (δt)2 u} , u := Λ−1c v̄′′ceΛ
−1
s v̄′′ec, (I-lxxxix)

kjer je matrika drugih odvodov v̄′′ce dimenzije dc × de dana z

v̄′′ =
(

v̄′′cc v̄′′ce
v̄′′ec v̄′′ee

)

, v̄′′lk(j
∗) :=

∂2v̄(j∗)
∂jl∂jk

. (I-xc)

Matrika u, ki določa pojemanje čistosti odmeva, je dimenzije dc × dc. Determinanta pod korenom
(I-lxxxix) je polinom v (δt)2, in sicer reda med 1 in dc, odvisno od matrike u. V sistemih z 1 + de
prostostnimi stopnjami je u kar število, čistost odmeva pa je enostavno

FP(t) =
1

√

1 + u (δt)2
, dc = 1. (I-xci)

Za numerično demonstracijo bomo vzeli isti model kot za kaotični režim, a s parametri αc,e = 0,
γc = π/2.1 ter γe = π/

√
7. Velikost spina je S = 100, motnja jakosti δ = 0.01 pa

V =
1

S4
S2
z ⊗ S2

z . (I-xcii)

Rezultati numerične simulacije so na sliki I.11.
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Slika I.11: Pojemanje F (t), FR(t) in I(t) za sistem brcanih vrtavk v regularnem režimu in za
produktno koherentno začetno stanje. Teoretični napovedi (polni krivulji) za FR(t) (I-lxxxvii) in
F (t) (I-xxxii) se popolnoma prekrivata z numeriko (simboli). Teorija za čistost (I-xci) je narisana
s črtkano krivuljo.

Zamrznitev za harmonski oscilator

Za motnje, katerih časovno povprečje je enako nič, smo že na osnovi neenakosti napovedali, da
bomo imeli podobno zamrznitev kot za zvestobo tudi za reducirano zvestobo in čistost. To si bomo
ogledali v tem razdelku. Da pa se ne bi preveč ponavljali, bomo obravnavali sistem dveh harmonskih
oscilatorjev za katerega je Ω ≡ 0 (I-lxi), tako da teorija za regularne sisteme predstavljena v
poglavju I.3 ne deluje. Za konkretni numerični primer bomo vzeli model Jaynes-Cummings, ki se
uporablja v kvantni optiki. Predstavlja sklopljen sistem kvantiziranega elektromagnetnega polja
(harmonski oscilator) in spina atomov. Dodaten razlog, da smo izbrali ta sistem je tudi, da se ga
da eksperimentalno realizirati. Zanimali se bomo le za koherentna začetna stanja. Naš nemoten
sistem bo tako podan s hamiltonovo funkcijo

H0 = h̄ωa+a+ h̄εSz. (I-xciii)

Vektor frekvenc je konstanten (neodvisen od akcij) ω = (ε, ω). Centralni podsistem bo predstavljal
spin, harmonski oscilator pa okolico. Moten sistem Hδ = H0 + δV bomo dobili z motnjo

V =
h̄√
2S

(a+S+ + aS−). (I-xciv)

Takšna motnja predstavlja del dipolne sklopitve med poljem in dipolnim momentom atoma in je
tako realistični primer motnje. Ima to dodatno lastnost, da je njeno časovno povprečje nič, V̄ ≡ 0,
kar pomeni da kvantna zvestoba zamrzne na platoju. Zanima nas torej, kakšna je vrednost tega
platoja, in kakšen je ta za reducirano zvestobo in čistost.

Plato

Najprej se lotimo izračuna zvestobe. Plato bo, podobno kot za motnjo z Ω 6= 0, dan z

Fplat = | 〈exp (−iδ{W (t)−W (0)}/h̄)〉 |2. (I-xcv)
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Za razliko od splošne motnje pa sedaj ne moremo uporabiti časovnega povprečja, saj za Ω = 0 čas
t1 (I-lxi), ko postane časovno povprečje upravičeno, divergira. Označimo z s(j,θ, t) fazo,

s(j,θ, t) := w(j,θ + ωt)− w(j,θ). (I-xcvi)

Za lokalizirana stanja lahko s razvijemo okoli lege začetnega paketa,

s(j,θ, t) = s(j∗,θ∗, t) + s′ · (j − j∗,θ − θ∗) + · · · , (I-xcvii)

z vektorjem odvodov

s′ := (
∂s(j∗,θ∗, t)

∂j
,
∂s(j∗,θ∗, t)

∂θ
). (I-xcviii)

Ker je s(j,θ, t) sedaj odvisen tudi od kotov, ne morem uporabiti enostavnega integrala čez akcijski
prostor, temveč moramo uporabiti povprečje čez cel fazni prostor. Oblika koherentnega stanja v
faznem prostoru bo določena z 2d× 2d matriko D. Povprečje eksponentne funkcije s fazo s(j,θ, t)
nam tedaj da

FCIS
plat = exp

(

−δ
2

h̄
νhar

)

, νhar :=
1

2
s′ ·D−1s′. (I-xcix)

V območju linearnega odziva imamo FCIS
plat = 1− δ2

h̄ νhar. Glavna razlika v primerjavi z rezultatom

za sisteme z Ω 6= 0 (I-lxvi) je, da je sedaj velikost platoja reda δ2/h̄, medtem ko je bila prej δ2/h̄2.
Za harmonski oscilator je torej plato za 1/h̄ vǐsji. Vendar pa za velike δ pojema gaussovo, torej
hitreje kot za Ω 6= 0, kjer je bilo to pojemanje potenčno.

10-6

10-5

10-4

10-3

10-2

10-1

 20  40  60  80  100  120  140  160  180  200

1-
F,

 1
-I

t

Slika I.12: Plato 1 − F (t) (zgornji simboli) in 1 − I(t) (spodnji) za model Jaynes-Cummings in
koherentno začetno stanje. Prekinjeni črti sta teoretični napovedi za zvestobo in čistost (I-xcix,I-
cii).

Za naš model Jaynes-Cummings dobimo za koeficient νhar po nekaj računanja

νhar =
2

(ω + ε)2
sin2

(

ω + ε

2
t

){

(1− j2c ) + 2je

[

j2c + (1− j2c ) cos2
(

θc + θe + t
ω + ε

2

)]}

, (I-c)
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kjer so akcijsko-kotne spremenljivke dane z

h̄S± →
√

1− j2c e±iθc , a→ i√
2h̄

√

2je e
−iθe . (I-ci)

Za reducirano zvestobo in čistost smo izraz za linearni odziv izračunali kar s kvantimi pričkovanimi
vrednostmi, z rezulatom

1− FR = δ2S
2

(ω + ε)2
sin2

(

ω + ε

2
t

)

2je

[

j2c + (1− j2c ) cos2
(

θc + θe + t
ω + ε

2

)]

1− I = δ2
2

(ω + ε)2
sin2

(

ω + ε

2
t

)

(1− jc)2. (I-cii)

Pri vseh treh vrednost platoja niha, in ni neodvisna od časa kot je za sisteme z Ω 6= 0. Za čistost
je plato neodvisen od h̄. Na sliki I.12 so numerični rezultati za S = 50, δ = 0.01, parametri pa so
ω = ε = 0.3.

Po platoju

Za pojemanje po platoju lahko spet uporabimo “renormalizirano” dinamiko z operatorjem R. Po-
drobnosti ne bomo navajali, edina razlika od preǰsnjih primerov je, da se sedaj klasična zvestoba
ujema s kvantno, prav tako se klasična čistost ujema s kvantno. To je potrebno primerjati s sistemi
z Ω 6= 0, ko korespondenca traja le do časa t1.

Dekoherenca

Kvantna evolucija bo povzročila, da bodo kvantna stanja v splošnem prepletena. Kljub temu pa pre-
pletenosti ne opazimo za makroskopska stanja. Znan je t.i. paradoks Schrödingerjeve mačke, ki je
v superpoziciji mrtvega in živega stanja. Razlog za odsotnost prepletenosti za makroskopska stanja
je dekoherenca. V tem razdelku bomo pokazali, kako lahko teorijo pojemanja reducirane zvestobe
uporabimo, da razložimo dekoherenco za makroskopske superpozicije. Začetno stanje sistema bo
produkt koherentnega stanja okolice in vsote dveh koherentnih stanj za centralni podsistem,

|ψ(0)〉 = 1√
2
(|τ1〉+ |τ2〉)⊗ |α〉, (I-ciii)

če sta |τ1,2〉 dve koherentni stanji centralnega podsistema. Radi bi torej pokazali, da bo deko-
herenca tem hitreǰsa, čim bolj oddaljeni bosta stanji |τ1〉 in |τ2〉, torej da je dekoherenca hitreǰsa
za makroskopske superpozicije. Na ravni reducirane matrike je dekoherenca naslednji proces,

ρc ∼
1

2
(|τ1〉〈τ1|+ |τ2〉〈τ2|+ |τ1〉〈τ2|+ |τ2〉〈τ1|) tdec−→ 1

2
(|τ1〉〈τ1|+ |τ2〉〈τ2|) . (I-civ)

Po nekem času dekoherence tdec čistost pade iz začetne I(0) = 1 za koherentno superpozicijo, na
I(tdec) = 1/2 za nastalo mešano stanje po dekoherenci.

Čistost za posamezna koherentna stanja pojema na skali td neodvisni od h̄, td ∼ 1/δ, če je
δ jakost sklopitve med podsistemoma. Za čase t ¿ td bo torej evolucija U(t) posameznih pro-
duktnih stanj še vedno produktno stanje, tako da bomo imeli |χ1〉 ⊗ |β1〉 ≈ U(t)|τ1〉 ⊗ |α〉 in
|χ2〉⊗|β2〉 ≈ U(t)Rc|τ1〉⊗|α〉, kjer smo zapisali |τ2〉 =: Rc|τ1〉, z neko rotacijsko matriko Rc. Drugo
stanje |χ2〉 ⊗ |β2〉 lahko torej smatramo kot stanje dobljeno iz istega začetnega stanja |τ1〉 ⊗ |α〉
kot prvo, a z nekoliko moteno evolucijo Uδ(t) := U(t)Rc. Ker so koherence reducirane matrike
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(izvendiagonalni elementi) sorazmerni z 〈β1|β2〉, kvadrat tega skalarnega produkta pa je reducirana
zvestoba za okolico, takoj vidimo povezavo z reducirano zvestobo. Pojemanje izvendiagonalnih
matričnih elementov bo torej dano z reducirano zvestobo, ki za koherentna stanja pojema kot
exp (−l2C̄Rt

2/h̄2), z C̄R = 1
2 h̄(v̄

′
e · Λ−1e v̄′e). Jakost motnje smo tukaj označili z l in je določena z

matriko Rc in propagatorjem U(t), in je ponavadi kar sorazmerna z “razdaljo” med stanjema |τ1〉
in |τ2〉. Ker je C̄R ∝ d2e bo, če ima okolica veliko prostostnih stopenj (de À dc), reducirana zvestoba
za okolico pojemala hitreje kot reducirana zvestoba za centralni podsistem in bomo imeli po deko-
herenci, t À tdec, ko bodo 〈β1|β2〉 majhni, še vedno približno |χ1,2〉 ≈ |τ1,2〉, s čimer smo potrdili
predviden scenarij dekoherence (I-civ). Za superpozicijo makroskopskih stanj bo torej dekoherenca
dana s pojemanjem FR(t), ki pada na skali odvisni od h̄, tdec ∼

√
h̄/l, in ne z I(t) za posamezna

koherentna stanja, ki pojema na dalǰsi skali td ∼ 1/δ.
Vse skupaj bomo demonstrirali na modelu Jaynes-Cummings (I-xciii), pri čemer bomo za motnjo

vzeli

V =
h̄√
2S

(a+S− + aS+), (I-cv)

katere časovno povprečje ni nič. Hamiltonova funkcija sklopljenega sistema bo tako Hδ = h̄ωa+a+
h̄εSz+δV . Za superpozicijo dveh koherentih stanj spina (I-ciii) lahko v semiklasični limiti izračunamo
korelacijsko funkcijo, ki nastopa v linearnem odzivu za čistost 1− I(t) = 2(δ/h̄)2C̄Pt

2 (I-lxxxii), in
dobimo

C̄P =
l2

8S
+O(h̄2), l2 := sin2 ϑ1 + sin2 ϑ2 − 2 sinϑ1 sinϑ2 cos (ϕ1 − ϕ2). (I-cvi)

Izraz za l ima nazoren pomen, je namreč kar razdalja med projekcijama obeh spinskih paketov na
ravnino x-y. Spomnimo se, da je koeficient C̄P za eno koherentno stanje sorazmeren s h̄2 = 1/S2.
Za naš primer makroskopskih superpozicij je C̄P ∝ h̄, saj je dan s pojemanjem reducirane zvestobe.
Časovna skala pojemanja čistosti za makroskopsko superpozicijo je torej tdec = 2

√
h̄/(δl), medtem

ko da račun za posamezno koherentno stanje pojemanje na skali td = 1/(δ cos2 (ϑ/2)
√
2). Za

lÀ
√
h̄ bomo torej imeli pospešeno dekoherenco.

I.5 Uporaba: kvantno računanje

Kvantna informacijska teorija je relativno mlada veda, za pregled glej (Nielsen & Chuang, 2001;
Steane, 1998; Ekert & Josza, 1996). Kljub temu pa so nekateri rezultati, kot je na primer varna
kvantna komunikacija, že komercialno uporabni. Kvantno računanje je na drugi strani še vedno
omejeno na majhne laboratorijske eksperimente. Glavna ovira pri delovanju kvantnega računalnika
so težave pri natančnem kontroliranju kvantne evolucije. Če hočemo zgraditi kvantni računalnik z
veliko qubiti, je potrebno razumeti, kako te napake pokvarijo evolucijo in kako jih je možno čim
bolj zmanǰsati. Z drugimi besedami, radi bi imeli visoko kvantno zvestobo.

Vhodni podatki za kvantni računalnik so zakodirani v kvantnem stanju |r〉. Pri samem pro-
cesu računanja nato apliciramo kvantna vrata Ut na tem začetnem stanju. Kvantna vrata so neke
enostavne unitarne transformacije na našem prostoru. Ponavadi so to transformacije na enem ali
dveh qubitih, torej na enem ali dveh delcih, če so qubiti kar delci. Če s T označimo število vseh
vrat, imamo na koncu računa stanje UT · · ·U2U1|r〉. Produkt vseh kvantnih vrat U := UT · · ·U2U1

imenujemo kvantni algoritem. Rezultat računa sedaj dobimo z meritvami na tem končnem stanju.
Če je kvantni računalnik sestavljen is n osnovnih enot – qubitov, potem je velikost Hilbertovega
prostora N = 2n in v začetno stanje |r〉 lahko zapǐsemo eksponento (v n) mnogo podatkov. Trik, za-
kaj so lahko kvantni računalniki za določene stvari hitreǰsi kot klasični leži v tem, da lahko nekatere
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algoritme zapǐsemo s polinomsko mnogo vrati T . Tako lahko v polinomsko korakih naredimo neko
transformacijo na eksponentno velikem prostoru. Takih kvantnih algoritmov pa ni veliko, eden med
najbolj uporabnimi je kvantna Fourierova transformacija (QFT).

Če se omejimo na unitarne motnje‡, lahko poljubna motena kvantna vrata zapǐsemo kot

U δ
t := exp (−iδVt)Ut. (I-cvii)

Celoten moten kvantni algoritem je U δ(T ) = U δ
T · · ·U δ

1 . Mera za stabilnost algoritma je kvantna
zvestoba na koncu algoritma

F (T ) = | 〈Mδ(t)〉 |2, Mδ := U †(T )U δ(T ), (I-cviii)

kjer je U(t) produkt vseh vrat do časa t, U(t) := Ut · · ·U1, in podobno za U δ(t). Sedaj lahko
kvantno zvestobo razvijemo do najnižjega reda v δ, ter vse skupaj povprečimo čez cel Hilbertov
prostor

F (T ) = 1− δ2
T
∑

t,t′=1

C(t, t′), (I-cix)

s povprečno korelacijsko funkcijo

C(t, t′) :=
1

N tr[Vt(t)Vt′(t
′)], (I-cx)

in Vt(t) := U †(t)VtU(t). Glede na dosedanjo teorijo je razlika ta, da je sedaj motnja V eksplicitno
odvisna od časa (vrat), kar označuje spodnji indeks t, Vt. Če so motnje med posameznimi vrati
časovno nekorelirane (npr. šum), potem je korelacijska funkcija diagonalna, C(t, t′) ∝ δtt′ . Še več,
v tem primeru lahko tudi operator odmeva faktoriziramo in za primer, če so tudi matrični elementi
med seboj nekorelirani,

〈VjkVlm〉 =
1

N δjmδkl, (I-cxi)

kar velja npr. za naključne matrike, lahko izračunamo kvantno zvestobo do vseh redov v δ,

〈F (T )〉šum = exp(−δ2T ). (I-cxii)

Za časovno nekorelirane motnje pojema kvantna zvestoba eksponentno z dolžino algoritma T . Če
pa so motnje Vt korelirane ali pa kar konstantne, bo korelacijska vsota večja in zvestoba bo pojemala
hitreje. V splošnem lahko motnjo Vt razdelimo na časovno odvisni del in časovno neodvisni del.
Za veliko število qubitov n bo pojemanje zvestobe predvsem posledica časovno neodvisnega dela
motnje, za katerega bo korelacijska funkcija pojemala počasneje, kot pa za časovno odvisni del.

V nadaljni razpravi se bomo tako omejili na časovno neodvisne motnje Vt ≡ V . Konkretno si
bomo ogledali primer, kako lahko algoritem za kvantno Fourierovo transformacijo izbolǰsamo, tako
da je bolj stabilen za motnje (Prosen & Žnidarič, 2001).

Kvantna Fourierova transformacija

Predpostavili bomo, da je motnja V enaka za vsa vrata in da so matrični elementi V med seboj ne-
odvisna gaussova števila (I-cxi). Takšnim matrikam pravimo, da pripadajo gaussovemu unitarnemu

‡Kvantno računanje je stabilno le ko je celoten proces blizu unitarnosti.
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ensamblu (GUE) na celotnem Hilbertovem prostoru in dobro opǐsejo lastnosti hamiltonovih oper-
atorjev kaotičnih sistemov. Za takšne motnje se korelacijska funkcija poenostavi, če jo povprečimo
čez gaussov unitarni ensambel,

〈

C(t, t′)
〉

GUE =

∣

∣

∣

∣

1

N trU(t, t′)
∣

∣

∣

∣

2

, (I-cxiii)

kjer je U(t, t′) := Ut · · ·Ut′+1 serija kvantnih vrat. Da bo korelacijska funkcija majhna, je torej
ugodno, če so kvantna vrata brezsledna. Sestavni deli kvantne Fourierove transformacije so eno
qubitna Hadamardova vrata in dvo qubitna vrata Bjk, ki delujejo na j-ti in k-ti qubit. So diago-
nalna, Bjk = diag{1, 1, 1, exp (iθjk)}, z θjk = π/2k−j , kar pomeni, da so zelo “slaba”, saj je njihova
sled blizu 4. Ideja, kako konstruirati bolj stabilen algoritem torej je, da se nekako znebimo slabih
vrat, seveda pa še vedno moramo ohraniti strukturo celotne transformacije U(T ). To dosežemo z
dodajanjem novih brezslednih vrat. Podrobnosti tukaj ne bom navajal, pomembna stvar je, da je
nov izbolǰsan algoritem bolj stabilen, saj je korelacijska funkcija bistveno manǰsa. To je vidno na
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Slika I.13: Korelacijska funkcija 〈C(t, t′)〉GUE (I-cxiii) pri n = 10 za originalni algoritem (desno)
in za izbolǰsan (levo). Originalni QFT algoritem ima T = 60 vrat, medtem ko jih ima izbolǰsan
T = 105.

sliki I.13, kjer je narisana velikost korelacijske funkcije za oba algoritma pri n = 10 qubitih. Izkaže
se, da je korelacijska vsota za izbolǰsan algoritem bistveno manǰsa kot za originalni QFT, čeprav
ima več vrat in torej apliciramo pokvarjena vrata večkrat. Originalni algoritem ima T ∼ n2/2
vrat, medtem ko jih ima izbolǰsan T ∼ n2. Dvojna korelacijska vsota ν narašča za nepopravljen
algoritem kot ν ∝ n3, kar je posledica platojev v strukturi korelacijske funkcije (vidno na sliki), za
izbolǰsan algoritem pa le ν ∝ n2, saj so znatni le diagonalni korelacijski elementi. Asimptotsko je
dobra aproksimacija za pojemanje kvantne zvestobe eksponentna funkcija,

F (T ) ≈ exp(−νδ2). (I-cxiv)

To smo preverili z numerično simulacijo, rezultati katere so na sliki I.14. Kot vidimo, se asimptotska
odvisnost ujema z napovedano, kar pomeni, da je izbolǰsan algoritem, kjub večjemu številu vrat,
bistveno bolj stabilen za motnje, ki se dajo modelirati z naključno matriko.
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Slika I.14: Odvisnost F (T ) od števila qubitov za δ = 0.04 in nepopravljen QFT (plusi) in
izbolǰsan algoritem QFT (križci). Dve polni črti sta exp (−δ2{0.47 n3 − 0.76n2 + 2.90n}) (spodnja)
in exp (−δ2{1.22n2 + 1.78n}) (zgornja).

Za konec naj dodamo, da izbolǰsan algoritem ni tako dober, če deluje motnja samo na nekaj
qubitih. Zdi se, da je za motnje ki delujejo na omejen podprostor celotnega Hilbertovega prostora,
konstrukcija bolǰsega algoritma bistveno težja.



Chapter 1

Introduction

In science one tries to tell people, in such a way as to
be understood by everyone, something that no one ever
knew before. But in poetry, it’s the exact opposite.

—Paul Dirac

Irreversibility of macroscopic behaviour has attracted attention ever since Boltzmann introduced
hisH-theorem in a seminal paper in 1872 (Boltzmann, 1872), together with the equation bearing his
name. The H-theorem is a precursor of what is today known as the second law of thermodynamics,
stating that entropy can not decrease in the course of time. The problem was how to reconcile
this “arrow of time” with the underlying reversible microscopic laws. How come that macroscopic
systems always seem to develop in one direction whether the underlying dynamics is symmetric in
time? This so called reversibility paradox is usually attributed to Josef Loschmidt. He mentioned
it briefly at the end of a paper published in 1876 (Loschmidt, 1876) discussing the thermal equilib-
rium of a gas subjected to a gravitational field, in an attempt to refute Maxwell’s distribution of
velocities for a gas at constant temperature. He also questioned Boltzmann’s monotonic approach
towards the equilibrium. Discussing that, if one would reverse all the velocities, one would go from
equilibrium towards the initial non equilibrium state, he concludes with : “...Das berühmte Prob-
lem, Geschehenes ungeschehen zu machen, hat damit zwar keine Lösung...”. Bolzmann was quick
to answer Loschmidt’s objections in a paper from 1877 (Boltzmann, 1877), pointing out the crucial
importance of the initial conditions and of the probabilistic interpretation of the second law. The
fact that for macroscopic systems we always observe a definite “arrow of time” is a consequence of
a vast majority of the initial conditions representing an equilibrium state. If we choose the initial
state at random it will almost certainly evolve according to the second law of thermodynamics. Of
course this probabilistic interpretation still does not solve the problem. Resolution lies in the initial
condition, chosen to be a macrostate representing a very small part of the phase space, i.e. having
a low entropy. So, provided we start with a low entropy state, the above probabilistic arguments
can be used (Lebowitz, 1999) to explain the second law. The question of the initial low entropy
state of say the whole universe still remains. For a popular account of this “cosmological” subject
see Penrose (1989).

The first written account of the reversibility paradox is actually not due to Loschmidt but
due to William Thompson (later Lord Kelvin), although it is possible that Loschmidt mentioned
the paradox privately to Boltzmann before. Boltzmann and Loschmidt became good friends while
working at the Institute of Physics in Vienna around 1867 (directed at the time by the Slovenian
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2 Chapter 1. Introduction

physicist Jožef Stefan). In 1869 Boltzmann moved to Graz, but returned to Vienna in the period
1873-1876. For a detailed biography of Boltzmann see Cercignani (1998). In a vivid paper (Thomp-
son, 1874) from 1874 Thompson gave a very modern account of irreversibility. When discussing
the heat conduction and the equalization of temperature he says: “...If we allowed this equaliza-
tion to proceed for a certain time, and then reversed the motions of all the molecules, we would
observe a disequalization. However, if the number of molecules is very large, as it is in a gas, any
slight deviation from absolute precision in the reversal will greatly shorten the time during which
disequalization occurs... Furthermore, if we take account of the fact that no physical system can be
completely isolated from its surroundings but is in principle interacting with all other molecules in
the universe, and if we believe that the number of these latter molecules is infinite, then we may
conclude that it is impossible for temperature-differences to arise spontaneously...”. The interesting
question is then, how short is this short disequalization time? The quantity in question is nothing
but the fidelity or the Loschmidt echo as it is sometimes called. We evolve the system forward
in time with the unperturbed evolution, then backward in time with the perturbed evolution, and
look at the overlap with the initial state. It can be considered in classical mechanics as well as
in quantum mechanics. The decay time of the fidelity will then be the time of disequalization in
question. Despite its importance for thermodynamics the fidelity was not considered until some
years ago, with motivation coming from quantum rather than classical theory.

Quantum theory is arguably the greatest achievement in 20th century physics. There are
estimates (Tegmark & Wheeler, 2001) that up to 30% of the gross national product of the US relies
on quantum devices. Alone the semiconductor industry is of enormous importance. Still, all these
quantum devices do not manipulate individual quanta but rather exploit macroscopic phenomena
involving many particles. Experiments involving individual quantum systems became possible only
in the ’80 with the progress made in e.g. manipulation of cold atoms in traps, single electron
devices, entangled photons etc.. This was so to say the experimental birth of what is now called
quantum information theory (Nielsen & Chuang, 2001). Quantum information theory married
quantum mechanics with information theory and with computer science. It deals with means of
processing and transmitting information, and by using quantum systems can achieve things not
feasible in any classical way. For instance, one can teleport a quantum state, or perform secure
communication over a public channel or do a quantum computation. By using quantum resources
to do a computation one is able for instance to factorize a number in a polynomial time, which
is presently not known to be possible by classical computer. Also, quantum computers are very
efficient in simulating other quantum systems, answering the problem posed by Feynman (1982).
Namely, he asked whether it is possible to build a computing machine whose size will grow only
linearly with the size of a quantum system simulated on it. With classical computers this is not
possible since the size of the Hilbert space needed merely to describe the system grows exponentially
with the number of particles. We do not know yet if it is possible to build a quantum computer
that will achieve that goal, but on paper quantum computer will be able to do the trick. We say on
paper because presently one is able to perform laboratory computations only on a few qubit (less
than 10) quantum computer. The main obstacle are errors in the evolution, either due to unwanted
coupling with the environment or due to internal errors. Therefore, the main goal is to build a
stable quantum computer, resistant to such perturbations. The usual benchmark for stability is
fidelity and therefore one ought to understand the behaviour of fidelity in different situations to
know hot to maximise it. Yet again, the original push to study fidelity came neither from quantum
information theory nor from thermodynamics, but from the field of quantum chaos.

The exponential instability of classical systems is a well known and much studied subject.
As the underlying laws of nature are quantum mechanical the obvious question arises how this
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“chaoticity” manifests itself in quantum systems whose classical limit is chaotic. The field of
quantum chaos mainly dealt with stationary properties of classically chaotic systems, like spectral
and eigenvector statistics. Despite classical chaos being defined in a dynamical way it was easier
to pinpoint the “signatures” of classical chaos in stationary properties (Haake, 1991; Stöckmann,
1999). There were not as many studies of the dynamical aspects of quantum evolution in chaotic
systems, some examples being studies of the reversibility of quantum evolution (Shepelyansky,
1983; Casati et al. , 1986), the dynamical localization (Fishman et al. , 1982; Grempel et al. ,
1984), energy spreading (Cohen, 2000), wave-packet evolution (Heller, 1991). Classical instability
is usually defined as an exponential separation of two nearby trajectories in time. In quantum
mechanics the state of a system is completely described by a wave function and so one could be
tempted to look at the sensitivity of quantum mechanics to variations of the initial wave function.
But quantum evolution is unitary and therefore preserves the dot product (i.e. the distance)
between two states and so there is no exponential sensitivity with respect to the variation of the
initial state. This, at first sight perplexing, conclusion has been reached because we compared two
different things. Classical mechanics can also be stated in terms of a Liouiville propagation of phase
space densities and this is also unitary. If we want to compare quantum and classical mechanics
we have to compare them on the same footing. Quantum mechanics is a probabilistic theory, the
wave function just gives the probabilities of measurement outcomes. Therefore we should also
formulate classical mechanics in a probabilistic way as a propagation of probability densities in
phase space. The idea, first proposed by Peres (1984), was to study not the sensitivity to the
variation of the initial condition but with respect to the variation of the evolution. He compared
two slightly different evolutions starting from the same initial state – the quantum fidelity. For
classical systems fidelity gives the same exponential sensitivity to perturbations of the evolution as
to perturbations of initial conditions; the two things are equivalent. The quantum fidelity though
can behave in a very different way, as we will see in the present work.

The fidelity lies at the crossroad of three very basic areas of physics: thermodynamics, quantum
information theory and quantum chaos. The features of the fidelity turned out to be very interesting,
as one would expect for such a crossroad.

1.1 Historical Overview

1.1.1 Quantum Fidelity

The quantum fidelity F (t), being the square of the overlap of the state |ψ(t)〉 = U0(t)|ψ(0)〉 obtained
by the unperturbed evolution U0(t) and the state |ψδ(t)〉 = Uδ(t)|ψ(0)〉 obtained by the perturbed
evolution Uδ(t),

F (t) := |〈ψ(t)|ψδ(t)〉|2 = |〈ψ(0)|U †0(t)Uδ(t)|ψ(0)〉|2, (1.1)

has been first used as a measure of quantum stability by Peres (1984), see also his book (Peres,
1995). The fidelity can also be interpreted as an overlap of the initial state and the echo state
obtained after forward unperturbed evolution followed by a backward perturbed evolution, i.e.
after evolution with U †δ (t)U0(t). Quite generally we can imagine unperturbed evolution being
governed by an unperturbed Hamiltonian H0 and the perturbed evolution by slightly perturbed
Hamiltonian Hδ = H0 + δV , with δ a dimensionless perturbation strength and V the perturbation
operator. Peres reached non-general conclusion that the decay of fidelity is faster and has a lower
asymptotic value for chaotic than for regular classical dynamic. As we will see the general situation
can be exactly the opposite. Non decay of the fidelity for regular dynamics in Peres’s work was
due to a very special choice of the initial condition, namely that a coherent wave packet was placed
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in the centre of a stable island. Such a choice is special in two ways, first the centre of an island
is a stationary point and second the number of constituent eigenstates of the initial state is very
small. After Peres’s work the subject lay untouched for about a decade. In 1996 Ballentine &
Zibin (1996) numerically studied a quantity similar to fidelity. Instead of perturbing the backward
evolution (i.e. the Hamiltonian), they took the same backward evolution but instead perturbed the
state after forward evolution by some instantaneous perturbation, like shifting the whole state by
some δx. They also looked at the corresponding classical quantity. The conclusion they reached
was that for chaotic dynamics quantum stability was much higher than the classical one, while for
regular dynamics the two agreed. All these results were left mainly unexplained. Gardiner et al.
(1997, 1998) proposed an experimental sheme for measuring the fidelity in an ion trap. Somehow
related to the studies of stability was also a work by Schack & Caves (1992, 1993, 1996), where
they studied how much information about the environment is needed to prevent the entropy of the
system to increase. Fidelity studies received new impetus by a series of NMR experiments carried
out by the group of Pastawski.

In NMR echo experiments are a standard tool. The so called spin echo experiment of Hahn
(1950) refocuses free induction decay in liquids due to dephasing of the individual spins caused
by slightly different Larmour frequencies experienced due to magnetic field inhomogeneities. By
an appropriate electromagnetic pulse the Zeeman term is reversed and thus the dynamics of non-
interacting spins is reversed. The first real interacting many-body echo experiment was done in
solids by Rhim et al. (1970). Time reversal, i.e. changing the sign of the interaction, is achieved for
a dipolar interaction whose angular dependence can change sign for a certain “magic” angle, that
causes the method to be called magic echo. Still, the magic echo showed strong irreversibility. Much
later, Zhang et al. (1992) devised as sequence of pulses enabling a local detection of polarisation (i.e.
magnetic moment). They used a molecular crystal, ferrocene Fe(C5H5)2, in which the naturally
abundant isotope 13C is used as an “injection” point and a probe, while a ring of protons 1H
constitutes a many-body spin system interacting by dipole forces. The experiment proceeds in
several steps: first the 13C is magnetised, then this magnetisation is transfered to the neighbouring
1H. We thus have a single polarised spin, while others are in “equilibrium”. The system of spins
then evolves freely, i.e. spin diffusion takes place, until at time t the dipolar interaction is reversed
and by this also spin diffusion. After time 2t the echo is formed and we transfer the magnetisation
back to our probe 13C enabling the detection of the polarisation echo. Note that in the polarisation
echo experiments the total polarisation is conserved as the dipole interaction has only “flip-flop”
terms like Sj+S

j+1
− , which conserve the total spin. To detect the spin diffusion one therefore needs a

local probe. With the increase of the reversal time t the polarisation echo – the fidelity – decreases
and Zhang et al. obtained approximately exponential decay. The nature of this decay has been
furthermore elaborated in Pastawski et al. (1995). The group of Pastawski then performed a series
of NMR experiments where they studied in more detail the dependence of the polarisation echo on
various parameters (Levstein et al. , 1998; Usaj et al. , 1998; Pastawski et al. , 2000). They were able
to control the size of the residual part of the Hamiltonian, which was not reversed in the experiment
and is assumed to be responsible for the polarisation echo decay. For small residual interactions they
obtained a Gaussian decay while for a larger ones the decay rate saturated and was independent
of the perturbation strength, i.e. of the size of the residual interaction. While there is still no
complete consensus on the interpretation of these experimental results they triggered a number of
theoretical and even more numerical investigations. We will briefly list them in chronological order.

Using the semiclassical expansion of the quantum propagator Jalabert & Pastawski (2001) de-
rived a perturbation independent fidelity decay for localised initial states and chaotic dynamics,
F (t) ∼ e−λt, also called a Lyapunov decay due to its dependence on the Lyapunov exponent λ.
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Perturbation independent fidelity decay obtained for strong perturbations has also been studied
numerically in a Lorentz gas (Cucchietti et al. , 2002a), the perturbation being in the mass of the
particle. In the same paper the authors also studied the asymptotic fidelity saturation value which,
for the strong perturbations considered, is independent of the perturbation strength, but becomes
perturbation dependent for smaller perturbations (see Section 2.2.1). Studying fidelity turned out
to be particularly fruitful in terms of the correlation function (Prosen, 2002), see also (Prosen &
Žnidarič, 2001). For coherent initial states, the fidelity of regular systems decays as a Gaussian
while for chaotic systems we have different regimes, the most prominent being the perturbation
dependent exponential decay. The decay of quantum fidelity in chaotic systems has also been
studied by Jacquod et al. (2001) and by Cerruti & Tomsovic (2002). For sufficiently small per-
turbations one gets a Gaussian decay (also called a perturbative regime), for intermediate ones
the so-called Fermi golden rule regime of exponential, perturbation dependent decay, while for still
stronger perturbations we get the Lyapunov decay. All these regimes, including the fidelity decay
for regular dynamics, and for different initial states, were carefully discussed using the correlation
function approach in Prosen & Žnidarič (2002). Several interesting results were obtained, perhaps
the most surprising one being that in a certain range of parameters we can, by increasing chaoticity
of the corresponding classical system, increase quantum fidelity, i.e. improve the stability of quan-
tum dynamics. Different time and perturbation scales were discussed as well as their dependence
on the number of degrees of freedom. It is well known that the quantization of classical system
is not unique, i.e. there are different quantizations leading to the same semiclassics. Kaplan
(2002) compared the quantization ambiguity in chaotic and regular systems, reaching a conclusion
that in chaotic systems the quantization ambiguity is supressed as compared with regular ones.
Karkuszewski et al. (2002) connected the fidelity decay with the decay of the off-diagonal ma-
trix elements of the reduced density matrix, and therefore with decoherence. They claimed that
quantum systems, whose classical limit is chaotic, are particularly sensitive to perturbations due
to small scale structures in their Wigner functions. Actually, what their results show, was just the
dependence of the fidelity decay on the size of the initial state. Fidelity decay is faster for random
initial states than for coherent ones and there are no quantum effects in the regime they studied.
For related comments see also (Jordan & Srednicki, 2001; Jacquod et al. , 2002). The transition
between Fermi golden rule and the Lyapunov decay has been further considered in a Bunimovich
stadium (Wisniacki et al. , 2002), see also (Cucchietti et al. , 2002b) for a study of Lyapunov
decay. We should stress that the Lyapunov decay of quantum fidelity is purely a consequence of
the quantum-classical correspondence. There is nothing “quantum” in it and can be explained in
terms of the classical fidelity displaying the same perturbation independent decay as the quantum
fidelity (Veble & Prosen, 2004). The fidelity decay can also be connected with the local density of
states, although not in a straightforward manner (Wisniacki & Cohen, 2002).

Fidelity decay in mixed systems, having a coexisting regular and chaotic components, is not as
well studied as in purely chaotic or regular situation. In (Weinstein et al. , 2002a) they studied
the fidelity decay for initial states placed at the border between regular and chaotic regions and
observed a power-law fidelity decay although over less than an order of magnitude. Jacquod et al.
(2003) studied averaged fidelity decay in regular systems for perturbations with a zero time average
for which they predict a universal power-law decay with a power 3/2. This does not agree with
our findings, see discussion at the end of Section 4.2.2. If the packet after an echo in the chaotic
system drifts exponentially away from its position at the beginning, the fidelity can decay also
in a super-exponential way (Silvestrov et al. , 2003). In the same paper the authors also consid-
ered the influence of different averaging procedures on the decay of short-time fidelity. From the
correlation function approach one easily sees that the decay of the fidelity does not only depend
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on the unperturbed dynamics, say being regular or chaotic, but also on the perturbation. If the
correlation function decays to zero sufficiently fast, we can get exponential decay also for regular
unperturbed dynamics. Such is the case for instance if the perturbation is modelled by a random
matrix (Emerson et al. , 2002), but note that such perturbation has no direct classical limit. Instead
of the fidelity one can also study the Fourier transformation of the fidelity, see (Wang & Li, 2002).
In (Wisniacki, 2003) it was studied how different perturbations of the billiard border influence the
short-time fidelity decay. For an attempt to give a uniform approximation of the fidelity decay
in the crossover regime between the Gaussian perturbative and the exponential Fermi golden rule
decays using random matrix theory see (Cerruti & Tomsovic, 2003b,a) and also (Gorin et al. ,
2004). The asymptotic saturation level of the fidelity has been studied in (Weinstein et al. , 2002c),
confirming results of (Prosen & Žnidarič, 2002). Perturbative calculation of the fidelity decay in
disordered systems by field theoretical method, i.e. diagrammatic expansion of Green’s function,
has been done by Adamov et al. (2003).

Recently Vańıček & Heller (2003) devised an efficient numerical scheme for a semiclassical evalu-
ation of the quantum fidelity. The method consists of transforming intractable (due to exponentially
many contributing orbits) semiclassical expressions in coordinate space into an initial momentum
space representation. A surprising quantum phenomenon of a prolonged stability, called freeze of
fidelity, has been described in Prosen & Žnidarič (2003b) for regular systems. Later, it has been
generalised to arbitrary dynamics, in particular to chaotic systems (Prosen & Žnidarič, 2004). The
decay of fidelity in regular one dimensional systems has been studied in (Sankaranarayanan &
Lakshminarayan, 2003) and they also numerically observed a very short correspondence between
the classical and the quantum fidelity for initial states placed in a rotational part of phase space,
where the average perturbation is zero. This is nothing but the freeze of fidelity, not present in
classical fidelity. The Lyapunov regime, being of purely classical origin, and its borders of validity
have been furthermore elaborated in (Cucchietti et al. , 2003b), see also (Prosen & Žnidarič, 2002)
for a detailed discussion of borders within which different regimes are valid. They also stressed
the importance of noncommutativity of the limits h̄ → 0 and δ → 0 in recovering the classical
behaviour, as already explained in (Prosen & Žnidarič, 2002). A nontrivial question, addressed
by Hiller, Kottos, Cohen and Geisel (Hiller et al. , 2004) concerns the optimal time of the unper-
turbed evolution, i.e. we fix the duration of the unperturbed evolution and seek the duration of the
perturbed evolution for which the fidelity will be maximal. The quantum fidelity decay in weakly
chaotic systems when one might not get the Lyapunov or the Fermi golden rule decay has been
explored in (Wang et al. , 2004). The fidelity for various random matrix models has been analysed
by Gorin et al. (2004), see also (Cerruti & Tomsovic, 2003b,a). For further random matrix results
and their relevance for quantum computation see also (Frahm et al. , 2004). In (Iomin, 2003) the
fidelity of a nonlinear time-dependent chaotic oscillator with respect to the time-dependent per-
turbation of its frequency has been studied analytically. Most of the studies so far focused on a
few degrees of freedom systems, the exception being (Prosen, 2002). For additional results on the
stability of many-body systems see (Izrailev & Castañeda-Mendoza, 2004).

There has also been a large number of papers dealing with the stability of quantum computation,
i.e. studies of the fidelity for specific quantum algorithms and perturbations, mainly relying on
numerical simulations. Some of these include (Miquel et al. , 1996, 1997; Gea-Banacloche, 1998,
1999, 2000). The group of Berman studied in detail the stability of the Ising quantum computer, see
for instance (Berman et al. , 2001, 2002a,b) and references therein and also (Celardo et al. , 2003).
The group of Shepelyansky studied the stability of many different quantum algorithms (Georgeot &
Shepelyansky, 2000; Song & Shepelyansky, 2001; Benenti et al. , 2002; Terraneo & Shepelyansky,
2003), see also (Benenti et al. , 2003c) and (Bettelli, 2004). The scaling of errors with various
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parameters is easily explained by our correlation function approach.
With the advances in experiments manipulating individual quantum systems it has become pos-

sible to actually measure quantum fidelity. Apart from NMR echo experiments already mentioned,
one is able to measure the quantum fidelity on a few qubit NMR quantum computer (Weinstein
et al. , 2002b). Particularly promising candidates are ion traps Gardiner et al. (1997, 1998), ul-
tra cold atoms in optical traps (Andersen et al. , 2003; Schlunk et al. , 2003). Experiments with
microwave resonators in billiards are also under way (Schäfer et al. , 2003).

1.1.2 Classical Fidelity

Classical fidelity can be defined in an analogous way as quantum fidelity and has been first used
in (Prosen & Žnidarič, 2002). It is an overlap integral of two classical densities in phase space,
obtained by unperturbed and perturbed evolutions,

Fclas(t) :=

∫

dxρ0(x, t)ρδ(x, t), (1.2)

where ρδ(x, t) is the density in phase space obtained by a perturbed evolution φδ(x), where φδ(x)
is a volume preserving flow in phase space. The density at time t can be obtained by backward
propagating phase space point x, ρδ(x, t) = ρ(φ−1δ (x), 0). Note that in order for fidelity to be
normalized to 1, the classical density has to be square normalized,

∫

dxρ2(x, 0) = 1.
Classical fidelity behaves markedly different from quantum fidelity. For chaotic systems and

localized initial states the classical fidelity agrees with quantum only up to the short Ehrenfest
time, logarithmic in Planck’s constant, when the quantum-classical correspondence breaks down.
For regular systems and if the time average perturbation is nonzero though, classical fidelity follows
quantum fidelity. On the other hand, if the time averaged perturbation is zero, quantum fidelity
exhibits the so called freezing (Chapter 4), while classical fidelity does not, except in the non-generic
case of a harmonic oscillator (Section 5.5). The classical fidelity will depend on the stability of orbits
in phase space. Linear response will therefore depend on the stability of the flow and this involves
the derivatives of the flow, a derivative being an unbounded operator. For chaotic systems for
instance, the derivatives grow exponentially in time due to orbit separation, a simple consequence
of the famous Lyapunov instability. In a phase space picture, the classical dynamics can produce
structures on an arbitrary small scales, even if we start from a smooth density. Resolution of the
quantum mechanics on the other hand is limited by a finite Planck constant.

We will give a brief overview of the known results about classical fidelity. This will help us to
understand the differences with quantum fidelity which will be the object of study in the present
work. The literature on classical fidelity is not nearly as extensive as on quantum fidelity. Linear
response calculation has been done in (Prosen & Žnidarič, 2002). Numerical results on the classical
fidelity and its correspondence with the quantum fidelity in chaotic systems and in systems ex-
hibiting diffusion have been presented in (Benenti & Casati, 2002). Classical fidelity in regular and
chaotic systems has also been theoretically discussed in (Eckhardt, 2003). A detailed explanation of
the asymptotic decay in chaotic systems has been given in (Benenti et al. , 2003b) and a theoretical
explanation of the Lyapunov decay for short times in (Veble & Prosen, 2004). Classically regular
systems on the other hand have been worked out in (Benenti et al. , 2003a).

Chaotic Systems

The classical fidelity in chaotic systems will go trough different decay regimes as time increases.
We will consider a localized initial state of size ν. Starting from t = 0 fidelity stays close to 1 until
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time tν (Benenti & Casati, 2002; Benenti et al. , 2003b),

tν ∼
1

λ
ln
ν

δ
, (1.3)

where λ is the Lyapunov exponent. The time tν can be thought of as the time in which the initial
perturbation is “amplified” to the size of the initial packet and ρδ starts to differ from ρ0. For
a rigorous derivation of tν as well as for a discussion of multi-degree of freedom systems, where
there is a cascade of times tν , see (Veble & Prosen, 2004). After tν the so called Lyapunov decay
F (t) = exp {−λ(t− tν)} sets in and lasts until time tδ determined by the spreading of the packet
over the whole phase space. The Lyapunov decay has been explained by Veble & Prosen (2004)
and for systems with more than one degree of freedom there is a whole cascade of Lyapunov decays
determined by the Lyapunov spectrum∗. If we have a classical system with diffusion, such that the
phase space is much larger in one direction, say q, p ∈ [0, 2π]× [0, L], with LÀ 2π, time tδ will be
given by (Benenti et al. , 2003b)

tδ ∼
1

λ
ln

2π

δ
. (1.4)

After tδ fidelity will decay diffusively F (t) ∼ 1/
√
Dt with the diffusion constantD, until the diffusive

process reaches the phase space boundary also in p-direction, i.e. at tD ∼ L2/D. Note that this
diffusive regime is present only if L À 2π. After tD the asymptotic decay of classical fidelity
begins. This asymptotic decay is determined by the largest Ruelle-Pollicott resonance (Benenti
et al. , 2003b), i.e. the eigenvalue of the Perron-Frobenius operator, and is thus the same as the
asymptotic decay of classical correlations. If there is a gap in the spectrum of the Peron-Frobenius
operator, this decay will be exponential, otherwise it can be power law. Note that this asymptotic
decay rate does not depend on the perturbation strength δ but only on the phase space size L. For
large times fidelity will decay towards the asymptotic value F̄ = F (t→∞) determined by the ratio
of the initial packet size and the phase space size. In order to see the asymptotic regime of fidelity
decay one has to look at F (t)− F̄ . Furthermore, for the fidelity at the end of the Lyapunov decay
tδ to be larger than F̄ we must have δ > F̄ .

The decay rate for classical fidelity in chaotic systems, apart from the non-decaying “shoulder”
until tν , does not depend on the perturbation strength δ (decay time borders do depend though)
and is therefore independent of the perturbation itself. This must be contrasted with quantum
fidelity, which as we will see does depend strongly on perturbation strength and type.

Regular Systems

The classical fidelity decay for regular systems has been explained (Benenti et al. , 2003a) by
studying changes in the action-angle variables caused by the perturbation. There is a competition
between two contributions to the fidelity decay. It can decay as a consequence of the ballistic sep-
aration of the perturbed and unperturbed packets caused by different frequencies of the perturbed
and unperturbed tori on which the initial packet is placed, or it can decay due to different shapes
of unperturbed and perturbed tori. In the latter case the decay is caused by transitions of the
perturbed packet between unperturbed tori. Therefore, if the perturbation predominantly changes
the frequency of tori, the classical fidelity will exhibit a ballistic decay. The shape of this ballistic
decay is determined by the shape of the initial packet. If the packet is a coherent state having a
Gaussian shape, the decay will be Gaussian. On the other hand, if the perturbation predominantly

∗In case of drift of packets one can get a super-exponential instead of exponential decay of fidelity. For sufficiently
small times quantum fidelity will show the same phenomena, see (Silvestrov et al. , 2003).
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changes the shape of tori the decay will be algebraic F (t) ∼ 1/(δt)d, in a system with d degrees of
freedom. Which type of decay one gets, depends on the shape of the perturbation but not on its
strength δ, provided it is small enough. The type of the decay can also depend on the position of
the initial packet.

Note that the above results were derived under the assumption that the angles across the packet
are spread over 2π, i.e. t > 2π/(∆j∂ω/∂j), where ∆j is the width of the initial packet in the action
direction. Incidentally, this time is equal to the time t1 (4.50) after which quantum fidelity freezes
at a constant value if the time averaged perturbation is zero (see Section 4.2). Furthermore, the
change of the actions across the packet caused by the perturbation must be small, i.e. ∆j À δ.

This last condition translates for coherent packets into δ ¿ h̄1/2, also being the upper limit of
validity of approximations used in the calculation of the quantum fidelity plateau (4.61).

Comparing to quantum fidelity, the case of ballistic decay of classical fidelity corresponds to
perturbations having a nonzero time average, discussed in Chapter 3. For such perturbations
quantum fidelity agrees with the classical one under certain conditions. The case of the algebraic
decay corresponds to the perturbation with a vanishing time average. In this case though, the
quantum and the classical fidelity do not agree. What is more, quantum fidelity displays an
intriguing new feature called freezing (see Section 4.2) and decays only on a much longer time scale
∼ 1/δ2. Whereas only the functional dependence of the classical fidelity decay changes depending
on the perturbation type, always decaying on a time scale ∼ 1/δ, the decay of quantum fidelity
drastically changes if one has a perturbation with a zero time average.

1.1.3 Entanglement

The literature on decoherence is exhaustive and we will here list only those more or less directly
related to our work.

Time independent perturbative expansion has been used by Kübler & Zeh (1973) to study
the eigenvalues of the reduced density matrix. A similar expansion was used much later for the
purity (Kim et al. , 1996). Note that these perturbative approaches are not equivalent to our linear
response expressions presented in Chapter 5 as they correspond only to the short time regime
in which the correlation function is constant. Among the early studies of entropy growth and its
relation to the chaoticity of the underlying system is the one by Alicki et al. (1996). Miller & Sarkar
(1999) observed a linear entropy growth with the slope given by the Lyapunov exponent. Gorin
& Seligman (2002, 2003) studied the purity decay for random matrix models. Random matrix
asymptotic value of the purity (or of linear entropy) was later re-derived in (Bandyopadhyay &
Lakshminarayan, 2002b) and numerically observed in chaotic systems. Prosen & Seligman (2002)
first defined the purity fidelity, generalising the purity to echo dynamics. The purity fidelity and
its relation with the fidelity in chaotic and regular systems was studied also in (Prosen et al. ,
2003b) using a correlation function approach which was used also by Tanaka et al. (2002) for
studying chaotic systems. The connection between the purity and the fidelity was put on a firm
ground by a rigorous inequality between the two (Žnidarič & Prosen, 2003; Prosen et al. , 2003a).
The classical analog of decoherence has been studied in (Gong & Brumer, 2003c,b,a). Using a
perturbative approach the influence of the type of the perturbation and of the dynamics on the
quantum-classical correspondence were explored, see also (Angelo et al. , 2004) for a study of
quantum-classical correspondence of entanglement. The entanglement in weakly coupled composite
systems was studied in (Žnidarič & Prosen, 2003) as well as (Fujisaki et al. , 2003), reaching the
same conclusion, namely that the increase of chaos can inhibit the production of entanglement.
Subsequently the inequality between fidelity and purity was used in (Cucchietti et al. , 2003a).
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Entanglement production in a coupled baker’s map has been studied in (Scott & Caves, 2003)
and in coupled kicked tops in (Bandyopadhyay & Lakshminarayan, 2002a). Similar semiclassical
methods as for the evaluation of the fidelity have been used also for the purity (Jacquod, 2004),
predicting an exponential decay in chaotic systems, confirming prediction in (Žnidarič & Prosen,
2003), and algebraic decay in regular systems. The predicted power of the algebraic decay though
does not agree with our theory and numerical results presented in Section 5.3.1. The entanglement
under echo situation during a quantum computation has been studied in (Rossini et al. , 2003).
Entanglement in weakly coupled kicked tops has been studied also in (Demkowicz-Dobrzański &
Kuś, 2004), among other things also for random initial states.

1.2 Outline

In Chapter 2 we introduce the quantum fidelity and briefly review numerical models used for the
illustration of the theory. The material in sections dealing with the average fidelity has been mainly
published in (Prosen & Žnidarič, 2002) and (Prosen et al. , 2003c). The core of Chapter 3 has been
published in (Prosen & Žnidarič, 2002), which is the main paper presenting the correlation function
approach to fidelity. New, unpublished material consists of numerical demonstration of a Gaussian
distribution of diagonal matrix elements in chaotic systems, relevant for a Gaussian perturbative
decay of fidelity. New is also the discussion about the average fidelity in regular systems as well as
the last part of Section 3.3 with the illustration of the fidelity decay in terms of Wigner functions
and some additional figures hopefully clarifying the relations between different decay regimes. The
material of Chapter 4 has been published in (Prosen & Žnidarič, 2003b) and (Prosen & Žnidarič,
2004). We unified the approach in mixing and regular situation making the exposition of a regular
case more concise. New material is the explanation of the average fidelity decay in regular systems
with zero time average perturbation. About half of the contents of Chapter 5 has been published
in (Prosen et al. , 2003b; Žnidarič & Prosen, 2003; Prosen et al. , 2003a). The new material consists
of the purity fidelity and the reduced fidelity calculation in regular systems beyond linear response,
most of the discussion about the Jaynes-Cummings model, the section describing the freeze in a
harmonic oscillator and the last section explaining the accelerated decoherence of cat states. The
application of the fidelity theory to the improvement of the quantum Fourier transformation has
been published in (Prosen & Žnidarič, 2001) and an extension to the Ising model of quantum
computer, not presented in the present work, in (Celardo et al. , 2003).



Chapter 2

Fidelity

Basic research is what I am doing when I
don’t know what I am doing.

—Werner von Braun

Quantum fidelity F between two general density matrices ρ and σ, representing either a pure
or a mixed state, has been used by Uhlmann (Uhlmann, 1976),

F (ρ, σ) =

(

tr
√

ρ1/2σρ1/2
)2

. (2.1)

He called it a transition probability and the name fidelity was introduced by Jozsa (Jozsa, 1994).
It is symmetric with respect to the exchange of ρ and σ and in the case of one density matrix being
a pure one, the general expression for fidelity simplifies into F = 〈ψ|σ|ψ〉 and if both are pure it is

F (ψ,ϕ) = |〈ψ|ϕ〉|2, (2.2)

where obviously ρ := |ψ〉〈ψ| and σ := |ϕ〉〈ϕ|. We will always deal with pure states and the latter
definition (2.2) will be sufficient for us. Note that sometimes the name fidelity is used for a quantity
without a square, i.e. for a fidelity amplitude.

We will study stability of quantum dynamics with respect to the perturbation of evolution
and the quantity studied will be the fidelity between states obtained by unperturbed and perturbed
evolutions, starting from the same initial state. Let us denote the initial state by |ψ(0)〉, and the
states at time τ as

|ψ(τ)〉 = U0(τ)|ψ(0)〉, |ψδ(τ)〉 = Uδ(τ)|ψ(0)〉, (2.3)

where U0(τ) is a unitary propagator from time 0 to time τ and Uδ(τ) is a perturbed propagator.
The overlap between the perturbed and unperturbed states, denoted by F (τ), will serve us as a
criterion of stability,

F (τ) = |〈ψδ(τ)|ψ(τ)〉|2 = |f(τ)|2, f(τ) = 〈ψ(0)|Mδ(τ)|ψ(0)〉, (2.4)

where we introduced a complex fidelity amplitude f(τ) and the unitary echo operator

Mδ(τ) = U †0(τ)Uδ(τ). (2.5)

11
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The fidelity as defined in (2.4) is a real quantity between 0 for orthogonal states and 1 iff the two
states are equal (up to a phase) and is a standard measure of stability.

Up to now we have not specified the propagators U0(τ) and Uδ(τ) and to simplify the matter
we will limit ourselves to the case where a propagator for time τ can be written as a power of
some basic single-step propagator U0. That is, we will use time index t measuring the number of
basic units of duration τ0, τ = tτ0. We therefore write a single step propagator U0 ≡ U0(τ0) and
similarly for the perturbed evolution Uδ ≡ Uδ(τ0). The propagator for t steps is now simply the
t-th power of a basic propagator U0(τ0t) = U t

0. These discrete time formalism allows us to treat
two interesting cases at once: the case of time-independent Hamiltonian and the case when the
Hamiltonian is time periodic function H(τ) = H(τ + τ0) with a period τ0. The latter case includes
the so-called kicked systems which will be used for the numerical demonstration of our theory.
Note that the theory can be easily generalised also to time-dependent Hamiltonians, only notation
becomes more cumbersome. For an example see Section 6.2 describing the application of fidelity
theory to the quantum Fourier transformation algorithm. The general perturbed evolution can be
written in terms of the perturbation generator V as

Uδ = U0 exp (−iV δτ0/h̄), (2.6)

where δ is a dimensionless perturbation strength. The above equation (2.6) can be considered
as a definition of a hermitian operator V , given the unperturbed and perturbed one time step
propagators U0 and Uδ, respectively. In the case of Hamiltonian dynamics with H0 generating
unperturbed evolution as U t

0 = exp (−iH0tτ0/h̄) and with the perturbed Hamiltonian of the form
Hδ = H0 + H ′δ we have V = H ′ + O(τ0δ). The difference between H ′ and V therefore goes to
zero in the limit of either small perturbation strength δ or in the limit of small time step τ0. The
latter limit, namely τ0 → 0, corresponds to the case of time-independent Hamiltonians, where the
time step τ0 can be chosen arbitrarily small. From now on we will drop the irrelevant parameter
τ0 (i.e. take a unit of time to be τ0) in all equations, so that the discrete time index t has units of
time. We will use the same letter t for a discrete time index as well as for a continuous time (limit
τ0 → 0) on few occasions. Whether t is a discrete time index or a continuous will be clear from the
context. Our definition of fidelity (2.4) is in discrete time formulation

F (t) = |〈ψ(0)|Mδ(t)|ψ(0)〉|2, Mδ(t) := U−t0 U t
δ . (2.7)

The fidelity is just the expectation value of the echo operator. It can be equivalently expressed in
terms of the initial pure density matrix ρ(0) and the echo density matrix ρM(t) (sometimes refered
to as the Loschmidt echo) obtained from ρ(0) by evolving it with the echo operator Mδ(t)

ρ(0) = |ψ(0)〉〈ψ(0)|, ρM(t) :=Mδ(t)ρ(0)M
†
δ (t), (2.8)

as
F (t) = tr

[

ρ(0)ρM(t)
]

, f(t) = tr[ρ(0)Mδ(t)]. (2.9)

On several occasions we will be interested in the fidelity averaged over some ensemble of initial
states. In such a case the density matrix ρ(0) in the above definitions of fidelity and fidelity
amplitude f(t) (2.9) must be replaced by appropriate mixed density matrix. We will frequently
use a uniform average over whole Hilbert space of dimension N , ρ(0) = 1/N , see Section 2.2.2 for
details.

Using our definition (2.6) of perturbed dynamics in terms of the perturbation generator V , the
echo operator can be rewritten in a more useful way by writing V in the interaction picture∗, i.e.

∗It can also be considered as the Heisenberg picture of the unperturbed dynamics.
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for an arbitrary operator A its interaction picture A(t) is

A(t) = U−t0 AU t
0, (2.10)

and so the echo operator is

Mδ(t) = exp (−iV (t− 1)δ/h̄) · · · exp (−iV (0)δ/h̄) = T exp (−iΣ(t)δ/h̄), (2.11)

where T is a time-ordering operator and Σ(t) is the sum of operators V (j),

Σ(t) :=
t−1
∑

j=0

V (j). (2.12)

In the case of the time-independent Hamiltonian one has Σ(t) =
∫ t
0 V (t′)dt′. The form of the

echo operator (2.11) is nothing but the interaction picture of the perturbed propagator, familiar
in quantum field theory. Methods of quantum field theory have been actually used by Adamov,
Gornyi and Mirlin (Adamov et al. , 2003) to calculate the fidelity in a disordered system. Remember
that the time dependence of V (t) comes from the interaction picture (2.10) and so V (t) is time
dependent even if original perturbation V (2.6) is not, which is the case throughout our derivations.
The same definition of fidelity, just by replacing density matrices with the densities in phase space,
can be used for classical fidelity, see Veble & Prosen (2004).

The echo operatorMδ(t) can we written as an exponential function of a single operator by using
the Baker-Campbell-Hausdorff (BCH) formula

eAeB = exp

(

A+B +
1

2
[A,B] +

1

12
[A, [A,B]] +

1

12
[B, [B,A]] + · · ·

)

. (2.13)

Applying the BCH formula on the product form ofMδ(t) (2.11) gives to the order δ
2 in the argument

of the exponential function

Mδ(t) = exp

{

− i

h̄

(

Σ(t)δ +
1

2
Γ(t)δ2 + · · ·

)}

, (2.14)

with the hermitian operator Γ(t) being

Γ(t) =
i

h̄

t−1
∑

j=0

t−1
∑

k=j

[V (j), V (k)]. (2.15)

Both operators Σ(t) and Γ(t) standing in the expression for the echo operator have a well defined
classical limit, provided V has a classical limit. The classical limit of Γ(t) can be obtained by
replacing commutator with the Poisson bracket {•, •}, (−i/h̄)[•, •]→ {•, •}. The BCH form (2.14)
of the echo operator will be particularly useful in the case of regular dynamics. For now let us list
three different possible fidelity decays depending on the behaviour of operator Σ(t). For mixing
dynamics the fluctuations of Σ(t) give the dominant contribution, i.e. terms like

〈

Σ2(t)
〉

grow
linearly with time as ∼ t. For regular dynamics second moment

〈

Σ2(t)
〉 ∼ t2 grows quadratically

with time, corresponding to the existence of a nontrivial time-averaged perturbation V (t). In
certain cases we can have even

〈

Σ2(t)
〉 ∼ t0 which results in the so-called freeze of fidelity. Only in

this last case is the fidelity decay caused by the operator Γ(t).
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If we want the fidelity expressed as a power series to all orders in δ the BCH formula becomes
too cumbersome. An easier approach is to just expand the product form of the echo operatorMδ(t)
(2.11), giving the fidelity amplitude

f(t) = 1 +
∞
∑

m=1

(−i)mδm
m!h̄m

t−1
∑

j1,...,jm=0

T 〈V (j1)V (j2) · · ·V (jm)〉, (2.16)

where we introduced the notation 〈•〉 = 〈ψ(0)|•|ψ(0)〉. One can see, that the fidelity is expressed in
terms of m-point quantum correlation functions of the perturbation generator V . In the semiclas-
sical limit one is able to replace quantum correlation functions with the classical ones and therefore
the quantum fidelity is expressed in terms of classical quantities. One should keep in mind that
the classical fidelity behaves distinctively different from quantum fidelity (see Chapter 1.1.2) and
therefore it is not obvious that quantum fidelity can be expressed in terms of classical quantities.
Power series expansion of the classical fidelity for example does not yield a fruitful result (for
chaotic systems) due to unboundedness of the classical operators and the classical fidelity can not
be expressed in a similar way as the quantum fidelity (2.16).

Fidelity F (t) is now obtained by taking absolute value square of f(t) (2.16). Only even orders
in δ survive as odd orders just rotate the phase of the fidelity amplitude f(t), the lowest order
being quadratic in δ

F (t) = 1− δ2

h̄2

t−1
∑

j,k=0

C(j, k) +O(δ4) = 1− δ2

h̄2

{

〈Σ2(t)〉 − 〈Σ(t)〉2
}

+O(δ4), (2.17)

with C(j, k) being the quantum correlation function

C(j, k) = 〈V (j)V (k)〉 − 〈V (j)〉 〈V (k)〉 . (2.18)

The second order expansion of the fidelity (2.17) is one of the central theoretical results. Although
it is very simple and is just the lowest order expansion it contains most of the essential physics
of fidelity decay. Furthermore, there is one very pragmatic reason why it is sufficient and higher
orders are not needed. In all practical and experimental applications where the fidelity is the
relevant quantity, one is mainly interested in a regime of high fidelity, i.e. of high stability. If
the interesting range is say F (t) > 0.9, higher orders will give only corrections of order 0.01. To
see this, let us denote the second order term with x = (δ/h̄)2

∑

j,k C(j, k). From the expansion
(2.16) one can see that the term with δ2m will be at most of the order (δt/h̄)2m ∼ x2m. So if
1 − F (t) ≈ x2 ¿ 1 one can safely neglect higher orders in δ, i.e. terms of order x2m with m > 1,
irrespective of the values of individual parameters like δ, h̄ or time t. The range of validity of the
lowest order expansion in (2.17) is limited only by the value of 1 − F (t). Furthermore, in certain
cases such as mixing dynamics (Section 3.1), regular dynamics (Section 3.2) or in the so-called
freeze of fidelity (Chapter 4) the series (2.16) can be resummed to all orders in δ and one gets an
expression for the fidelity valid in the whole range from 1 to its asymptotic value.

Let us now discuss in more detail the lowest order term in the expansion of fidelity which can
be in the case of continuous time-independent Hamiltonian written as

1− F (t) = δ2

h̄2

∫ t

0

∫ t

0
C(t′, t′′) dt′ dt′′. (2.19)

This linear response expression is reminiscent of Green-Kubo like formulas. It says that the “dissi-
pation of quantum information” 1 − F (t) equals the double integral of the correlation function of
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the perturbation V . An interesting and somehow counterintuitive conclusion can be drawn from it,
namely, the smaller the integral of time correlation function the higher fidelity will be. In the semi-
classical limit the quantum correlation function approaches the classical one, provided the initial
state |ψ(0)〉 also has a well defined classical limit, and one will see a fast decay of the correlation
function for chaotic systems while for regular systems the correlation function typically will not
decay. The double integral of the correlation function will therefore grow as ∝ t for chaotic systems
and like ∝ t2 for regular systems. The fidelity will in turn decay more slowly for chaotic systems
than for regular ones. Or in other words, the more chaotic the systems is, the slower decay of
quantum fidelity it will have, i.e. the more stable it is to perturbations. This must be contrasted
with the behaviour of the classical fidelity (see Section 1.1.2) which is just the opposite. The more
chaotic the system is, the faster classical fidelity will decay.

2.1 Models for numerics

We will always use numerical simulations to compare with the theoretical derivations. Two classes
of systems will be used. One group will be the so-called kicked top models, describing dynamics of
a spin “kicked” by some external field. In the case of a kicked top the Hamiltonian is time periodic
and the propagator U0 or Uδ represent a Floquet map over the period of one kick. The second
example will be a Jaynes-Cummings system familiar in quantum optics. The Jaynes-Cummings
model is a time-independent model with two degrees of freedom representing a harmonic oscillator
(boson) coupled with a spin (fermion). In the following two subsections we will present both models
and briefly describe their properties, while the actual numerical results will be presented in each
chapter as needed.

2.1.1 The Kicked Top

The kicked top has been introduced by Haake, Kuś and Scharf (Haake et al. , 1987) and has served
as a numerical model in numerous studies since then (Haake, 1991; Shack et al. , 1994; Fox &
Elston, 1994; Alicki et al. , 1996; Miller & Sarkar, 1999; Breslin & Milburn, 1999). In addition the
kicked top might also be experimentally realizable (Haake, 2000).

In Chapter 3, discussing the fidelity decay for general perturbations, we will use a unitary one
step propagator

U0 = U(γ, α) = exp (−iγSy) exp
(

−iαS
2
z

2S

)

, (2.20)

where Sx,y,z are standard spin operators [Sk, Sl] = iεklm Sm and α, γ are two parameters determining
dynamical properties. The propagator for t steps is U t

0. Half-integer (integer) spin S determines
the size of the Hilbert space N = 2S + 1 and the value of the effective Planck constant h̄ = 1/S.
The perturbed propagator Uδ is obtained by perturbing the parameter α

Uδ = U(γ, α+ δ), (2.21)

so that the perturbation generator V is

V =
1

2

(

Sz
S

)2

. (2.22)

In the classical limit S →∞ the area preserving map corresponding to U0 can be obtained from the
Heisenberg equations for spin operators, S(1) = U †0SU0. The classical map is most easily written



16 Chapter 2. Fidelity

in terms of a unit vector on a sphere r = (x, y, z) = S/S as

x′ = cos γ (x cos (αz)− y sin (αz)) + z sin γ

y′ = y cos (αz) + x sin (αz) (2.23)

z′ = z cos γ − sin γ (x cos (αz)− y sin (αz)).

The classical perturbation generator (2.22) is simply † V → v = z2/2. The angle γ in the propagator
is usually set to π/2 whereas we will use two different values, γ = π/2 and γ = π/6. For these two
values of γ the classical correlation function displays two different decays towards zero, a monotonic
decay for γ = π/6 and an oscillatory decay for γ = π/2.

The phase space of the classical map (2.24) is regular for small values of α, at α ∼ 3 (see
e.g. (Peres, 1995)) most of tori disappear and for still larger α the system is fully chaotic.

For γ = π/2 the unperturbed propagator U0 (as well as the perturbed one) commutes with the
operator Ry of a π rotation around y-axis, Ry = exp (−iπSy). In addition there is an antiunitary
symmetry so that the Hilbert space is reducible to three invariant subspaces. Following notation
in Peres’s book (Peres, 1995) we denote them with EE, OO and OE with the basis states (here we
assume S to be even)

EE : |0〉, {|2m〉+ | − 2m〉} /
√
2 NEE = S/2 + 1

OO : {|2m− 1〉 − | − (2m− 1)〉} /
√
2 NOO = S/2

OE : {|2m〉 − | − 2m〉} /
√
2, {|2m− 1〉+ | − (2m− 1)〉} /

√
2 NOE = S,

(2.24)

where m runs from 1 to S/2 and |m〉 are standard eigenstates of Sz. For γ 6= π/2 the subspaces
EE and OO coalesce as Ry is the only symmetry left and we have just two invariant subspaces.
Except if stated otherwise the initial state will always be chosen from subspace OE (i.e. initial
coherent state will be projected onto OE subspace) so that the size of the relevant Hilbert space
will be N = S.

In Chapter 4, dealing with the so-called freeze of fidelity, we will take a slightly different form of
the propagator which will be presented in the mentioned chapter. Apart from the one dimensional
kicked top we will also use a system of two coupled kicked tops to demonstrate the dependence of
the fidelity decay on the number of degrees of freedom. The one step propagator for two coupled
kicked tops is chosen to be

Uδ = U1(γ, α)U2(γ, α) exp (−i(δ + ε)V/h̄). (2.25)

Propagators U1 and U2 are the usual single kicked top propagators (2.20) acting on the first and
the second top, respectively, and the last term with operator V is responsible for the coupling of
strength ε for unperturbed evolution and ε + δ for perturbed one. The operator V will be left
unspecified for now as we will use different V ’s.

The initial state |ψ(0)〉 used for fidelity evaluation will be either a random state with the
expansion coefficients cm = 〈m|ψ(0)〉 being independent Gaussian complex numbers or a coherent
state. A random state might be the most relevant for quantum computations for instance as it
contains the most information and the states used in quantum computation are expected to be
“random”. Coherent state centred at the position r∗ = (sinϑ∗ cosϕ∗, sinϑ∗ sinϕ∗, cosϑ∗) is given
by expansion

|ϑ∗, ϕ∗〉 =
S
∑

m=−S

(

2S

S +m

)1/2

cosS+m (ϑ∗/2) sinS−m (ϑ∗/2)e−imϕ
∗ |m〉. (2.26)

†We will use lowercase letters for classical quantities.
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Equivalently, it can be written in terms of a complex parameter τ as

|ϑ∗, ϕ∗〉 = e−iϕ
∗S

(1 + |τ |2)S exp (τS−)|S〉, τ = eiϕ
∗
tan (ϑ∗/2), (2.27)

with S± = Sx± iSy. In the semiclassical limit of large spin S the expansion coefficients of coherent
state cm go towards cm ³ exp (−S(m/S − z∗)2/2(1− z∗2))e−imϕ∗ . Coherent states have a well
defined classical limit and this enables to compare the quantum fidelity for coherent initial states
with the corresponding classical fidelity. The initial classical phase space density corresponding to
a coherent state is (Fox & Elston, 1994)

ρclas(ϑ, ϕ) =

√

2S

π
exp {−S[(ϑ− ϑ∗)2 + (ϕ− ϕ∗)2 sin2 ϑ]}. (2.28)

The above density is normalised as
∫

ρ2clasdΩ = 1.

2.1.2 The Jaynes-Cummings model

The Jaynes-Cummings model (Jaynes & Cummings, 1963; Tavis & Cummings, 1968), see also
(Meystre & Sargent III, 1990, p. 336), is a system of a coupled harmonic oscillator and a spin. It
can be realized experimentally in the cavity electrodynamics experiments (QED) by sending a beam
of atoms trough a cavity. The electromagnetic field in the cavity is quantized with the Hamiltonian
h̄ωa+a, and the spin degree of freedom h̄εSz of atoms interacts with the electromagnetic field. The
dominant interaction is a dipolar d · E, with the monochromatic field E = εE0(ae

ikr − a+e−ikr).
For two level atoms only y-component of the dipole moment d is nonzero and is proportional to
Sy = − i

2(S+ − S−). All this results in the Hamiltonian

H = h̄ωa+a+ h̄εSz +
h̄√
2S

{

G (aS+ + a+S−) +G′ (a+S+ + aS−)
}

, (2.29)

with boson lowering/raising operators a, a+, [a, a+] = 1. Planck’s constant is chosen as h̄ = 1/S so
that the semiclassical limit is reached for S →∞. If we are close to a resonance ω = ε the rotating-
wave approximation can be made in which the fast oscillating term G′ can be neglected and only
the G-term is retained (oscillating with small ω− ε). In our discussion we will predominantly focus
on this situation of G′ = 0. In addition, frequencies ω and ε are usually in a GHz regime, while
the coupling G is of the order of kHz and is therefore small. If either G = 0 or G′ = 0 the model
is integrable with an additional invariant being the difference or the sum of the spin and boson
(harmonic oscillator) quanta.

The initial state will be always chosen as a product state of spin and boson coherent states.
The spin coherent state is the same as above (2.26), while the coherent state for a boson is

|α〉 = eαa
+−α∗a|0〉 = exp (−|α|2/2)

∞
∑

k=0

αk√
k!
|k〉, (2.30)

with α being a complex parameter determining the position of the coherent state and |k〉 is an
eigenstate of operator a+a having k boson quanta. The classical density corresponding to the
boson coherent initial state with a complex parameter α = αr + iαi is

ρclass(q, p) =

√

2S

π
exp

{

−S
[

(q −
√

2/S αr)
2 + (p−

√

2/S αi)
2
]}

. (2.31)
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The normalisation is as usual
∫

ρ2classdq dp = 1.
The classical Hamiltonian is obtained by taking the limit S → ∞ and defining new canonical

quantum operators, q1 and p1 for a boson and q2 and p2 for a spin

a =

√

S

2
(q1 + ip1),

√

1− p22 eiq2 = S+/S. (2.32)

They satisfy commutation relations [q1, p1] = ih̄ and [q2, p2] = ih̄. In the limit S → ∞ they
commute and can be replaced by the classical variables resulting in the classical Hamiltonian

Hclass =
ω

2
(p21 + q21) + ε p2 +G+

√

1− p22 q1 cos q2 −G−
√

1− p22 p1 sin q2 −
ω

2S
, (2.33)

with G± = G±G′.

2.2 Average Fidelity

Sometimes the average fidelity is of interest, i.e. the fidelity averaged over some ensemble of initial
states. Such an average fidelity is also more amenable to theoretical treatment. Easier to calculate
is the average fidelity amplitude f(t) which is of second order in the initial state |ψ〉 while the
fidelity F (t) is of fourth order in |ψ〉. We will show that the difference between the average fidelity
amplitude and the average fidelity is semiclassically small.

In a finite Hilbert space the fidelity will not decay to zero but will instead fluctuate around
some small plateau value. The value of this plateau equals to a time averaged fidelity. For ergodic
systems this time averaged value equals to the phase space averaged one.

2.2.1 Time Averaged Fidelity

We want to calculate the value of fidelity in the limit t → ∞ that is its asymptotic value for
large time. For a finite Hilbert space size N the fidelity will start to fluctuate for long times due
to a discreteness of the spectrum of the evolution operator. The size of this fluctuations can be
calculated by evaluating a time average fidelity F̄

F̄ = lim
m→∞

1

m

m
∑

t=0

F (t). (2.34)

This is easily done if we expand the initial state in eigenbasis of the unperturbed propagator U0

and denote the matrix elements between unperturbed and perturbed eigenstates by Pkl

U0|φl〉 = exp (−iφl)|φl〉, Uδ|φδl 〉 = exp (−iφδl )|φδl 〉, Pkl = 〈φk|φδl 〉. (2.35)

We denoted the eigenphases of unperturbed and perturbed one-step propagator with φl and φδl ,
respectively. The matrix P is unitary and in the case when both eigenvectors can be chosen to be
real it is orthogonal. This happens if U0 and Uδ commute with an antiunitary‡ operator T whose
square is identity §. The fidelity amplitude can now be written

f(t) =
∑

lm

(P †ρ)lmPml exp (−i(φδl − φm)t), (2.36)

‡Antiunitary operator must satisfy 〈Tψ|Tφ〉 = 〈ψ|φ〉∗.
§Square of an arbitrary antiunitary operator is T 2 = ± � . Time reversal operator for a system with spin is

T = exp (−iπSy)K, with a complex conjugation operator K. If the system has an integer spin (or half-integer spin
and an additional rotational invariance symmetry) we have T 2 = � .
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with ρlm = 〈φl|ρ(0)|φm〉 being the matrix elements of the initial density matrix in the unperturbed
eigenbasis. To calculate the average fidelity F̄ we have to take the absolute value square of f(t).
Averaging over time t we will assume that the phases are nondegenerate

exp (i(φδl − φδl′ + φm − φm′)t) = δmm′δl l′ . (2.37)

This results in the average fidelity

F̄ =
∑

ml

|(ρP )ml|2|Pml|2. (2.38)

The time averaged fidelity therefore understandably depends on the initial state ρ as well as on the
“overlap” matrix P .

For small perturbation strengths, say δ smaller than some critical δrm, the unitary matrix P will
be close to identity. Using P → � for δ ¿ δrm (2.38) gives us

F̄weak =
∑

l

ρ2ll. (2.39)

One should keep in mind that for the above result F̄weak we needed eigenphases to be nondegenerate,
φδl 6= φm (2.37), and at the same time P → � . This approximation is justified in the lowest order
in δ, when off diagonal matrix elements are |Pml|2 ∝ δ2.

On the other hand, for sufficiently large δ À δrm and complex perturbations V one might
assume P to be close to a random matrix with independent real or complex matrix elements Pml.
Then we can average expression (2.38) over a Gaussian distribution ∝ exp (−βN|Pml|2/2) of matrix
elements Pml, where we have β = 1 for orthogonal P and β = 2 for unitary P . This averaging
gives 〈|Pml|4〉 = (4− β)/N 2 and 〈|Pml|2〉 = 1/N for the variance of Pml (brackets 〈•〉 denote here
averaging over the distribution of matrix elements and not over the initial state). The average
fidelity for strong perturbation can therefore be expressed as

F̄strong =
4− β
N

∑

l

ρ2ll +
1

N
∑

l 6=m
|ρlm|2. (2.40)

The point of crossover δrm from weak (2.39) to strong (2.40) perturbation regime is system depen-
dent and can not be discussed in general apart from expecting it to scale with h̄ similarly as a mean
level spacing δrm ∼ h̄d. We will discuss the value of F̄ for three different initial states:

(i) First, let us consider the simplest case when the initial state is an eigenstate of U0 say,
ρ = |φ1〉〈φ1| with matrix elements ρlm = δl,1δm,1. For weak perturbations this gives (2.39)
F̄weak = 1, therefore the fidelity does not decay at all. This result can be generalised to
the case when ρ is a superposition of a number of eigenstates, say K of them, all with
approximately the same weight, so that one has diagonal density matrix elements of order
ρll ∼ 1/K, resulting in F̄weak ∼ 1/K. On the other hand, for strong perturbation δ À δrm we
get F̄strong = (4 − β)/N for an initial eigenstate. Summarising, for an initial eigenstate we
have time averaged values of fidelity

F̄weak = 1, F̄strong = (4− β)/N . (2.41)

With this simple result we can easily explain the numerical result of Peres (Peres, 1995)
where no-decay of fidelity was found for a coherent initial state sitting in the centre of an
elliptic island, thus being a superposition of a very small number of eigenstates (it is almost
an eigenstate). The behaviour in generic case may be drastically different as described in the
present work.
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(ii) Second, consider the case of a random pure initial state |ψ〉 = ∑

m cm|φm〉, giving ρml = cmc
∗
l .

The coefficients cm are independent random complex Gaussian variables with variance 1/N ,
resulting in averages 〈|ρlm|2〉 = 1/N 2 for m 6= l and 〈ρ2ll〉 = 2/N 2 (average is over Gaussian
distribution of cm). Using this in expressions for average fidelity (2.39) and (2.40) we get

F̄weak = 2/N , F̄strong = 1/N . (2.42)

For random initial state there is therefore only a factor of 2 difference between finite size
fluctuating plateau for weak and for strong perturbation. The result for weak perturbation
agrees with the case (i) where we had F̄weak ∼ 1/K if there were K participating eigenvectors.

(iii) Third, for a uniform average over the whole Hilbert space, i.e. taking a non-pure initial
density matrix ρ = � /N , we have

F̄weak = 1/N , F̄strong = (4− β)/N 2. (2.43)

As expected, the fluctuating plateau is the smallest for an uniform average over the whole
Hilbert space and strong perturbation.
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Figure 2.1: Dependence of time averaged fidelity (multiplied by the Hilbert space size N = S) F̄
on δ is shown for a chaotic kicked top system and Hilbert space average ρ = � /N , i.e. our case (iii).
The transition from weak to strong perturbation regime is seen (2.43). Horizontal full lines are the
theoretical predictions F̄strong (2.43), while the theoretical result for the weak regime corresponds
to 1.

Observe that the average fidelity F̄ (2.38) is of fourth order in matrix elements of P , the same as
the inverse participation ratio (IPR) of the perturbed eigenstates. Actually, in the case of initial
eigenstate, our case (i), the average fidelity (2.38) can be rewritten as F̄ =

∑

m |P1m|4, exactly the
IPR. The inverse of the IPR is a number between 1 and N which can be thought of as giving the
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approximate number of unperturbed eigenstates represented in the expansion of a given perturbed
eigenstate. For an average over the whole space, case (iii), we have instead F̄ =

∑

l,m |Plm|4/N 2, i.e.
the average IPR divided by N . The time averaged fidelity is thus directly related to the localisation
properties of eigenstates of Uδ in terms of eigenstates of U0. However, except for the pathological
case of the initial state being a small combination of eigenstates of U0 with weak perturbation, the
fidelity fluctuation is always between the limiting values 2/N , and 3/N 2. Therefore, the fidelity
will decay only until it reaches the value of finite size fluctuations and will fluctuate around F̄
thereafter. The time t∞ when this happens, F (t∞) = F̄ , depends on the decay of fidelity and will
be discussed in subsequent chapters.

To illustrate the above theory we have calculated the average fidelity (2.38) for a kicked top
with a propagator (2.20). As an initial state we used ρ = � /N , i.e. the case (iii), where the Hilbert
space size is determined by the spin value, N = S (OE subspace). We calculated the dependence of
F̄ on δ for two cases: a chaotic one for kicked top parameters α = 30, γ = π/2 shown in Figure 2.1
and a regular one for α = 0.1, γ = π/2 shown in Figure 2.2. In both cases one can see a transition
from the weak perturbation regime F̄weak = 1/N to the strong regime F̄strong = 3/N 2 for large δ. In
the chaotic case the critical δrm can be seen to scale as δrm ∼ h̄ = 1/S. In the regular situation, the
strong perturbation regime is reached only for a strong perturbation δ ∼ 4, where the propagator
Uδ itself becomes chaotic. Namely, the transition from the regular to chaotic regime in the kicked
top happens at around α = 3, see e.g. (Peres, 1995). Still, if one defines δrm as the points where
the deviation from the weak regime starts (point of departure from 1 in Figure 2.2) one has scaling
δrm ∼ 1/S also in the regular regime.
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Figure 2.2: The same as Figure 2.1 but for a regular kicked top.
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2.2.2 State Averaged Fidelity

In previous section we used the initial density matrix ρ(0) = � /N in expression (2.9) for the fidelity
amplitude to calculate the average fidelity over the whole Hilbert space. As the fidelity is of fourth
order in the initial state |ψ(0)〉, whereas the fidelity amplitude is bilinear in |ψ(0)〉 the average
fidelity is not equal to the quantity obtained by first averaging fidelity amplitude and subsequently
squaring it. In general the difference between the two depends on the ensemble of states over which
we average.

Let us look only at the simplest case of averaging over random initial states, denoted by 〈〈•〉〉. In
the asymptotic limit of large Hilbert space size N →∞ the averaging is simplified by the fact that
the expansion coefficients cm of a random initial state in an arbitrary basis become independent
Gaussian variables with variance 1/N . Quantities bilinear in the initial state, like the fidelity
amplitude or the correlation function, result in the following expression

〈〈ψ|A|ψ〉〉 =: 〈〈A〉〉 = 〈〈c∗mAml cl〉〉 =
1

N trA, (2.44)

where A is an arbitrary operator. The averaging is done simply by means of a trace over the whole
Hilbert space. For the fidelity F (t) which is of fourth order in |ψ〉 we get

〈〈F (t)〉〉 =
〈〈

c∗m[Mδ(t)]ml cl cp [Mδ(t)]
∗
pr c

∗
r

〉〉

= |〈〈f(t)〉〉|2 + 1

N . (2.45)

The difference between the average fidelity and the average fidelity amplitude is therefore semiclas-
sically small (Prosen et al. , 2003c).

There are two reasons why averaging over random initial states is of interest. First, in the
field of quantum information processing this are the most interesting states as they have the least
structure, i.e. can accomodate the largest amount of information. Second, for ergodic dynamics
and sufficiently long times one can replace expectation values in a specific generic state |ψ〉 by
an ergodic average. If the system is ergodic on the whole space one can calculate the correlation
function C(j, k) (2.18) by means of a simple trace (2.44), so that it does not depend on the initial
state, or even calculate it classically in the leading semiclassical order, which greatly simplifies
theoretical derivations ¶. For regular systems, where the decay of fidelity depends on the initial
state, the ergodic averaging differs from the average in a specific initial state, although one can still
be interested in the behaviour of the average fidelity. Such an averaging will be discussed in the
section describing the decay of fidelity in regular systems.

We have seen that for sufficiently large Hilbert spaces there is no difference between averaging
the fidelity amplitude or the fidelity or taking a single random initial state. For mixing dynamics
the long time fidelity decay is independent of the initial state even if it is a non-random, wheras in
the regular regime it is state dependent. For instance, the long time Gaussian decay (Section 3.2.2)
depends on the position of the initial coherent state. The fidelity averaged over this position of the
initial coherent state might be of interest and will not be equal to the fidelity averaged over random
initial states. We will discuss averaging over coherent states at the end of Section 3.2.2 describing
long time fidelity decay for coherent initial states.

¶In the case of autonomous systems the canonical or micro-canonical averaging should be used instead.



Chapter 3

General Perturbation

An expert is a person who has made all the
mistakes that can be made in a very narrow
field.

—Niels Bohr

3.1 Mixing Dynamics

Here we assume that the system is mixing such that the correlation function of the perturbation V
decays sufficiently fast; this typically (but not necessarily) corresponds to globally chaotic classical
motion. Due to ergodicity we will assume the initial density matrix to be ρ(0) = � /N , so that all
averages over a specific initial state can be replaced by a full Hilbert space average, 〈.〉 = tr(.)/N
(Section 2.2.2). For any other initial state (e.g. in the worst case for the minimal wave packet –
coherent state) one obtains identical results on F (t) for sufficiently long times∗, i.e. longer than the
Ehrenfest time tE ≈ ln(1/h̄)/λ (for a classically chaotic system with maximal Lyapunov exponent
λ) needed for a minimal wave packet to spread effectively over the accessible phase space (Berman
& Zaslavsky, 1978). The state averaged quantum correlation function is homogeneous in time, i.e.
C(j, k) = C(k − j), so we simplify the second order linear response formula for the fidelity (2.17)

F (t) = 1− δ2

h̄2







tC(0) + 2
t−1
∑

j=1

(t− j)C(j)






+O(δ4). (3.1)

If the decay of the correlation function C(j) is sufficiently fast, namely if its integral converges
on a certain characteristic mixing time scale tmix, then the above formula can be further simplified.
For times t À tmix we can neglect the second term under the summation in (3.1) and obtain a
linear fidelity decay in time t (in the linear response)

F (t) = 1− 2(δ/h̄)2σt, (3.2)

with the transport coefficient σ being

σ =
1

2
C(0) +

∞
∑

j=1

C(j) = lim
t→∞

〈

Σ2(t)
〉− 〈Σ(t)〉2
2t

. (3.3)

∗The exception might be systems with localized states.

23
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In the continuous time case σ is just the integral of the correlation function. Note that σ has a
well defined classical limit obtained from the classical correlation function and in the semiclassical
limit this classical σcl will agree with the quantum one.

We can make a stronger statement in a non-linear-response regime if we make an additional
assumption on the factorisation of higher order time-correlations, n−point mixing. This implies
that 2m-point correlation 〈V (j1) · · ·V (j2m)〉 is appreciably different from zero for j2m − j1 → ∞
only if all (ordered) time indices {jk, k = 1 . . . 2m} are paired with the time differences within each
pair, j2k−j2k−1, being of the order or less than tmix. Then we can make a further reduction, namely
if tÀ mtmix the terms in the expansion of the fidelity amplitude f(t) (2.16) are
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Figure 3.1: The classical correlation function (2.18) of perturbation V (3.6) for chaotic kicked top
and γ = π/6 (top solid curve) and γ = π/2 (bottom broken curve). The finite time integrated
correlation function is shown in the inset.

T
t−1
∑

j1,...,j2m=0

〈V (j1)V (j2) · · ·V (j2m)〉 →

→ T
t−1
∑

j1,...,j2m=0

〈V (j1)V (j2)〉 · · · 〈V (j2m−1)V (j2m)〉 →
(2m)!

m!2m
(2σt)m. (3.4)

The fidelity amplitude is therefore f(t) = exp (−δ2σt/h̄2) and the fidelity is

F (t) = exp (−t/τm), τm =
h̄2

2δ2σcl
, (3.5)

with a mixing decay time-scale τm = O(δ−2) and a classical limit of the transport coefficient
σcl. We should stress again that the above result (3.5) has been derived under the assumption
of true quantum mixing which can be justified only in the limit N → ∞, e.g. either in the
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semiclassical or the thermodynamic limit. Thus for the true quantum-mixing dynamics the fidelity
will decay exponentially. The same result has been derived also by a quite different approach, using
a Fermi golden rule (Jacquod et al. , 2001; Cerruti & Tomsovic, 2002). That is why this regime of
exponential fidelity decay is sometimes called a Fermi golden rule regime.

To numerically check the above exponential decay, we will use the kicked top (2.20) with pa-
rameter α = 30, giving a totally chaotic classical dynamics. As argued before, one can calculate the
transport coefficient σ (3.3) by using the classical correlation function of the perturbation (2.22),

Vcl = v =
1

2
z2. (3.6)

We consider two different values of kicked top parameter γ, namely γ = π/2 and γ = π/6. The
classical correlation functions can be seen in Figure 3.1. The correlation function (obtained by
averaging over 105 initial conditions on a sphere) is shown in the main frame. The correlation
functions have qualitatively different decay towards zero for the two chosen γ’s. In the inset the
convergence of classical σ (3.3) is shown, where one can see that the mixing time is tmix ∼ 5. The
values of σcl are σcl = 0.00385 for γ = π/2 and σcl = 0.0515 for γ = π/6. These values are used
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Figure 3.2: Quantum fidelity decay in the chaotic regime for γ = π/2 and three different perturba-
tion strengths δ = 5× 10−4, 1× 10−3 and 3× 10−3 (solid, dashed and dotted curves, respectively)
is shown. The chain line gives theoretical decay (3.5) with the classically calculated σ seen in
Figure 3.1.

to calculate the theoretical decay of fidelity F (t) = exp (−δ2S22σclt) (3.5) which is compared with
the numerical simulation in Figures 3.2 and 3.3. We used averaging over the whole Hilbert space,
ρ(0) = 	 /S and checked that that due to ergodicity there was no difference for large S if we choose
a fixed initial state, say a coherent state. As fidelity will decay only until it reaches its finite size
fluctuating value F̄ (2.43) we choose a large S = 4000 in order to be able to check exponential decay
over as many orders of magnitude as possible. In Figure 3.2 the decay of quantum fidelity is shown
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for γ = π/2. The agreement with the theory is excellent. Note that the largest δ shown corresponds
to τm ∼ 1 so the condition for n−point mixing tÀ tmix is no longer satisfied. The agreement with
theory is still good due to the oscillatory nature of the correlation decay (see Figure 3.1) fullfiling
the factorisation assumption (3.4) on average. In Figure 3.3 for γ = π/6 a similar decay can be
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Figure 3.3: Similar figure as 3.2, only for γ = π/6 and perturbation strengths δ = 1×10−4, 2×10−4
and 3× 10−4 (solid, dashed and dotted curves, respectively).

seen. In both cases fidelity starts to fluctuate around F̄ calculated in the section 2.2.1 for times
larger than t∞.

3.1.1 Long Time Behaviour

We assumed that the quantum correlation function C(j) decays to zero and its integral converges to
σ. For a system having a finite Hilbert space of size N , the correlation function asymptotically does
not decay but has a non-vanishing plateau C̄ due to finiteN , similarly as we have a finite asymptotic
value of the fidelity F̄ . This will cause the double correlation sum to grow quadratically with time.
Because this plateau C̄ is small, the quadratic growth will overtake linear growth 2σclt only for
large times. The time averaged correlation function C(j, k) (2.18) can be calculated assuming a
nondegenerate unperturbed spectrum φk as

C̄ = lim
t→∞

1

t2

t−1
∑

j,k=0

C(j, k) =
∑

k

ρkk(Vkk)
2 −

(

∑

k

ρkkVkk

)2

, (3.7)

where ρkk are diagonal matrix elements of the initial density matrix ρ(0) and Vkk are diagonal
matrix elements of the perturbation V in the eigenbasis of the unperturbed propagator U0. One
can see that C̄ depends only on the diagonal matrix elements †, in fact it is equal to the variance

†The case when diagonal matrix elements are zero is the subject of Chapter 4.



3.1. Mixing Dynamics 27

 0.001

 0.01

 0.1

 1

 10

 1  10  100  1000  10000  100000

SC
(j,

k)
/(2

t)

t

0.0077t/S

0.103t/S

g=p/2

g=p/6

tH

Figure 3.4: The finite time quantum correlation sum σ(t) =
∑t−1

j,k=0C(j, k)/2t (solid curves) together

with the corresponding classical sum σcl(t) =
∑t−1

j,k=0Ccl(j, k)/2t (dashed curves saturating at σcl
and ending at t ∼ 1000) is shown for the chaotic kicked top. Quantum data are for a full trace
ρ = 
 /N with S = 1500. Upper curves are for γ = π/6 while lower curves are for γ = π/2. Chain
lines are best fits for asymptotic linear functions corresponding to C̄t/2 = 0.0077t/S for γ = π/2
and 0.103t/S for γ = π/6.

of the diagonal matrix elements. Since the classical system is ergodic and mixing, we will use
a version of the quantum chaos conjecture (Feingold & Peres, 1986; Wilkinson, 1987; Feingold
et al. , 1989; Prosen & Robnik, 1993; Prosen, 1994) saying that Vmn are independent Gaussian
random variables with a variance given by the Fourier transformation S(ω) (divided by N ) of the
corresponding classical correlation function Ccl(j) at frequency ω = φm − φn. On the diagonal we
have ω = 0 and an additional factor of 2 due to random matrix measure on the diagonal . Using
2σclt =

∑t
j,k C(j, k) = S(0)t we can write

C̄ =
2S(0)

N =
4σcl
N . (3.8)

Because of ergodicity, for large N , C̄ does not depend on the statistical operator ρ used in the
definition of the correlation function, provided we do not take some non generic state like a single
eigenstate |φk〉 for instance. Note that Equation (3.8) is valid on a single quantum invariant
subspace. If U0 has symmetries, so that its Hilbert space is split into s components of sizes Nj ,
the average C̄ will be different on different subspaces, C̄j = 4σcl/Nj . Averaging over all invariant
subspaces then gives

C̄ =
4sσcl
N , (3.9)

so that C̄ is increased by a factor s compared to the situation with only a single subspace. The
fidelity decay will start to be dominated by the average plateau (3.8) at time tH when the quadratic
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growth takes over, C̄t2H ≈ 2σcltH,

tH =
1

2
N ∝ h̄−d, (3.10)

which is nothing but the Heisenberg time associated with the inverse density of states. Again, if
one has s invariant subspaces, the Heisenberg time is tH = N/2s. This crossover time agrees with
the result of Cerruti & Tomsovic (2002) and for random matrix models with Gorin et al. (2004).

In Figure 3.4 we show numerical calculation of the correlation sum for the chaotic kicked top at
α = 30. We compare the classical correlation sum (the same data as in Figure 3.1) and quantum
correlation sum. One can nicely see the crossover from linear growth of quantum correlation sum
2σclt for small times t < tH, to the asymptotic quadratic growth due to correlation plateau C̄. In
addition, numerically fitted asymptotic growth 0.103t/S and 0.0077t/S nicely agree with formula
for C̄, using N = S and classical values of transport coefficients σcl = 0.0515 and 0.00385 for
γ = π/6 and γ = π/2, respectively.
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Figure 3.5: Histogram of the normalised distribution of the diagonal matrix elements Vkk for the
chaotic kicked top and S = 4000 on OE subspace (2.24). The dotted line is the theoretical Gaus-
sian distribution with the second moment C̄ and the two chain lines are expected

√
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deviations if there are Ni elements in the i−th bin. Note the different x-ranges in two figures due
to different σcl for the two chosen γ.

For times t > tH, and provided δ is sufficiently small, the correlation sum will grow quadratically
and the linear response fidelity reads

F (t) = 1− δ2

h̄2
4σcl
N t2. (3.11)

To derive the decay of fidelity beyond the linear response regime one needs higher order moments
of diagonal elements of perturbation V . If we use the BCH form of the echo operator (2.14) and
discard the term involving ‡ Γ(t), we have the fidelity amplitude f(t) =

∑

k exp (−iVkkδt/h̄)/N ,
where we choose an ergodic average ρ = � /N . In the limit N → ∞ we can replace the sum with
an integral over the probability distribution of diagonal matrix elements p(Vkk) = p(V ),

f(t) =

∫

dV p(V ) exp (−iV δt/h̄). (3.12)

‡in Chapter 4 we will see that the size of Γ(t) term grows at most linearly with time and so can be neglected
because of δ2 prefactor.
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For long times the fidelity amplitude is therefore a Fourier transformation of the distribution of
diagonal matrix elements. For classically mixing systems the distribution is conjectured to be
Gaussian with the second moment equal to C̄ (3.8). This is confirmed by numerical data in
Figure 3.5. The mean value of diagonal matrix elements is perturbation specific and is for our
choice of the perturbation (2.22)

∑

k Vkk/(2S + 1) = (2S + 1)(S + 1)/12S2. From the figure we
can see that the distribution is indeed Gaussian with the variance agreeing with the theoretically
predicted C̄ = 4σcl/S. The Fourier transformation of a Gaussian is readily calculated and we get
a Gaussian fidelity decay

F (t) = exp
(

−(t/τp)2
)

, τp =

√

N
4σcl

h̄

δ
. (3.13)

In order to see a Gaussian fidelity decay for mixing systems the perturbation strength δ must be
sufficiently small. If it is not, the fidelity will decay exponentially (3.5) to its fluctuating plateau
F̄ before time tH when the Gaussian decay starts. Demanding that the mixing decay time τm is
smaller than tH = N/2 gives the critical perturbation strength δp,

δp =
h̄√
σclN

. (3.14)

For δ < δp we will have a Gaussian decay (3.13) otherwise the decay will be exponential (3.5), for
details see Section 3.3.
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Figure 3.6: Quantum fidelity decay for δ < δp in the chaotic regime. For γ = π/2 data for
δ = 1 · 10−6 (solid curve) and 5 · 10−6 (dotted curve) are shown. For γ = π/6, δ = 3 · 10−7 (solid)
and 1 · 10−6 (dotted) are shown. Note that for both γ the curves for both δ practically overlap.
The chain curves are theoretical predictions (3.13) with classically computed σcl.

Again we numerically checked the predicted Gaussian decay for the chaotic kicked top with
α = 30 and S = 1500 and a full trace average over Hilbert space. The results of numerical
simulation, together with the theory are shown in Figure 3.6.
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The regime of Gaussian decay is sometimes referred to as the perturbative regime (Cerruti &
Tomsovic, 2002; Jacquod et al. , 2001) because it can be derived using the lowest order perturbation
theory. Writing first order corrections in phases φδk = φk + Vkkδ/h̄ and for overlap matrix Pkl =
δkl +O(δ) (2.36) one gets the Fourier transform formula (3.12).

3.2 Regular Dynamics

As opposed to mixing dynamics which was characterised by a linear growth of the double sum of
the correlation function, the regular regime will typically exhibit quadratic growth. By a regular
regime we again refer to the behaviour of the correlation function. Typically, its double sum will
exhibit quadratic growth for integrable or mixed (KAM) systems. In such case, we can define a
time average correlation function, denoted by C̄

C̄ = lim
t→∞

1

t2

t−1
∑

j,k=0

C(j, k). (3.15)

For nonzero C̄ we will call this a “regular regime”. Of course, we have N -dependent nonzero value
of C̄ also in mixing systems (3.8), as discussed in Section 3.1.1. Here we consider only systems
where C̄ exists in the limit of N → ∞, i.e. nonzero C̄ is a consequence of the dynamics and not
of the finite Hilbert space size. Due to non-ergodicity all expectation values (like C̄) depend on
the initial state, and we can not use ergodic average over the whole Hilbert space as for mixing
dynamics. The time in which time averaging of the correlation function converges will be denoted
by tave. For times tÀ tave the linear response fidelity decays quadratically in time

F (t) = 1− δ2

h̄2
C̄t2. (3.16)

In contrast to the mixing regime one does not need any further assumptions in order to go beyond
the linear response formula. Namely, for times tÀ tave we can define a time average perturbation
V̄

V̄ = lim
t→∞

1

t

t−1
∑

k=0

V (k) = lim
t→∞

Σ(t)

t
. (3.17)

Observe that V̄ is by construction a constant of motion, [V̄ , U0] = 0. In a mixing regime V̄ is trivial
(in the limit N → ∞), i.e. proportional to the identity §, whereas for regular dynamics nontrivial
V̄ exists. The special case of V̄ = 0 will be considered in Chapter 4. In the case of nondegenerate
spectrum of the unperturbed propagator U0, the time average is simply the diagonal part of V in
the eigenbasis |φk〉 of the unperturbed propagator, namely

V̄ =
∑

k

Vkk|φk〉〈φk|, (3.18)

where as usual Vkk = 〈φk|V |φk〉. Note that the average correlation function is

C̄ = 〈V̄ 2〉 − 〈V̄ 〉2. (3.19)

§Actually it can be made zero by subtracting from V the identity operator which only rotates a phase of the
fidelity amplitude and does not affect the fidelity itself.
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For times t À tave the operator Σ(t) is dominated by the linearly growing term V̄ t and one can
neglect contributions not growing with time. The BCH form of the echo operator can therefore be
simply written as

Mδ(t) = exp (−iV̄ δt/h̄), tÀ tave, (3.20)

where we neglected the term ∼ Γ(t)δ2 as it becomes important only at large times ∼ 1/δ2, whereas
the first term will cause the fidelity to decay already in time ∼ 1/δ. The above form of the echo
operator will be the main ingredient of theoretical calculation of the fidelity decay in the regular
regime.

As the operator V̄ commutes with the unperturbed propagator it is diagonal in the eigenbasis
|φk〉. In integrable systems the basis states |φk〉 can be ordered in a very special way. Namely, there
exist quantum numbers which are eigenvalues of canonical action operators having a very simple
algebra. Using action-angle operators will make derivations easier and will furthermore enable us
to use classical action-angle variables in the leading semiclassical order, thereby approximating
quantum fidelity in classical terms. So before proceeding with the evaluation of f(t) for various
initial states, let us have a look at action-angle operators.

3.2.1 Action-angle Operators

Since we assume the classical system to be completely integrable (at least locally, by KAM theorem,
in the phase space part of interest) we can employ action-angle variables, {jk, θk, k = 1 . . . d}, in
d degrees of freedom system. In the present section, dealing with the regular regime as well as in
Section 4.2.1 describing quantum freeze of fidelity in regular systems, we shall use lowercase letters
to denote classical variables and capital letters to denote the corresponding quantum operators.
For instance, the quantum Hamiltonian will be given as H(J ,Θ) whereas its classical limit will be
written as h(j,θ).

As our unperturbed Hamiltonian is integrable, it is a function of actions only, i.e. h0 = h0(j).
The solution of classical equations of motion is very simple,

j(t) = j,

θ(t) = θ + ω(j)t (mod 2π) (3.21)

with a dimensionless frequency vector

ω(j) :=
∂h0(j)

∂j
. (3.22)

The classical limit v(j, θ) of our perturbation generator V can be written as a Fourier series

v(j,θ) =
∑

m∈ � d vm(j)eim·θ, (3.23)

where a multi-index m has d components. The classical limit of the time-averaged perturbation V̄
is v̄ = v0(j), i.e. just the zeroth Fourier mode of the perturbation.

In quantum mechanics, one quantises the action-angle variables using the famous EBK pro-
cedure (see e.g. (Berry, 1977)) where one defines the action (momentum) operators J and angle
operators exp(im ·Θ) satisfying the canonical commutation relations,

[Jk, exp(im ·Θ)] = h̄mk exp(im ·Θ), k = 1, . . . , d. (3.24)
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As the action operators are mutually commuting they have a common eigenbasis |n〉 labelled by
d-tuple of quantum numbers n = (n1, . . . , nd),

J |n〉 = h̄(n+α)|n〉 (3.25)

where 0 ≤ αk ≤ 1 are the Maslov indices which are irrelevant for the leading order semiclassical
approximation we will use. It follows from (3.24) that the angle operators act as shifts

exp(im ·Θ)|n〉 = |n+m〉. (3.26)

The Heisenberg equations of motion can be trivially solved in the leading semiclassical order by
simply disregarding the operator ordering,

J(t) = eiH0t/h̄Je−iH0t/h̄ = J ,

eim·Θ(t) = eiH0t/h̄eim·Θe−iH0t/h̄ ∼= eim·ω(J)teim·Θ, (3.27)

in terms of the frequency operator ω(J). Throughout this paper we use the symbol ∼= for ’semiclas-
sically equal’, i.e. asymptotically equal in the leading order in h̄. Similarly, time evolution of the
perturbation observable is obtained in the leading order by substitution of classical with quantal
action-angle variables in the expression (3.23)

V (t) = eiH0t/h̄V e−iH0t/h̄ ∼=
∑

m

vm(J)eim·ω(J)teim·Θ. (3.28)

Operator V̄ (J) is diagonal in the eigenbasis |n〉 and therefore the expectation value of the echo
operator (3.20) in the initial density matrix ρ is

f(t) =
∑

n

exp
(−iδtV̄ (h̄{n+α})/h̄)Dρ(h̄n), Dρ(h̄n) = 〈n|ρ|n〉. (3.29)

For pure initial states Dρ is just Dρ = |〈ψ|n〉|2. This is still the exact quantum mechanical
expression of the fidelity amplitude. Now we make a leading order semiclassical approximation
by replacing quantum V̄ with its classical limit v̄ and replacing the sum over quantum numbers
n with the integral over classical actions j. The replacement of the sum with the action space
integral (ASI) is valid up to classically long times ta, such that the variation of the argument in
the exponential across one Planck cell is small,

ta =
1

|∂j v̄|δ
∼ h̄0/δ. (3.30)

Subsequently we will see that the fidelity decays on shorter times and so the approximation is
justifiable. By denoting with dρ(j) the classical limit of Dρ(h̄n) we arrive at the fidelity amplitude

f(t) ∼= h̄−d
∫

ddj exp

(

−i δ
h̄
tv̄(j)

)

dρ(j). (3.31)

This expression will be used to evaluate the fidelity for different initial states.
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3.2.2 Coherent Initial States

We proceed to evaluate fidelity amplitude (3.31) for coherent initial state centred at (j∗,θ∗) in
action-angle phase space. The expansion coefficients of the initial density matrix ρ = |j∗,θ∗〉〈j∗,θ∗|
for a general coherent state in d degrees of freedom system can be written as

〈n|j∗,θ∗〉 =
(

h̄

π

)d/4

|detΛ|1/4 exp
{

− 1

2h̄
(Jn − j∗) · Λ(Jn − j∗)− in · θ∗

}

, (3.32)

where Λ is a positive symmetric d × d matrix of squeezing parameters and Jn = h̄(n + α) is an
eigenvalue of operator J in eigenstate |n〉. The classical limit of Dρ (3.29) is therefore

dρ(j) = (h̄/π)d/2 |detΛ|1/2 exp(−(j − j∗) · Λ(j − j∗)/h̄). (3.33)

The ASI for the fidelity amplitude can now be evaluated by the stationary phase method. To lowest
order in δt the stationary point js, i.e. the zero of [−iδtv̄ − (j − j∗) · Λ(j − j∗)], is at

js = j∗ +
itδ

2
Λ−1v̄′ +O(δ2), (3.34)

where the derivative of the average perturbation is

v̄′ =
∂v̄(j∗)
∂j

. (3.35)

For δt¿ 1 the stationary point is simply at j∗ and the fidelity is

F (t) = exp
{

−(t/τr)2
}

, τr =
1

δ

√

2h̄

v̄′ · Λ−1v̄′ . (3.36)

The fidelity amplitude on the other hand has an additional phase,

f(t) = exp
{

−(t/τr)2/2
}

exp (−iv̄(j∗)δt/h̄). (3.37)

Comparing the fidelity (3.36) with the linear response formula (3.16) we see that the average
correlation function for a coherent initial state is C̄ = 1

2 h̄(v̄
′ · Λ−1v̄′).

We have already briefly explained the behaviour of classical fidelity in Section 1.1.2, for details
see (Benenti et al. , 2003a). For regular dynamics one gets a ballistic decay of classical fidelity
for perturbations predominantly changing frequencies of tori or power-law decay for perturbations
predominantly changing the shape of tori. In the ballistic case, provided one is allowed to replace
the perturbation v with its time average v̄(j), one gets the same Gaussian decay of the classical
fidelity as for the quantum one (3.36). Therefore, in the regime where v̄ determines the decay of
classical fidelity, classical and quantum fidelity agree. From the expression for the echo operator
(3.20) one can in this case interpret the fidelity as the overlap between the initial coherent state and
the state obtained after the evolution with the Hamiltonian δv̄. Because v̄ is a function of actions
only, the classical equations of motion are very simple, namely only the frequency of classical
motion is changed by the amount ∆ω = v̄′ δ. This change in frequency causes the “echo” packet
Mδ(t)|ψ(0)〉 to move ballistically away from its initial position and as a consequence fidelity decays.
For coherent state the shape of the packet is Gaussian and therefore fidelity decay is also Gaussian.
For other forms of localized initial packets the functional form of the fidelity will be different but
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with the same dependence on the ballistic separation “speed” v̄ ′. If V̄ ≡ 0 we obviously have
v̄′ = 0, this situation will be discussed in Chapter 4 describing a freeze of fidelity.

In one dimensional systems (d = 1) another phenomena should be observable. After long time
the echo packet will make a whole revolution around the torus causing the fidelity to be large again.
This will happen after the so-called beating time tb determined by δv̄′(j∗)tb = 2π,

tb =
2π

v̄′δ
. (3.38)

This beating phenomena is particular to one dimensional systems as in general the incomensurability
of frequencies will suppress the revivals of fidelity.
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Figure 3.7: Quantum fidelity for a coherent state of the regular kicked top, α = 0.1, S = 100,
γ = π/2 and δ = 0.0025. The full curve is the theoretical decay (3.41) and the vertical line is
indicates the theoretical beating time (3.38).

Let us now illustrate the above theory with numerical experiment. We again take the kicked
top (2.20), but this time with γ = π/2 and α = 0.1 resulting in regular classical dynamics. The
perturbation is the same as for mixing situation, i.e. a perturbation in α resulting in a classical
perturbation v = z2/2 (2.22). Let us denote by ϑ̃, ϕ̃ the spherical angular coordinates measured
with respect to the y-axis. For α = 0 the action-angle variables are (j = cos ϑ̃ = y, θ = ϕ̃) and we
can use the preceding theory. The squeezing parameter for spin coherent states is (2.26)

Λ = 1/ sin2 ϑ̃ = 1/(1− y2). (3.39)

To calculate the decay time τr we need the derivative of the average perturbation. For α = 0 the
evolution is very simple, just a rotation by π/2 around the y-axis, resulting in

v̄ =
1

4
(1− j2), v̄′ = − j

2
. (3.40)
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Theoretical decay of fidelity is therefore

F (t) = exp
(

−δ2St2y2(1− y2)/8
)

, (3.41)

where we used h̄ = 1/S. In Figure 3.7 we show the results of numerical calculation for a coherent
packet placed at spherical coordinates (with respect to z-axis) (ϑ∗, ϕ∗) = π(1/

√
3, 1/
√
2) resulting

in action y = 0.77 (note that we projected the initial state onto the invariant OE subspace (2.24)).
Spin number is chosen S = 100. Excellent agreement with the theoretical Gaussian decay can be
seen. In addition, we can observe a revival of the fidelity at tb. For our OE subspace the initial
state is composed of two symmetrically positioned images, so that the beating time is tb = 2π/yδ,
which nicely agrees with the numerics.
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Figure 3.8: Average fidelity decay 〈F (t)〉j (3.42) for a regular kicked top with α = 0.1, γ = π/2 and

perturbation of strength δ = 10−3 in the parameter α. The averaging is done over 200 coherent
initial states randomly placed on a sphere and projected onto OE subspace (2.24). The Dotted
line is the theoretical power law decay (3.44). Pluses show the absolute value square of the average
fidelity amplitude.

If F (t, j) is Gaussian fidelity decay (3.36) for a coherent initial state centred at j, we can define
the average fidelity

〈F (t)〉j :=
(2π)d

V

∫

ddjF (t, j). (3.42)

Packing all j dependent terms in a non-negative scalar function g(j), the fidelity decay for a
single coherent state can be written as F (t, j) := exp (−δ2t2g(j)/h̄). For large δ2t2/h̄ the main
contribution to the average will come from regions of small g(j) where the fidelity decay is slow.
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In general the function g(j) will have zeros in action space, for simplicity let us assume there is a
single zero at j∗ of order η. The asymptotic decay can then be calculated and scales as

〈F (t)〉j ³
(

h̄

δ2t2

)d/η

, (3.43)

where the sign ³ will denote “in the asymptotic limit” troughout the work. For infinite phase space
the order of a zero η can only be an even number, whereas for a finite space η can also be odd.

To illustrate the theory, we calculated the average decay for the kicked top and the perturbation
in α used before. The function g is g(j) = j2(1− j2)/8. We have three zeros, two of order η = 1 at
the boundary of the phase space j = ±1 and one of order η = 2 at j = 0. Asymptotically the zero
with η = 2 will dominate, giving the decay

〈F (t)〉j ³
√
2π

δt
√
S
. (3.44)

Figure 3.8 shows that we indeed get asymptotic ∼ t−1 decay. If one averages the fidelity amplitude,
the result is close to zero (pluses in the figure) because the phase present in the fidelity amplitude
(3.37) averages to zero¶.
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Figure 3.9: Average fidelity decay 〈F (t)〉j (3.42) for a regular kicked top. Everything is the same
as in Figure 3.8 apart from the perturbation being in the angle γ. Dotted line is the theoretical
power law decay (3.45) without any fitting parameter. Note that we have different power law decay
as in Figure 3.8. The vertical dotted line shows the position of the beating time tb = π/δ (3.38)
which is in this case independent of j. If tb depends on j (as in Figure 3.8) such recovery is absent
in the average fidelity.

¶One would have to have zeros of v̄ and v̄′ at the same position j∗ to get a nonzero average, which is generally
not the case.
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As a second example, we take the same regular kicked top system and parameters, only the
perturbation is now in rotation angle γ, i.e. Uδ := U(γ + δ, α). The function g is in this case
g(j) = (1− j2)/2. As opposed to the previous case, now we have only two zeros of order η = 1 at
j = ±1. The asymptotic decay is therefore

〈F (t)〉j ³
1

δ2t2S
. (3.45)

Denominator is now quadratic in time, whereas for the perturbation S2
z it was linear. The theoretical

decay law is again confirmed by the numerical experiment shown in Figure 3.9. The asymptotic
power law decay of average fidelity is therefore system dependent.

An entirely analogous method will be used in the next section to calculate the asymptotic decay
for a random initial state. The only difference is that for a random initial state the zeros of v̄ are
the relevant quantity, whereas for an average fidelity decay of a coherent state the zeros of τr, i.e.
zeros of v̄′ are important. Therefore, in a regular system the asymptotic decay for a random initial
state is usually not the same as the average decay for a coherent state.

3.2.3 Random Initial State

In the previous section we have seen that for localized packets the fidelity decay is dictated by the
separation of two packets due to the perturbation. The opposite possible choice of initial condition
is to take completely delocalised state, a uniform mixture of all states ρ = 
 /N being the extreme
case. For uniform initial density matrix ρ = 
 /N , the Dρ takes the form Dρ(J) = 1/N . The
classical limit of Dρ is obtained by calculating the number of states N using the Thomas-Fermi
rule, resulting in the classical limit dρ(j) = (2πh̄)d/V, where V is the size of the classical phase
space. While for small times fidelity will decay quadratically (3.16), for large δt/h̄ the integral in
f(t) (3.31) can again be calculated using the method of stationary phase. In contrast to a coherent
state case, now one can have more than one stationary point. If we have p stationary points,
jη, η = 1, . . . , p, where the phase is stationary, ∂v̄(jη)/∂j = 0, the integral results in

f(t) =
(2π)3d/2

V

∣

∣

∣

∣

h̄

tδ

∣

∣

∣

∣

d/2 p
∑

η=1

exp{−itv̄(jη)δ/h̄− iνη}
| det V̄η|1/2

, (3.46)

where {V̄η}kl := ∂2v̄(jη)/∂jk∂jl is a matrix of second derivatives at the stationary point η, and
νη = π(m+−m−)/4 where m± are the numbers of positive/negative eigenvalues of the matrix V̄η.
We also assumed that the phase space is infinite. In a finite phase space we will have diffractive
oscillatory corrections in the stationary phase formula, see end of Section 4.2.4 or numerical results
below. Note also that for a large Hilbert space dimension N the fidelity for a single initial random
state will also decay according to the asymptotic formula (3.46). The decay time of the quantum
fidelity for random initial states scales therefore as τr ∼ h̄/δ and is by a factor

√
h̄ shorter than for

coherent initial states. We repeat that the stationary phase formula (3.46) is expected to be correct
in the range const h̄/δ < t < const′/δ so it will give asymptotic decay of fidelity. Most interesting
to note is the power-law dependence on time and perturbation strength, F (t) ³ [h̄/(tδ)]d. With
increasing dimensionality d of a system the decay gets faster. This allows for a possible crossover
to a Gaussian decay when approaching the thermodynamic limit d → ∞, observed in a class of
kicked spin chains by Prosen (2002). Agreement beyond linear response with the Gaussian decay
is frequently observed also for a finite d, e.g. in a spin model of quantum computation (Prosen &
Žnidarič, 2001) or even in a one dimensional kicked top seen in Figure 3.10.
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Figure 3.10: Fidelity decay for the regular kicked top, α = 0.1, γ = π/2, δ = 0.01, S = 100. The
solid curve gives the results of a numerical simulation for ρ = � /N on the OE subspace (2.24).
Isolated dots denote the difference between numerical calculation and analytic formula (3.48) for
α → 0, |Fnum.(t) − Fanali.(t)|. The dotted line gives a predicted asymptotic decay ∝ t−1, and
the dashed/chain curves are the predicted fidelity decays at small times, namely the second order
expansion F (t) = 1 − (Stδ)2/180, and ’improved’ one by an exponential. The wiggling dashed
curve represents the numerics for a single random state.

For numerical demonstration we take the same kicked top system as for the case of coherent
initial states, α = 0.1, γ = π/2 and S = 100 and perturbation in parameter α, giving v̄ = (1−j2)/4.
Rather than comparing the numerical results with the asymptotic formula (3.46) we will try to
directly calculate the fidelity decay in order to demonstrate oscillatory corrections due to a finite
Hilbert space. We start with the quantum expression for the fidelity amplitude (3.29), using the
eigenvalues (2m− 1)2 of operator S2

y on OE subspace,

F (t) =

∣

∣

∣

∣

∣

∣

2

S

S/2
∑

m=1

exp (−iδt(2m− 1)2/4S)

∣

∣

∣

∣

∣

∣

2

. (3.47)

For large S we can replace the sum with an integral and get

F (t) =
π

δSt

∣

∣

∣

∣

erfi(
1

2
eiπ/4
√
δSt)

∣

∣

∣

∣

2

, (3.48)

where erfi(z) = 2
i
√
π

∫ iz
0 e−t

2
dt is a complex error function with the limit limx→∞ |erfi(12eiπ/4

√
x)| = 1

to which it approaches by oscillating around 1. We therefore have an analytic expression for the
fidelity (3.48) in the case of an uniform average over the whole Hilbert space or, equivalently, over
one random initial state. Its asymptotic decay is proportional to t−1 which agrees with the general
semiclassical asymptotic (3.46) but in addition we have an oscillatory erfi correction due to a finite
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space. For small times we can get initial quadratic linear response decay by expanding the full
theoretical formula (3.48) or more easily by simply calculating C̄ according to formula (3.19). One
can even use the classical calculation. For α = 0 we have v̄ = (1 − y2)/4, so the classical average
correlation functions is

C̄cl =
1

16
(y4 − y22) = 1

180
, (3.49)

where the averages are performed over a uniform distribution on a sphere. In Figure 3.10 we
compare theoretical decay (3.48) with the numerical as well as with the linear response formula
F (t) = 1 − (δS)2C̄clt

2. Also, beyond the linear response there is a significant agreement with the
Gaussian approximation F (t) = exp (−δ2S2C̄clt

2) obtained by exponentiating the linear response
expression.

3.3 Time Scales

Let us close the present chapter with an overview of time scales of different fidelity decays depending
on parameters δ and h̄ and on the initial state.

For regular dynamics we have only three relevant time scales, the classical averaging time tave in
which the average perturbation operator converges to V̄ , the quantum fidelity decay time τr and the
time t∞ when the fidelity reaches a fluctuating plateau due to a finite dimension of Hilbert space.
For times smaller than tave decay is system and state specific and can not be discussed in general.
After tave the fidelity decay is first quadratic in time as dictated by the linear response formula
(3.16). The decay time τr scales as ∼

√
h̄/δ (3.36) for coherent initial states and as ∼ h̄/δ (3.46) for

random initial states. Beyond linear response the functional dependence of the decay is Gaussian
for coherent initial states and power law for random initial states with the before mentioned decay
time τr. This decay persists until the finite size plateau F̄ (2.38) is reached at time t∞. The time
t∞ again depends on the initial state as well as on the Hilbert space dimension N . For random
initial states the power law decay gets faster with increasing dimensionality d of the system, and is
conjectured to approach a Gaussian decay in the thermodynamic limit.

For mixing dynamics we have a more complicated situation. There are five relevant time scales
(even six for coherent initial states): The classical mixing time tmix on which correlation functions
decay; the quantum decay time of the fidelity τm; the Heisenberg time tH after which the system
starts for “feel” finiteness of Hilbert space; the decay time τp of perturbative Gaussian decay
present after tH; the time t∞ when the fidelity reaches finite size plateau; for coherent initial states
we have in addition the Ehrenfest time tE up to which we have quantum-classical correspondence.
Depending on the interrelation of these time scales, i.e. depending on the perturbation strength
δ, Planck’s constant h̄ and the dimensionality d, we will also have different decays of fidelity. All
different regimes can be reached by fixing h̄ and increasing δ. Let us follow different decay regimes
as we increase δ (shown in Figure 3.11):

(a) For δ < δp we will have tH < τm. This means that at the Heisenberg time, the fidelity due
to exponential decay (3.5) will still be close to 1, F (tH) ≈ 1, and we will see only a Gaussian
decay due to finite Hilbert space (3.13). The critical δp below which we will see this regime
has already been calculated (3.14) and is

δp =
h̄√
σclN

= h̄d/2+1 (2π)
d/2

√
σclV

. (3.50)
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For δ < δp the fidelity will have Gaussian decay with the decay time τp (3.13)

τp =
h̄1−d/2

δ

√

V
4σcl(2π)d

. (3.51)

As we increase δ, we will eventually reach a regime in which we will see initial exponential
decrease and then at tH crossover into a Gaussian decay until the plateau is reached at t∞.

(b) For δp < δ < δs we will have a crossover from the initial exponential decay (3.5) to the
asymptotic Gaussian decay (3.13) at time tH. This regime will take place if τm < tH < t∞.
With increasing perturbation, t∞ will decrease and the upper border δs is determined by the
condition t∞ = tH. Denoting a finite size plateau by F̄ ∼ 1/N µ, with µ lying between 1 and 2,
depending on the initial state (see Section 2.2.1), we have the condition exp (−(tH/τp)2) = F̄
which gives

δs =
h̄√
σclN

√

µ lnN = δp
√

µ lnN . (3.52)

Further increasing the perturbation, we reach perhaps the most interesting regime, in which
quantum fidelity can decay faster the more chaotic the systems is. In this regime the expo-
nential decay persists until the plateau is reached.

(c) For δs < δ < δmix (δE) we will have an exponential decay until t∞. The upper border δmix

is determined by the condition τm = tmix which is a point where the argument leading to
the factorisation of n−point correlation function breaks down. For random initial states δmix

does not depend on h̄ and we get

δmix =
h̄√

2σcltmix
= δp

√

N
2tmix

. (3.53)

Note that the relative size of this window δmix/δs =
√

N/2µtmix lnN increases both in the
semiclassical h̄→ 0 and in the thermodynamic d→∞ limit.

For coherent initial states the quantum correlation function relaxes on a slightly longer time
scale, namely on the Ehrenfest time tE ∼ − ln h̄/λ. Until tE quantum packet follows the
classical trajectory and afterwards interferences start to build leading to the breakdown of
quantum-classical correspondence. Equating τm = tE gives the upper border for coherent
states

δE =
h̄√
− ln h̄

√

λ

2σcl
= δmix

√

λtmix

− ln h̄
. (3.54)

(d) For δ > δmix the perturbation is so strong that the quantum fidelity decays before tmix, i.e.
perturbed and unperturbed dynamics are essentially unrelated and fidelity decays almost
instantly.

For coherent initial states the upper border of regime (c) is at δE which is smaller than the lower
border of regime (d) δmix which opens up the possibility of another regime between (c) and (d),
namely for δE < δ < δmix the fidelity will decay within the Ehrenfest time. In this regime the decay
of quantum fidelity is the same as the decay of classical fidelity and can be explained in terms of
classical Lyapunov exponents (Veble & Prosen, 2004). Note that the relative width of this regime
δmix/δE =

√

ln (1/h̄)/λtmix grows only logarithmically in 1/h̄, i.e. much slower than the width of
regime (c).
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Figure 3.11: Schematic view of different fidelity decay regimes for mixing dynamics. For details see
text.

The fidelity decay time scales as ∼ 1/δ for regular systems, while it is ∼ 1/δ2 for mixing
dynamics. This opens up an interesting possibility: is it possible that the fidelity would decay
faster for regular systems than for chaotic ones? The answer is yes. Demanding τr < τm we find
that for sufficiently small δ one will indeed have faster fidelity decay in regular systems. This will
happen for

δ <

{

δr = h̄ C̄1/2/2σcl ∝ h̄ random init.state

δc = h̄3/2
√

v̄′ · Λ−1v̄′/8σ2cl ∝ h̄3/2 coherent init.state
. (3.55)

We explicitly wrote the result for regular initial states δr and coherent initial states δc as the two
have different scaling with h̄. We can see that for random initial states δr scales in the same way
as δmix and so one has faster decay of fidelity in regular systems just provided δ < δr ∼ δmix. For
a coherent initial state this can be satisfied above the perturbative border δ > δp only in more
than one dimension d > 1. In one dimensional systems δp and δc have the same scaling with h̄ and
whether we can observe faster decay of fidelity in regular systems than in chaotic ones depends on
the values of σcl and v̄

′. We stress that our result does not contradict any of the existing findings on
quantum-classical correspondence. For example, a growth of quantum dynamical entropies (Alicki
et al. , 1996; Miller & Sarkar, 1999) persists only up to logarithmically short Ehrenfest time tE, which
is also the upper bound for the so-called “Lyapunov” decay of the fidelity (Jalabert & Pastawski,
2001; Cucchietti et al. , 2002a) and within which one would always find F reg(t) > Fmix(t) (for
coherent states) above the perturbative border δ > δp, whereas our theory reveals new nontrivial
quantum phenomena with a semiclassical prediction (but not correspondence!) much beyond that
time. If we let h̄ → 0 first, and then δ → 0, i.e. we keep δ À δr,c(h̄), then we recover the result
supported by classical intuition, namely that the regular (non-ergodic) dynamics is more stable
than the chaotic (ergodic and mixing) dynamics. On the other hand, if we let δ → 0 first, and only
after that h̄→ 0, i.e. satisfying (3.55), we find somewhat counterintuitive result saying that chaotic
(mixing) dynamics is more stable than the regular one. We can conclude the section by saying that
we have three non-commuting limits, namely the semiclassical limit h̄→ 0, the perturbation strength
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limit δ → 0, and the thermodynamic limit d→∞, such that no pair of these limits commutes.

Similar regimes as for the fidelity decay were also obtained by Cohen (1999, 2000); Cohen &
Kottos (2000) when studying parametrically driven systems and energy dissipation.

3.3.1 Illustration with Wigner Functions

In order to demonstrate faster decay of fidelity for a regular than for a chaotic system we did a
numerical simulation on the kicked top. For chaotic situation we choose α = 30, while for regular
one we take α = 0.1 as before. Other parameters are the same for the chaotic and the regular
case, γ = π/2, S = 100 and a coherent initial state at (ϑ∗, ϕ∗) = π(1/

√
3, 1/
√
2). Perturbation of

strength δ = 1.5 · 10−2 is in parameter α. In Figure 3.12 we show the fidelity decay for both cases
and an illustration of states in terms of Wigner functions. Spin Wigner function is a distribution on
a sphere with a nice property that if we have two states ρ1 and ρ2 and their corresponding Wigner
functions Wρ1 and Wρ2 the following equality holds,

tr(ρ1ρ2) =

∫

Wρ1Wρ2dΩ. (3.56)

For an exact definition of a spin Wigner function see Appendix A. Wigner functions enable us
to represent fidelity, which is an overlap of the initial state ρ(0) with the echo state ρM(t) (2.8),
as a phase space overlap integral of two Wigner functions. Also, the classical quantity analogous
to Wigner function is just the classical density in phase space. But note that Wigner function is
not necessarily positive whereas the classical density is, so the positivity of a Wigner function is a
necessary condition (but not sufficient) for the classicality of a state. In Figure 3.12 we show for
the chaotic (triangles in the fidelity plot and pictures above) and the regular case (pluses in the
fidelity plot and pictures below) two series of Wigner functions at different times (t = 0, 60, 120):
the Wigner function after the unperturbed forward evolution (row labeled “forward”) and the
Wigner function after the echo (row labeled “echo”). We also show the structure of the classical
phase space. In the inset the same data for the fidelity decay is shown on a longer time scale
and the vertical line shows the theoretical position of tb. The fidelity is the overlap between the
echo Wigner function and the initial Wigner function. For our choice of coherent initial states,
the initial Wigner function is a Gaussian in the semiclassical limit (2.28). For chaotic dynamics
the forward Wigner function develops negative values around the Ehrenfest time after which the
quantum-classical correspondence is lost. For the regular dynamics this correspondence persist
much longer, namely until the “integrable” Ehrenfest time ∼ h̄−1/2 after which the initial wave
packet of size ∼ h̄1/2 spreads over the phase space. For a detailed study of Wigner functions in
chaotic systems see (Horvat & Prosen, 2003; Lombardi & Seligman, 1993) and references therein.
The echo Wigner function for regular dynamics moves ballistically from the initial position, causing
the Gaussian decay of fidelity. But note that for regular dynamics the echo Wigner function does
not have negative values even if they occur in the forward Wigner function. In our case the quantum
fidelity agrees with the classical one for regular dynamics. In a chaotic case on the other hand, the
echo image stays at the initial position and diffusively decays in amplitude, causing the fidelity to
decay slower than in regular case. Classical fidelity follows quantum fidelity in the chaotic regime
only up to the chaotic Ehrenfest time.

Finally, we would like to illustrate the dimensional dependence of the fidelity decay. We have
seen that in d > 1 border δc is above the perturbative border and so one can get faster regular decay
in a wider range of δ. In addition, strong revivals of fidelity in one dimensional regular systems for
coherent initial states should be absent for d > 1.
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Figure 3.12: Fidelity decay for chaotic (top curve and pictures) and regular (bottom curve and
pictures) kicked top. Initial conditions and the perturbation are the same in both cases (see text
for details). Wigner functions after forward and echo evolution are shown.

3.3.2 Coupled Kicked Tops

As already remarked, for a one dimensional system (d = 1), the ‘surprising’ behaviour of the regular
decay time being smaller than the mixing one, τr < τm, is for coherent initial states possible only
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around the border (3.50) δp (unless σcl is very small) where the exponential decay in the mixing
regime goes over to a Gaussian decay due to a finite N . However, for more than one degree of
freedom, such behaviour is generally possible well above the finite size perturbative border δp. In
order to illustrate this phenomenon we will now briefly consider a numerical example of a pair of
coupled kicked tops where d = 2.
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F(
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t

Figure 3.13: Fidelity decay for two coupled kicked tops, δ = 8 ·10−4 and S = 200. The upper curves
are for ε = 20 (mixing regime), the solid curve for a coherent initial state and the dashed curve for
a random one. The lower dotted curve is for ε = 1 (regular regime) and a coherent initial state.
The exponential and Gaussian chain curves give, respectively, the expected theoretical decays (3.5)
and (3.36), with the Gaussian decay time determined by the best fit.

We take a simplified version of coupled kicked tops (2.25) with a unitary propagator

U(ε) = e−i
π
2
S1ye−i

π
2
S2ye−iεS1zS2z/S . (3.57)

where S1 and S2 are two independent quantum angular momentum vectors. The perturbed propa-
gator is obtained by perturbing the parameter ε, so that Uδ = U(ε+δ). The perturbation generator
is therefore

V =
1

S2
S1zS2z, (3.58)

with h̄ = 1/S. We have used the propagator (3.57) over the full (2S + 1)2 dimensional Hilbert
space, without taking into account the symmetry classes of the double kicked top.

The classical limit is obtained by S →∞ and writing the classical angular momentum vectors
in terms of two unit vectors on the sphere r1,2 = S1,2/S. In component notation we get the classical
map

x′1,2 = z1,2 (3.59)

y′1,2 = y1,2 cos(εz2,1) + x1,2 sin(εz2,1)

z′1,2 = −x1,2 cos(εx2,1) + y1,2 sin(εz2,1)
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We have chosen two regimes, non-ergodic (KAM) regime for ε = 1 where a vast majority of classical
orbits are stable, and mixing regime for ε = 20 where no significant traces of stable classical orbits
were found and where the correlation sum was to a very good accuracy given by the first term only

σ ≈ 1

2
C(0) =

1

2S4N trS2
1zS

2
2z =

1

18

(

1 +
1

S

)2

. (3.60)

The value of σ if the whole correlation sum is calculated is σ = 0.058, only slightly larger than 1/18
given by C(0). Our motivation here was to compare the regular and mixing fidelity decays for the
coherent initial state which is here the product of spin coherent states (2.26) for each top

|ϑ, ϕ〉 = |ϑ2, ϕ2〉 ⊗ |ϑ1, ϕ1〉. (3.61)

In Figure 3.13 we show the fidelity decay at S = 200 and δ = 8 · 10−4 in regular and mixing

dp
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Figure 3.14: Numerically calculated decay time of the quantum and classical fidelity for the double
kicked top. The two full curves show quantum fidelity, the one with a higher slope for the chaotic
regime and the other for the regular regime. Symbols are decay times of classical fidelity, diamonds
for the regular and squares for the chaotic regime. The two dotted straight lines are theoretical decay
time predictions for the regular (3.63) and chaotic (3.62) regimes. The dotted curve (overlapping
with squares) is the theoretical classical decay time τclas = ln (0.25/δ)/λ. Vertical lines show the
theoretical position of perturbation borders (3.64). The shading and the letters (a),(c) and (d)
correspond to the regimes described in Figure 3.11. The Zeno regime corresponds to very short
times τ < 1 (i.e. strong perturbations δ > 0.4).

cases starting from the coherent state (3.61) with (ϑ1, ϕ1) = (ϑ2, ϕ2) = π(1/
√
3, 1/
√
2). We find

excellent agreement between the theoretical predictions (3.5) and (3.36) and the numerics. Note
that we are here already in the regime δ < δc where the fidelity decay in the mixing regime is
slower than in regular regime. In mixing regime (ε = 20) we show for comparison also the fidelity
decay for a random initial state for which the decay is (due to ergodicity) almost identical to the
one for coherent initial state. Overall the fidelity decay here is similar as in a one-dimensional case,
however, the scaling of various time and perturbation scales on h̄ = 1/S is different as discussed in



46 Chapter 3. General Perturbation

Section 3.3. Observe also that in the regular regime the revivals of fidelity (quantum recurrences
at tb) are much less pronounced in d = 2 than in d = 1 (e.g. in Figure 3.7).

To furthermore illustrate theoretical regimes of the fidelity decay as explained in the previous
section (Figure 3.11) we numerically calculated the dependence of the time τ at which the fidelity
falls to value 0.37 on the perturbation strength δ for the double kicked top model (3.57). The
initial state is the same product coherent state as before. We also computed the decay time for
the classical fidelity in order to compare the quantum and the classical fidelity. The results for
S = 100 are on Figure 3.14. For both the classical and the quantum fidelity we calculated two sets
of data, one for regular regime at ε = 1 and one for chaotic regime at ε = 5. Numerical data is then
compared with the theoretical predictions. For the chaotic decay time we use previously calculated
σ = 0.058 (3.60) to get τm (3.5)

τm =
8.6

δ2S2
. (3.62)

In the regular case we used fitting of the decay in Figure 3.13 to get the theoretical prediction
(3.36), i.e. to obtain

√
v̄′Λ−1v̄′,

τr =
4.5

δ
√
S
,

√
v̄′Λ−1v̄′ = 0.31. (3.63)

Note that the coefficient
√
v̄′Λ−1v̄′ has been obtained by numerical fitting only for convenience.

In principle it could be obtained from classical dynamics, but we would again have to resort to
numerical calculations as the system at ε = 1 is in a mixed KAM-like regime. The values of σ and√
v̄′Λ−1v̄′ can then be used to calculate various perturbation borders as discussed in the beginning

of Section 3.3. For our choice of S = 100 we get (3.50,3.55,3.54,3.53)

δp = 0.0005, δc = 0.0019, δE = 0.013, δmix = 0.029. (3.64)
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Figure 3.15: Numerically calculated dependence of quantum (solid lines) and classical (symbols)
fidelity decay times on the parameter ε for the double kicked top. Different curves are for different
perturbation strengths δ. By increasing ε the classical dynamics goes from regular to mixing regime,
see also right figure showing the dependence on ε of numerically calculated Lyapunov exponents.
By decreasing δ on the other hand, we go from the regime of quantum-classical correspondence for
δ > δE towards a genuinely quantum regime, where in a chaotic regime we can increase the decay
time by increasing chaoticity – shaded region for the three smallest δ.
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These theoretical borders are denoted with vertical lines in Figure 3.14. We can see, that in regular
regime the quantum and the classical fidelity agree in the whole range of δ and furthermore agree
with the theoretical τr. In the chaotic regime things are a bit more complicated. By decreasing
perturbation from δ = 1 we are at first in regime of very strong perturbation where the fidelity decay
happens faster than any dynamical scale and it does not depend on whether we look at chaotic or
regular system or quantum or classical fidelity. This is the so-called Zeno regime. For smaller δ the
regular and chaotic regimes start to differ but in the chaotic regime we still have quantum-classical
correspondence. This correspondence breaks down around δmix where the quantum fidelity starts to
follow the theoretical τm, while the classical fidelity decay is τclas = log (0.25/δ)/λ, with 0.25 being
a fitting parameter (depending on the width of the initial packet) and λ = 0.89 is the Lyapunov
exponent, read from Figure 3.15. For a brief explanation of this classical decay see Section 1.1.2.
Incidentally, in our system at ε = 5 the classical mixing time is very short‖, tmix ∼ 1, and we see
that the correspondence breaks already slightly before δE. The quantum fidelity decay time τm is
valid until a perturbative border δp is reached, when a finite Hilbert space dimension effects become
important and the decay time becomes equal to τp. Note that for δ < δc we indeed have a faster
fidelity decay for a chaotic dynamics than for a regular one.

Another interesting aspect of our correlation function formalism is that the decay rate of the
fidelity in a mixing situation is proportional to the integral of the correlation function σ. As stronger
chaoticity will usually result in a faster decay of C(t) and therefore in smaller σ, this means that
increasing chaoticity (of the classical system) will increase quantum fidelity, i.e. stabilise quantum
dynamics. Of course, for this to be observable we have to be out of the regime of quantum-classical
correspondence. All this is illustrated in Figure 3.15, where we show similar decay times as in
Figure 3.14, i.e. the same system, initial condition and S = 100, but depending on the parameter
ε for six different perturbation strengths δ. Parameter ε controls the chaoticity of the classical
dynamics. At ε = 1 we are in the regular regime and for larger ε we get into the chaotic regime,
also seen from the dependence of the Lyapunov exponent. We can see that in the regular regime
(ε < 2) the classical fidelity agrees with the quantum one regardless of δ. In the chaotic regime
though, the agreement is present only for the two largest δ shown, where we have δ > δmix (3.64).
For δ < δc and for chaotic dynamics (three smallest δ) we get into the non-intuitive regime (shaded
region in Figure 3.15) where the quantum fidelity will increase if we increase chaoticity. Note that
this growth of the decay time stops at around ε ∼ 4 because the classical mixing time tmix gets so
small that the transport coefficient is given by its time independent term σ = C(0)/2 alone.

‖This is the reason why σ (3.60) is almost entirely given by C(0).





Chapter 4

Special Case: Zero Time Averaged

Perturbation

One should always keep an open mind, but
not so open that one’s brains fall out.

—Bertrand Russell

In the previous chapter we considered general perturbations, for which the double correlation
sum was growing with time either linearly for mixing dynamics or quadratically for regular systems.
What about the third possibility, namely if it does not grow with time. This situation will be the
subject of the present chapter. We will demand that

〈

Σ2(t)
〉 ∼ t0 for any initial state, i.e. all

matrix elements of Σ2 must be O(t0),

Σ2
jk(t) ∝ t0, j, k = 1, . . . ,N . (4.1)

We will write the perturbation V as the sum of its time average V̄ and the rest, called the residual
part Vres

V =: V̄ + Vres. (4.2)

For a nondegenerate∗ spectrum of the unperturbed propagator U0 we have seen that the time
averaged perturbation equals to the diagonal part of V (3.18) therefore, the residual Vres is just
the off-diagonal part of V and has zeros on the diagonal, (Vres)kk ≡ 0. The operator Σ(t) can then
be written as Σ(V, t) = V̄ t+O(t0), where the second part depends just on Vres and does not grow
with time. One can conclude that to satisfy condition (4.1) the time averaged perturbation must be
zero, V̄ ≡ 0. The subject of the present chapter are perturbations with V̄ = 0, also called residual
perturbations because V = Vres. For non-residual perturbations all essential physics was contained
in the operator Σ(t). For residual perturbations on the other hand, the second term involving Γ(t)
in the BCH form (2.14) of the echo operator will also be important. Matrix elements of Γ(t) in the
eigenbasis of U0 are

〈φj |Γ(t)|φj〉
t

=
1

h̄

∑

k 6=j
|Vjk|2 cot[12(φk − φj)] +O(t−1), (4.3)

〈φj |Γ(t)|φk〉
t

=
1

h̄
(Vjj−Vkk)Vjk

e−i
1
2
(φj−φk)+e−i(φj−φk)(

1
2
−t)

2 sin[12(φk − φj)]
+O(t−1), j 6= k.

∗For degenerate spectra we have V̄ =
∑

k,l
δ(φk − φl)Vkl|φk〉〈φl|.

49



50 Chapter 4. Special Case: Zero Time Averaged Perturbation

Note that the matrix elements of Γ(t) can not grow faster than linearly with t, despite the double
sum over time in the definition of Γ. We see that, provided the perturbation is residual, the limit
of time-averaged Γ(t) defined as

Γ̄ = lim
t→∞

Γ(t)

t
=

i

h̄
lim
t→∞

1

t

t−1
∑

t′=0

t−1
∑

t′′=t′

[V (t′), V (t′′)] (4.4)

exists and is diagonal in the eigenbasis of U0:

Γ̄ =
∑

j

Γ̄jj |φj〉〈φj |, Γ̄jj =
1

h̄

∑

k 6=j
|Vjk|2 cot[12(φk − φj)]. (4.5)

The operator Γ̄ is again a constant of motion, [U0, Γ̄] = 0.
Any residual perturbation can be defined in terms of another operator W by the following

prescription
V =W (1)−W (0), W (t) := U−t0 WU t

0. (4.6)

In the continuous time case we would have definition V =: (d/dt)W = i
h̄ [H0,W ]. Indeed, given a

residual perturbation one easily determines the matrix elements of W as

Wjk :=
Vjk

exp (i(φj − φk))− 1
. (4.7)

Note that instead of the unperturbed evolution operator U0 one could use any other unitary operator
that has the same degeneracy and eigenvectors as U0 in the definition of V in terms of W (4.6).
With the newly defined operator W , the expression for Σ(t) is extremely simple,

Σ(t) =W (t)−W (0). (4.8)

Similarly, the expression for Γ(t) is also considerably simplified,

Γ(t) = ΣR(t)−
i

h̄
[W (0),W (t)], R :=

i

h̄
[W (0),W (1)], (4.9)

and

ΣR(t) :=
t−1
∑

t′=0

R(t′), R(t) := U−t0 RU t
0. (4.10)

The operator Γ(t) is, apart from the term i
h̄ [W,W (1)], similarly as Σ(t) the sum of R(t). In the

continuous time case we have R := i
h̄ [W, (d/dt)W ] = h̄−2[W, [W,H0]] and Γ(t) =

∫ t
0 dt

′R(t′) −
i
h̄ [W,W (t)]. The fidelity decay will be given by the echo operator

Mδ(t) = exp

{

− i

h̄

(

Σ(t)δ +
1

2
Γ(t)δ2 + · · ·

)}

, (4.11)

with Σ(t) (4.8) and Γ(t) (4.10) expressed in terms of the operator W . We see that for small times
t < t2, with t2 ∼ 1/δ, the second term involving Γ(t) can be neglected. Therefore, for t < t2 the
fidelity amplitude is simply

f(t) = 〈exp (−iδ(W (t)−W (0))/h̄)〉 . (4.12)

Expanding f(t) to the second order in δ, we find F (t) = 1 − δ2

h̄2
(κ20 + κ2t − C(t) − C(t)∗) where

κ2k :=
〈

W 2(k)
〉 − 〈W (k)〉2, C(t) := 〈W (t)W (0)〉 − 〈W (t)〉 〈W (0)〉. Using the Cauchy-Schwartz
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inequality |C(t)| ≤ κ0κt and the fact that for a bounded operator W the sequence κt is bounded,
say by r, we find a freeze of fidelity

1− F (t) ≤ 4
δ2

h̄2
r2, t < t2 (4.13)

for arbitrary quantum dynamics, irrespective of the existence and the nature of the classical limit.
For residual perturbation the fidelity therefore stays high up to a classically long time t2 and only
then starts to decay again. After t2 the second term Γ(t) will become important and this will cause
the fidelity to decay. We have to stress that the freeze of fidelity is of purely quantum origin. The
classical fidelity does not exhibit such behaviour.

Although residual perturbations might seem artificial at first sight, there are two possibilities
how they can arise. First, the average perturbation V̄ commutes with the Hamiltonian H0 generat-
ing U0 and can sometimes be put together with the original H0 into the unperturbed Hamiltonian,
thereby resulting in a residual perturbation. This moving of V̄ into H0 just changes the eigenen-
ergies and is often done in various mean field approaches. Another possibility to have V̄ = 0 is
due to symmetries. For instance, having a unitary symmetry P commuting with the unperturbed
evolution, [U0, P ] = 0, and perturbation V anticommuting with the symmetry, V P = −P V , will
result in a residual perturbation. But note that in order to have a well defined operator W (4.7)
with no singularities near the diagonal, so that our theory can be applied, the matrix elements of
V must increase smoothly away from the diagonal.

In the next two sections we will discuss two examples for which one can use the echo operator
(4.11) to calculate fidelity decay to all orders in δ. This can be done for completely mixing dynamics
and for the opposite extreme of regular dynamics. In both cases we will also assume the operators V ,
W , and therefore also R, to have well defined classical limits, so we will be able to use semiclassical
arguments. For small times t < t2 the fidelity will freeze to a constant value - the plateau. The
value of the plateau will be determined by the non-increasing Σ(t),

Fplat(t) =

∣

∣

∣

∣

〈

exp

(

−i δ
h̄
{W (t)−W (0)}

)〉∣

∣

∣

∣

2

. (4.14)

For large times t > t2 instead, the fidelity decay will be determined by the operator R in Γ(t).

4.1 Mixing Dynamics

4.1.1 The Plateau

We begin with the linear response evaluation of the fidelity plateau (4.14). For classically mixing
dynamics we can assume that for times larger than some mixing time t1 the time correlations
vanish in leading semiclassical order, C(t)→ O(h̄). Also, quantum expectation values become time
independent and equal to their classical values in leading order. We will denote by 〈A〉cl :=

∫

dµAcl

the classical average value of observable A. Therefore, for times t1 < t < t2 the linear response
expression for fidelity plateau, i.e. its time-independent value is

Fplat ∼= 1− δ2

h̄2
(κ20 + κ2cl), κ2t := 〈W 2(t)〉 − 〈W (t)〉2 , (4.15)

where κ2cl :=
〈

w2
〉

cl−〈w〉
2
cl is time-independent classical limit of κ2t with the classical limit w(q,p) of

operatorW . We will consider two kinds of initial states, namely coherent states and random states.
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For coherent initial states (CIS) the mixing time t1 is equal to the Ehrenfest time, t1 ∼ − ln h̄/λ.
As the initial state variance of W is proportional to the spread of the CIS, κ20 ∝ h̄, it can be
neglected with respect to κ2cl. The fidelity plateau for CIS is therefore FCIS

plat
∼= 1 − (δ/h̄)2κ2cl. For

random initial states (RIS), the mixing time is h̄ independent, t1 ∝ h̄0. Also initial state average
for RIS is equal to ergodic average and the fidelity plateau is in this case FRIS

plat
∼= 1 − 2(δ/h̄)2κ2cl.

Summarising, the linear response value of the fidelity plateau is for CIS and RIS

1− FCIS
plat
∼= δ2

h̄2
κ2cl, 1− FRIS

plat
∼= 2

δ2

h̄2
κ2cl, (4.16)

i.e. it is twice as large for RIS than for CIS.
One can go beyond linear response in approximating (4.14) using a simple fact that in the

leading order in h̄ quantum observables commute, and as before, that for t > t1 the time correlations
vanish, namely 〈exp(−i δh̄(W (t)−W ))〉 ∼= 〈exp(−i δh̄W (t))〉〈exp(i δh̄W )〉. For t > t1 expectation values
become time independent and so

Fplat ∼= |〈exp (−iwδ/h̄)〉cl 〈exp (iWδ/h̄)〉|2 . (4.17)

Note that the the right average is an average over initial state whereas the left average is the
classical average over the invariant measure. The fidelity plateau can be compactly expressed in
terms of a generating function G(δ/h̄)

G(z) := 〈exp(−iz w)〉cl =
1

V

∫

ddq ddp exp {−iz w(q,p)}. (4.18)

For CIS one can neglect the initial state average over a localized packet, i.e. the second term, and
gets

FCIS
plat
∼= |G(δ/h̄)|2. (4.19)

For RIS on the other hand, initial state average is equal to the classical average in the leading order
and we have

FRIS
plat
∼= |G(δ/h̄)|4. (4.20)

We have a universal relation between the plateau for CIS and RIS, namely FRIS
plat
∼= (FCIS

plat )
2. If the

argument z = δ/h̄ of the generating function is large, the analytic function G(z) can be calculated
generally by the method of stationary phase. In the simplest case of a single isolated stationary
point x∗ in N dimensions we obtain

|G(z)| ³
∣

∣

∣

∣

π

2z

∣

∣

∣

∣

N/2 ∣
∣

∣det ∂xj∂xkw(x
∗)
∣

∣

∣

−1/2
. (4.21)

This expression gives an asymptotic power law decay of the plateau height independent of the per-
turbation details. Note that for a finite phase space we will have oscillatory diffraction corrections
to Eq. (4.21) due to a finite range of integration

∫

dµ which in turn causes an interesting situation
for specific values of z, namely that by increasing the perturbation strength δ we can actually
increase the value of the plateau.

We tested the above theory by numerical experiments. For the system we choose the kicked
top, with slightly different order of factors as before (2.20). One step propagator is

U0 := exp

(

−iαS
2
z

2S

)

exp

(

−iπ
2
Sy

)

. (4.22)
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Figure 4.1: F (t) for the kicked top with perturbations δ = 10−3 (a), and δ = 10−2 (b). In each
plot the upper curve is for CIS and the lower for RIS. Horizontal chain lines are theoretical plateau
values, linear response (4.16) in (a) and full (4.20,4.19) in (b). Vertical chain lines are theoretical
values of t2 (4.29). The full circles represent calculation of the corresponding classical fidelity for
the CIS which follows quantum fidelity up to the Ehrenfest (log h̄) barrier and exhibits no freezing.

We take α = 30 ensuring fully chaotic classical dynamics whereas spin size is taken S = 1000 giving
effective Planck’s constant h̄ = 1/S = 1 · 10−3. Again we choose two initial states, a random one
and a coherent one centred at (ϑ∗, ϕ∗) = (1, 1) and both are projected onto OE subspace (2.24). To
get a residual perturbation we take W := S2

z/2S
2 so that W (1) = S2

x/2S
2 giving the perturbation

generator

V :=
S2
x − S2

z

2S2
. (4.23)

The perturbed propagator is as always Uδ = U0 exp (−iδV/h̄). We choose two perturbation
strengths. A weak δ = 10−3 to check the linear response expressions (4.16). The results are
seen in Figure 4.1a. The classical value of κ2cl used in theoretical formulas is easily calculated for
w = z2/2 and one gets κ2cl = 1/45. In Figure 4.1b we show numerical results for larger δ = 10−2

where the plateau is very low and full formulas must be used. Generating function (4.18) can be
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calculated exactly without stationary phase approximation, resulting in

G(δS) =

√

π

2δS
erfi

(

eiπ/4
√

δS/2

)

. (4.24)

We have an asymptotic power law decay as predicted by the general stationary phase formula†

(4.21). In addition, due to a finite phase space we have a diffractive oscillatory erfi correction.
Theoretical prediction for the plateau using G(δS) (4.24) agrees well with the numerical results
shown in the figure. Small quantum fluctuations around the theoretical plateau values lie beyond
the leading semiclassical approximation used in our theoretical derivations. Note also that the
quantum fidelity and its plateau values have been expressed (in the leading order in h̄) in terms of
classical quantities only. Yet, the freezing of fidelity is a purely quantum phenomenon as one can
also see in Figure 4.1 where the classical fidelity does not exhibit freezing.

4.1.2 Beyond the Plateau

Next we shall consider the regime of long times t > t2. Then the second term in the exponential of
the echo operator (4.11) dominates the first one, however even the first term may not be negligible
for large δ. Up to terms of order O(tδ3) we can factorize Eq. (4.11) as Mδ(t) ≈ exp(−i δh̄(W (t) −
W )) exp(−i δ22h̄Γ(t)). When computing the expectation value we again use the fact that in leading
semiclassical order operator ordering is irrelevant and that, since t À t1, any time-correlation can
be factorized thus the second term i

h̄ [W,W (t)] of Γ(t) (4.9) vanishes and we have

F (t) ∼= Fplat

∣

∣

∣

∣

∣

〈

exp

(

−i δ
2

2h̄
ΣR(t)

)〉∣

∣

∣

∣

∣

2

, t > t2. (4.25)

This result is quite intriguing. It tells us that apart from a pre-factor Fplat, the decay of the fidelity
due to a residual perturbation is formally the same (in the leading semiclassical order when time
ordering is not important) as the fidelity decay with a generic non-residual perturbation, eq. (2.11),
when one substitutes the operator V with R and the perturbation strength δ with δR = δ2/2. Thus
we can directly apply the semiclassical theory of fidelity decay for general perturbations explained
in Section 3.1, using a renormalised perturbation R of renormalised strength δR. Here we simply
rewrite the key results in the ’non-Lyapunov’ perturbation-dependent regime, δR < h̄. Using the
classical transport rate σR,

σR := lim
t→∞

〈

Σ2
R(t)

〉

cl − 〈ΣR〉2cl
2t

, (4.26)

we have either an exponential decay

F (t) ∼= Fplat exp

(

− δ4

2h̄2
σRt

)

, t < tH, (4.27)

or a (perturbative) Gaussian decay

F (t) ∼= Fplat exp

(

− δ4

2h̄2
σR

t2

tH

)

, t > tH. (4.28)

The crossover between the two decay regimes happens at the Heisenberg time tH = N/2 (3.10).

†Note that w = z2/2 has one stationary point in N = 1 dimension, despite the phase space being two-dimensional.
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Figure 4.2: Long time Gaussian decay (4.28) for the same CIS and parameters as in Figure 4.1a.
The full curve is a direct numerical simulation, empty circles are numerical calculation using a
renormalised perturbation R of strength δR (4.30), while the chain curve gives the theoretical
decay.

Of course, the same consideration regarding the asymptotic saturation value of the fidelity F̄ due
to a finite N applies here as well (see discussion of time scales in Section 3.3). The prefactor Fplat

can be calculated as described in the previous section, Eq. (4.17), and depends on the initial state.
The exponential terms of (4.27,4.28) on the other hand do not depend on the initial state.

From the two possible regimes of long-time fidelity decay we can also more precisely specify
time t2 when the plateau ends. Comparing the two factors in (4.27,4.28) with the plateau value
(Eq. 4.16 for δ < h̄), we obtain a semiclassical estimate of t2

t2 ≈ min







√

tHκ2cl
σR

1

δ
,
κ2cl
σRδ2







. (4.29)

In Figure 4.1 we can see nice agreement of theoretical t2 with the results of the simulation.
Interestingly though, as we have another time scale t2, the duration of the plateau, not present

for a general case of non-residual perturbation, the exponential regime (4.27) can only take place
if t2 < tH, otherwise we immediatelly get a Gaussian decay after the plateau. If one wants to keep
Fplat ∼ 1 (i.e. high) and have an exponential decay in the full range until the asymptotic F̄ ∼ 1/N ,
the condition on dimensionality is imposed. Namely, demanding high plateau δ/h̄ < 1 for t < t2
and low fidelity in the limit h̄→ 0 at the Heisenberg time, F (tH) = exp (−(δ/h̄)4σR/4h̄d−2), gives
condition on dimensionality d ≥ 2. In one dimensional systems and in the semiclassical limit the
exponential decay (4.27) therefore can not be seen.

We again compared theory with numerics. The system is the one dimensional kicked top already
used in the previous section describing the plateau. The perturbation generator R for our choice
of W is

R = − 1

2S3
(SxSySz + SzSySx), (4.30)
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having a classical limit Rcl = r = −xyz. We numerically calculated the integral of the classical
correlation function (4.26) giving the transport coefficient σR = 5.1 · 10−3. In Figure 4.2 we show
three different sets of data. Direct numerical calculation, “a renormalised calculation” obtained
by taking perturbed dynamics as Uδ = U0 exp (−iδRR/h̄), i.e. perturbation generator R with the
strength δR = δ2/2 and theoretical Gaussian decay (4.28) where all parameters have been calculated
classically. Apart from the plateau prefactor Fplat (which is close to 1) the decay does not depend
on the initial state.

Double Kicked Top
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Figure 4.3: Long time fidelity decay for two coupled kicked tops. For strong perturbation δ =
7.5 · 10−2 in (a) we obtain an exponential decay (4.27), and for smaller δ = 2 · 10−2 in (b) we get a
Gaussian decay (4.28). The three curves have the same meaning as in Figure 4.2.

To demonstrate that for d > 1 we can also get an exponential decay of the fidelity, we also
consider a two dimensional system. We look at two (d = 2) coupled tops S1 and S2 described by
a propagator

U0 = exp (−iεSz1Sz2) exp (−iπSy1/2) exp (−iπSy2/2), (4.31)

with a perturbation generated by

W = A1 ⊗ = + = ⊗A2, A = S2
z/2S

2. (4.32)
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We set S = 1/h̄ = 100, and ε = 20 in order to be in a fully chaotic regime. The initial state is
always a direct product of spin coherent states centred at (ϕ1,2, ϑ1,2) = (1, 1) which is subsequently
projected on an invariant subspace of dimension N = S(S +1) spanned by {HOE ⊗Hr}sym, where
Hr = H \ HOE and {·}sym is a subspace symmetric with respect to the exchange of the two tops.
The results of numerical simulation are shown in Figure 4.3. We show only the long-time decay, as
the situation in the plateau is qualitatively the same as for d = 1. For sufficiently large perturbation
one obtains an exponential decay shown in Figure 4.3a, while for smaller perturbation we have a
Gaussian decay shown in Figure 4.3b. Numerical data have been successfully compared with the
theory (4.27,4.28) using a classically calculated σR = 9.2 · 10−3 together with theoretical Fplat,
and with the “renormalised” numerics using the operator R, similarly as in Figure 4.2 for a one
dimensional system.

4.2 Regular Dynamics

The procedure of calculating the fidelity decay for the case of regular dynamics will be similar as for
general perturbations in Section 3.2. We will use the classical action-angle variables (for definition
see Section 3.2.1) and semiclassical methods to calculate the fidelity plateau as well as its long time
decay. The only difference will be that in contrast to the case of a general perturbation, where only
Σ(t) was important in the BCH form of the echo operator, here the second term involving Γ(t)
will also be relevant for long times. The same form of the echo operator (4.11) has already been
used for the case of a residual perturbation in mixing systems as described in the previous section.
The existence of action-angle variables enables us to expand the classical limit v of the quantum
perturbation generator V into Fourier series

v(j,θ) :=
∑

m6=0
vm(j)eim·θ. (4.33)

The fact that the perturbation is residual is reflected in the zeroth Fourier coefficient which is
zero, v0 ≡ 0, so we explicitly excluded this term from the summation. Classically this means that
the perturbation only changes the shapes of tori as the average change of the frequency along the
unperturbed tori is zero. For the explanation of the decay of classical fidelity in case of a residual
perturbation see (Benenti et al. , 2003a). Similarly, we can expand the classical limit w(j,θ) of a
quantum observable W ,

w(j,θ) :=
∑

m6=0
wm(j)eim·θ. (4.34)

The zeroth Fourier mode w0 can be set to zero as it cancels in the definition of v in terms of w.
Using these expansions we can easily calculate the leading semiclassical forms of Σ(t) and Γ(t). For
Σ(t) (4.8) we have

Σ(t) ∼= w(J ,Θ+ ω(J)t)− w(J ,Θ) ∼=
∑

m6=0
wm(J)(eim·ω(J)t − 1)eim·Θ. (4.35)

Note that this is still an operator (capital J and Θ) and is correct in the leading semiclassical order
(the sign ∼=). Coefficients wm can be also expressed in terms of vm as

wm(j) = −ie−im·ω(j)t/2 vm(j)

2 sin (12m · ω(j))
. (4.36)

In the continuous time case we have wm = −ivm/m · ω.
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The operator Σ(t) will determine the plateau. Long time decay on the other hand will be
dictated by the operator Γ(t). For long times when this decay will take place we can define an
average Γ̄ (4.4) and approximate Γ(t) ≈ Γ̄t. This approximation is justifiable as we will see, because
the fidelity decay will happen on a long time scale ∼ 1/δ2, whereas the average of Γ(t) converges in
a much shorter classical averaging time tave. As one can see from the definition of Γ(t) in Eq. (4.9),
the average Γ̄ is nothing but the time averaged operator R. For R the semiclassical limit r can be
calculated using the Poisson brackets instead of commutators, r = −{w,w(1)}. When we average
r over time, only the zeroth Fourier mode survives resulting in

Γ̄(J) ∼= r̄(J), r̄(j) = −
∑

m6=0
m · ∂j

{

|wm(j)|2 sin [m · ω(j)]
}

. (4.37)

In the continuous time case we would have r̄ = −∑m6=0m · ∂j
{|wm|2m · ω

}

.
From the equation for wm (4.36) in terms of vm we see that the denominator sin (m · ω/2) could

cause problems at points of vanishing m · ω(j) = 0. This divergence carries over to all operators
like Γ̄ or Σ(t). In classical perturbation theory this so-called “small denominator” problem is well
known and cannot be avoided. For our quantum mechanical calculation though, there is an easy
remedy. It is sufficient to remember that we are dealing with a residual perturbation, i.e. the one
for which all matrix elements Vjk are zero if the corresponding eigenphases are equal, φj = φk.
But the term m · ω is nothing else than the semiclassical approximation for φj − φk. Therefore,
one can see that actually all the diverging terms have to be excluded when evaluating expectation
values. This is furthermore confirmed if we compare the semiclassical expression for Γ̄ (4.37) with
the matrix elements of operator Γ(t) (4.3). An example of such a calculation will be presented
when describing the decay for random initial states.

Using semiclassical expressions for Σ(t) and Γ̄ we can write the echo operator as

Mδ(t) = exp

{

− i

h̄

(

Σ(t)δ +
1

2
Γ̄tδ2

)}

, (4.38)

with Γ(t) and Γ̄ given in Eqs. (4.35,4.37). The third order term in the BCH form of the echo
operator (4.38) can be shown to grow no faster than δ3t and can therefore be neglected. For times
smaller than t2 (specified later) the term involving Γ̄ can be neglected and the fidelity will exhibit
freeze. The fidelity amplitude of the plateau is f(t)plat ∼= 〈exp (−iδΣ(t)/h̄)〉 with semiclassical Σ(t).
Furthermore, for t > t1 the fidelity plateau is time independent and can be calculated by averaging
the fidelity amplitude over time

fplat ∼= lim
t→∞

1

t

t
∑

t′=0

f(t′). (4.39)

Time averaging the classical version of Σ(t) = Σ(j,θ(t)) (4.35) is equivalent to averaging over the
angle θ, resulting in the fidelity plateau

fplat ∼=
〈

exp

(

i
δ

h̄
w(J ,Θ)

)∫

ddx

(2π)d
exp

(

−i δ
h̄
w(J ,x)

)

〉

, (4.40)

where we assumed ergodicity ofm ·ωt so we could replace a sum over t with an integral over angles.
For long times t > t2 the second term in the echo operator becomes dominant. If the plateau is

small (δ < h̄), the first term with Σ(t) can be neglected and the fidelity is

F (t) =

∣

∣

∣

∣

∣

〈

exp

{

−iδ
2t

2h̄
Γ̄(J)

}〉∣

∣

∣

∣

∣

2

. (4.41)
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For strong perturbations, when the plateau is not negligible, both terms should be retained. But
as opposed to the mixing situation where we could factorize the two contributions, here one can
not make any general statements. In the following theoretical calculations we will focus on the case
when the plateau can be neglected in comparison with the long time decay. The formula (4.41) is
completely analogous to the long time fidelity decay for a non-residual perturbation and we can use
the same ASI representation in terms of an integral over classical actions. The role of V̄ is played
by Γ̄ and the perturbation is here δ2/2. The fidelity amplitude in the ASI formulation is therefore

f(t) ∼= h̄−d
∫

ddj exp

(

−iδ
2t

2h̄
r̄(j)

)

dρ(j), (4.42)

with dρ(j) being the classical limit of Dρ(h̄n) = 〈n|ρ|n〉 and recall that r̄ is the classical limit of
Γ̄ (4.37). The ASI representation is valid in a time range t1 < t < ta, where the upper limit ta is
determined by the variation of the phase over one Planck’s cell,

ta =
2

|∂j r̄|ef
1

δ2
∼ h̄0δ−2. (4.43)

Before going on with the evaluation of the plateau (4.40) or of the long time decay (4.42) for
random and coherent initial states, let us justify why we were allowed to time average the plateau.

Justification of Time Average Plateau

By expanding the echo operator into power series over δ, the calculation of the plateau is turned
into calculation of expectation values of moments Σk(t),

Σk(t) ∼=
∑

m1,...,mk 6=0

k
∏

l=1

wml
(J)(eiml·ω(J)t − 1)eiml·Θ. (4.44)

We can average over the initial density matrix ρ with matrix elements ρn,n′ in the action eigenbasis.
Taking into account that the exponential of operator Θ acts like a shift operator (3.26) and that
eigenvalues of J are h̄(n+α), we see that the expectation value will be a sum of terms of the form

∑

m1,...,mk 6=0

∑

n

g(h̄n)eim·ω(h̄n)tρn,n+m′ , (4.45)

where the function g depends on indices ml, index m
′ :=

∑k
l ml and m :=

∑k
l slml with sl = 0

or 1 depending on which terms we take from the product in Eq. (4.44). We also neglected Maslov
indices as they are negligible in the leading semiclassical order. For our derivation only the inner
sum over n is important. Let us consider two cases of initial states ρ, random initial state and
coherent initial state.

For a random initial state we average over a random ensemble, resulting in ρn,m → δn,m/N .
From this we immediately conclude that indexm′ in Eq. (4.45) must be zero, and as a consequence
also m = 0 is zero. Therefore, for random initial states only terms with all ml ≡ 0 survive the
averaging over random ensemble (which is the same as if we would average over time instead of over
random ensemble). The time scale t1 after which approximation with a time average is permissible
is determined just by frequencies, t1 ∼ 1/|m ·ω| and does not depend on h̄ or perturbation strength
δ, i.e. for random initial states we have

t1 ∼ δ0h̄0. (4.46)
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For localized initial states a little more work is needed to show that the expectation value equals
the time average. For definiteness we will consider coherent initial states, for which the matrix
elements have a Gaussian distribution (3.32). Furthermore, we will assume that the number of
relevant Fourier modes is smaller than the width (in n) of the initial packet. As the width of the
packet grows as h̄−1/2 this is justifiable in the semiclassical limit provided w(j,θ) is sufficiently
smooth, so that its Fourier coefficients decrease sufficiently fast. In this approximation we have

ρn,n+m′ ∼= dρ(h̄n)e
im′·θ∗ , (4.47)

with dρ a classical limit of the quantum structure function (3.33). The inner summation over
quantum actions h̄n in Eq. (4.45) can now be replaced with an integral over the classical action
j and the method of stationary phase can be used to calculate the resulting integral. Expanding
frequencies around the centre of the packet j∗, ω(j∗ + x) = ω(j∗) + Ωx+ · · ·, where

Ωjk :=
∂ωj(j

∗)
∂jk

, (4.48)

is a matrix of frequency derivatives, we can calculate the sum

∑

n

g(h̄n)eim·ω(h̄n)tdρ(h̄n) ∼= h̄−d
∫

ddjg(j)eim·ω(j)tdρ(j)

∼= g(j∗)eim·ω(j
∗)t
(

h̄

π

)d/2

|detΛ|1/2
∫

ddx exp

(

−1

h̄
x · Λx+ itm · Ωx

)

= g(j∗)eim·ω(j
∗)t exp

(

− h̄t
2

4
m · ΩΛ−1ΩTm

)

. (4.49)

We see that all terms withm 6= 0 decay to zero. The longest decay time scale of Gaussian envelopes
is estimated as

t1 =

(

h̄

4
min
m6=0

(

m · ΩΛ−1ΩTm
)

)−1/2
∝ h̄−1/2. (4.50)

This means that for times longer than t1 only term with zero m will survive which is equivalent
to time averaging the classical expression. Note that the Gaussian decay (4.49) is absent if Ω = 0,
e.g. in the case of a d-dimensional harmonic oscillator. Fidelity decay for a residual perturbation
in a harmonic oscillator will be discussed for a Jaynes-Cummings model in Section 5.5. There
may also be a general problem with the formal existence of the scale t1 (4.50) if the derivative
matrix Ω is singular, but this may not actually affect the fidelity for sufficiently fast converging
or finite Fourier series (3.23). Time t1 can be interpreted as the integrable Ehrenfest time, up to
which quantum-classical correspondence will hold. After t1 a quantum wave packet of size ∼

√
h̄

will spread over a classically large region of size ∼ h̄0 and interference phenomena will become
important. This will also be reflected in the fidelity. As the perturbation wm will couple different
tori, the echo packet will also start to exhibit interferences after t1 and therefore we can expect
agreement between quantum and classical fidelity only up to time t1. This must be contrasted
with the case of a general non-residual perturbation, where there were no upper limits on the
correspondence between quantum and classical fidelity for localized initial packets under certain
conditions.

4.2.1 The Numerical Model

For the sake of numerical demonstration in the present section of residual perturbations in a regular
dynamics we take an integrable kicked top model with a slightly different unperturbed one step
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propagator

U0 = exp

(

−iα
2
S

{

Sz
S
− β

}2
)

, (4.51)

where we introduced a second parameter β. The classical map corresponding to U0 is simply a
twist around z-axis

xt+1 = xt cos (α(zt − β))− yt sin (α(zt − β))
yt+1 = yt cos (α(zt − β)) + xt sin (α(zt − β)) (4.52)

zt+1 = zt.

Unperturbed evolution represents a continuous time system with the classical Hamiltonian h0 gen-
erating a frequency field ω(j)

h0(j) =
1

2
α(j − β)2, ω(j) = α(j − β). (4.53)

Here we used a canonical transformation from a unit-sphere to an action-angle pair (j, θ) ∈ [−1, 1]×
[0, 2π), namely

x =
√

1− j2 cos θ, y =
√

1− j2 sin θ, z = j. (4.54)

We perturb the Hamiltonian by periodic kicking with a transverse pulsed field in x direction,

hδ(j, θ, τ) =
1

2
α(j − β)2 + δ

√

1− j2 cos θ
∞
∑

k=−∞
δ(τ − k). (4.55)

Perturbed quantum evolution is given by a product of two unitary propagators

Uδ = U0 exp (−iδSx), (4.56)

so the perturbation generator is

V = Sx/S. (4.57)

The classical perturbation has only one Fourier component, namely

v(j, θ) =
√

1− j2 cos θ, v±1(j) =
1

2

√

1− j2, (4.58)

whereas zeroth Fourier component is zero, v0 ≡ 0, indicating that we have a residual perturbation,
v̄ = 0 and V̄ = 0. The classical limit w of W is also readily calculated, giving

w(j, θ) =
1

2

√

1− j2 sin (θ − ω/2)
sin (ω/2)

, (4.59)

with ω = α(j − β). The reason we introduced parameter β is to be able to control a possible
singularity in w(j, θ) at points where ω = 0.
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4.2.2 Coherent Initial State

The Plateau

For times t < t1 quantum fidelity will follow the classical fidelity and will be system specific. For
times t1 < t < t2 quantum fidelity will exhibit the plateau while the classical fidelity will continue
to decay. To calculate the quantum plateau we have to evaluation the time-average formula for
the plateau (4.40). We shall make use of the fact that for coherent states we have the expectation
value

〈exp(−(iδ/h̄)g(J ,Θ))〉 ∼= exp(−(iδ/h̄)g(j∗,θ∗)). (4.60)

for some smooth function g, provided that the size of the wave-packet ∼
√
h̄ is smaller than the

oscillation scale of the exponential ∼ h̄/δ, i.e. provided δ ¿ h̄1/2. Then the squared modulus of
fplat (4.40) reads

FCIS
plat
∼= 1

(2π)2d

∣

∣

∣

∣

∫

ddθ exp

(

− iδ

h̄
w(j∗,θ)

)∣

∣

∣

∣

2

. (4.61)

It is interesting to note that the angle θ∗ does not affect the probability Fplat as it only rotates
the phase of the amplitude fplat. Note the similarity of this result with the plateau for coherent
initial states and mixing dynamics, Eq. (4.19). In the mixing case we had an equilibrium average
of w in 2d dimensional phase space, whereas for regular dynamics we have an average over only d
dimensional angle-space of θ. For weak perturbation δ < h̄ only the linear response expression for
the plateau is needed. Expanding general Fplat we obtain

1− FCIS
plat =

δ2

h̄2
νCIS, νCIS =

∑

m6=0
|wm(j∗)|2. (4.62)

Results of the numerical simulation for β = 0, α = 1.1 are shown in Figure 4.4. For our choice
of the perturbation (4.59) the integral in the semiclassical expression of the plateau (4.61) is readily
calculated. Actually, the calculation of Fplat can be analytically carried out for any perturbation
with a single nonzero Fourier mode ±m0, with the result

FCIS
plat = J2

0

(

2
δ

h̄
|wm0(j

∗)|
)

, (4.63)

were J0 is the zero order Bessel function. For a more general multi-mode perturbations we have to
evaluate the integral (4.61) numerically. For our single mode perturbation w (4.59) we have

FCIS
plat = J2

0

(

δS

√

1− j∗2
2 sin (αj∗/2)

)

. (4.64)

The linear response expansion of this general result reads

1− FCIS
plat = (δS)2νCIS, νCIS =

1− j∗2
8 sin2 (αj∗/2)

. (4.65)

For numerical illustration in Figure 4.4 the initial coherent packet has been placed at (ϑ∗, ϕ∗) =
(1, 1). We can see that until time t1 (4.50) quantum fidelity follows the classical one (circles in
Figure 4.4). After t1 quantum fidelity freezes at the plateau, whose value nicely agrees with the
linear response formula (4.65) or with the full expression (4.64) for strong perturbation. Vertical
chain lines show theoretical values of t2, which is the time when the plateau ends. Also, at certain
times the quantum fidelity exhibits resonances, i.e. strong revivals of fidelity. These “spikes”
occurring at regular intervals are prominent also in a long time decay of fidelity in Figure 4.5.
These will be called the echo resonances and are particular to one-dimensional systems.
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Figure 4.4: Short time decay of the fidelity for a quantized top is shown for the coherent initial
state, for S = 200 (a), and S = 1600 (b), with a fixed product δS = 0.32, where the plateau
is well described by linear response. In (c) we show S = 1600 and a stronger perturbation with
δS = 3.2. Note that the time axis is rescaled as t/t1. Symbols connected with dashed lines denote
the corresponding classical fidelity. The horizontal chain line denotes the theoretical value of the
plateau (4.64), while the vertical chain line denotes the estimated theoretical value for t2 (4.67).
In (b,c) we also indicate fractional 2πk/p resonances with k/p marked on the figure (see text for
details).

Long Time Decay

To obtain long time decay of quantum fidelity one has to evaluate the ASI in Eq.(4.42). Everything
is analogous to the case of general non-residual perturbation described in Section 3.2. In the formula



64 Chapter 4. Special Case: Zero Time Averaged Perturbation

      

      

      

      

      

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

F

x=d2 S1/2 t

S=1600
dS=3.2

1

0.1

0.01

0.001

(c)

      

      

      

      

      

F

S=1600,  dS=0.064(b)
1

0.1

0.01

0.001  0
 0.2
 0.4
 0.6
 0.8

 1

0.80.40

F

x

      

      

      

      

      

F

S=200,  dS=0.064(a)
1

0.1

0.01

0.001  0
 0.2
 0.4
 0.6
 0.8

 1

0.80.40
F

x

Figure 4.5: Long time ballistic decay of the fidelity for the kicked top with coherent initial state is
shown for cases S = 200 (a), and S = 1600 (b), of weak perturbation δS = 0.064, and for strong
perturbation S = 1600, δS = 3.2 (c). Chain curves indicate a theoretical Gaussian (4.66) with
analytically computed coefficients, except in case (c), where we multiply the theoretical Gaussian
decay by a prefactor 0.088 being equal to the theoretical value of the plateau (4.64), and re-scale
the exponent of the Gaussian by a factor 0.8 taking into account the effect of a non-small first term
in the exponent of (4.38). Note that in the limit S → ∞ the agreement with semiclassical theory
improves and that the size of the resonant spikes is of the same order as the drop in the linear
response plateau. The insets show the data and the theory on the normal scale.

for F (t) = exp (−(t/τr)2) (3.36) we only have to replace the perturbation δ with δ2/2 and v̄ with
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r̄, so that the fidelity decay is

F (t) ∼= exp
{

−(t/τrr)2
}

, τrr =
1

δ2

√

8h̄

r̄′ · Λ−1r̄′ , (4.66)

with the semiclassical r̄ given in Eq. (4.37) and its derivative r̄′ := ∂j r̄. The decay time scales as

τrr ∼ h̄1/2δ−2 and is thus smaller than the upper limit ta ∼ h̄0δ−2 of the validity of the stationary
phase approximation used in deriving the Gaussian decay. Remember that the above formula is

valid only if the plateau is small and the Σ(t) term can be neglected, i.e. for δ < ν
−1/2
CIS h̄. For such

small δ the crossover time t2 from the plateau to the long time decay can be estimated by comparing
the linear response plateau (4.65) with the long time decay (4.66), (δ/h̄)2νCIS ≈ (t2/τrr)

2, resulting
in t2 ≈ τrrδ

√
νCIS/h̄ ∼ h̄−1/2δ−1. For stronger perturbations, namely up to δ ∼

√
h̄ time t2 can be

simply estimated by τrr. We therefore have

t2 = min{1, δ
h̄
ν
1/2
CIS}τrr = min{const h̄1/2δ−2, const h̄−1/2δ−1}. (4.67)

Time scale t2 can be seen in Figure 4.4 as the point of departure of fidelity from the plateau
value. Using our model with α = 1.1 and β = 0 and the position of the initial coherent state
at (ϑ∗, ϕ∗) = (1, 1) this can be calculated to be t2 = min{0.57

√
S/δ, 0.57/(δ2

√
S)} (similarity of

numerical prefactors is just a coincidence). These theoretical positions of t2 are shown with vertical

chain lines in Figure 4.4 and are given by τrrν
1/2
CISδ/h̄ in Figures 4.5a,b while it is τrr for a strong

perturbation δS = 3.2 in Figure 4.4c. Long time decay of fidelity is shown in figure 4.5. Theoretical
Gaussian decay (4.66), shown with a chain curve, is again confirmed by numerical results. The
average Γ̄ given by classical r̄ is (4.37)

r̄ =
1

8 sin2 (αj/2)

{

α(1− j2) + 2j sin (αj)
}

. (4.68)

The derivative r̄′ is

r̄′ =
1

8

{

4 cot (αj/2)− α
[

4j + α(1− j2) cot (αj/2)
]

/ sin2 (αj/2)
}

, (4.69)

which gives using Λ = 1/(1− j2) for spin coherent states the decay time (4.66) τrr = 0.57δ−2h̄1/2.
Note that we do not have any fitting parameters, except in the case of a strong perturbation
(δS À 1, Figure 4.5c) where the prefactor and the exponent of a Gaussian had to be slightly
adjusted due to the non-negligible effect of the first term in (4.38) [see caption for details].

Average fidelity

We should remark that, although we obtain asymptotically Gaussian decay of fidelity for a single
coherent initial state, one may be interested in an effective fidelity averaged with respect to phase-
space positions of the initial coherent state, similarly as for the case of general perturbations (3.42).
For times t < t2 when we have a plateau, the average fidelity 〈F (t)〉j will also have a plateau of the
same height as the plateau for a random initial state calculated in Section 4.2.4, Equation (4.82).
In the linear response regime this plateau is just twice as large as for a single coherent state. Long
time decay of the average fidelity 〈F (t)〉j will be given by the phase space average of the regular
decay time τrr. The calculation is very similar to the one for a general perturbation described at the
end of Section 3.2.2 so we wont repeat is here. Asymptotically we will have a power law decay with
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the power determined by the order η of zeros of r̄′ ·Λ−1r̄′ and dimensionality d (see Eq. 3.43) which
is not universal as claimed by some authors (Jacquod et al. , 2003). To demonstrate asymptotic
power law decay (3.43) we take the same regular kicked top model (4.51) as used throughout this
section with parameter α = 1.1, β = 0 and spin size S = 1000. We take perturbation (4.57) of
strength δ = 5 · 10−4 and average fidelity over 200 coherent initial states placed randomly over
sphere. The results are in Figure 4.6. The τ 2rr, i.e. r̄

′ · Λ−1r̄′ has for our r̄′ (4.69) two zeros of the
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Figure 4.6: Average fidelity decay 〈F (t)〉j (4.71) for the regular kicked top with freezing (no fitting
parameters!). The dotted line is the theoretical power law decay (4.71). The horizontal line gives
the theoretical value of the plateau (4.84).

first order, η = 1, at j = ±1. The derivative (i.e. the first nonzero term in the expansion around
zero) of the term r̄′ · Λ−1r̄′ evaluated at j = −1 is

c =
2α− sinα

2 sin2 (α/2)
. (4.70)

The asymptotic theoretical decay (3.43) should then be

〈F (t)〉j ³
8

δ4St2c
, (4.71)

where for α = 1.1 the coefficient is c = 2.4. This theoretical decay agrees with numerics in
Figure 4.6. The theoretical value of the plateau according to the Equation (4.84) for a random
initial state should be 0.58 which also agrees with numerics.

Illustration in Terms of Wigner Function

All the phenomena described theoretically in the preceding subsections can be nicely illustrated in
terms of the echoed Wigner function — the Wigner function WρM(cosϑ, ϕ) of the echo-dynamics.
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Figure 4.7: [Movies online (Prosen & Žnidarič, 2003a)] Snapshots of the Wigner function of echo-
dynamics for a quantized top α = 1.1, β = 0, γ = 0 with S = 200 and for δ = 1.6 · 10−3 (same as in
Figures 4.4a,4.8a). The upper hemisphere is shown with j = cosϑ ∈ [0, 1] on the vertical axis and
θ = ϕ ∈ [0, 2π] on the horizontal axis. From top to bottom we show: the initial state at t = 0, the
state at t = 14 ≈ t1 when we are around the regular Ehrenfest time, at t = 300 in the middle of
the plateau, and at t = 100000 in the ballistic regime.

For details regarding the spin Wigner functions see Appendix A and the discussion at the end of
Section 3.3. The fidelity F (t) is given simply by the overlap of the echoed Wigner function and the
Wigner function of the initial state. Therefore, the phase-space chart of the echoed Wigner function
contains the most detailed information on echo-dynamics and illustrates the essential differences
between different regimes of fidelity decay. This is shown in Figure 4.7 for the quantized top, see
also online movies (Prosen & Žnidarič, 2003a). In the initial classical regime, t < t1, the echoed
Wigner function has not yet developed negative values and is in point-wise agreement with the
Liouville density of the classical echo-dynamics. In the plateau regime, t1 < t < t2, the echoed
Wigner function decomposes into several pieces, one of which freezes at the position of the initial
packet providing significant and constant overlap — the plateau. At very particular values of time,
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namely at the echo resonances, different pieces of the echoed Wigner function somehow magically
recombine back into the initial state. In the asymptotic, ballistic regime, t > t2, even the frozen
piece starts to drift ballisticly away from the position of the initial packet, thus explaining a fast
Gaussian decay of fidelity.

4.2.3 Echo Resonances for Coherent Initial States
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Figure 4.8: Structure of echo resonances for coherent initial states of the modified quantum top
U0 = exp (−iS[α(Sz/S)2/2 + γ(Sz/S − j∗)3/6]), S = 200, δ = 1.6 · 10−3, for increasing values of
ω′′ = γ = 0 (a), ω′′ = 1 (b), and ω′′ = 4 (c), which weakens and broadens the resonances. Note
that in (a), ω′′ = 0 we have the same data as in Figure 4.4a. Vertical chain lines show theoretical
times tr/2 for π, and tr for 2π resonances.

Let us now discuss the behaviour of the fidelity for initial wave-packets in the regime of linear
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response approximation in some more detail. We shall consider possible deviations from the time
average plateau (4.40). Specifically we will explain the resonances observed e.g. in Figure 4.4.

For such a resonance to occur the phases of terms 〈Σk(t)〉 (4.44) have to build up in a constructive
way and this is clearly impossible in a generic case, unless:

(i) We have one dimension d = 1, so we sum up over a one-dimensional array of integers n in
action space‡.

(ii) The wave-packet is localized over a classically small region of the action space/lattice such
that a variation of the frequency derivative dω(j)/dj over this region is sufficiently small.

In this subsection we thus consider a one-dimensional case, d = 1. For simplicity we will focus on a
linear response regime, so we will study time-dependent terms

〈

Σ2(t)
〉

and 〈Σ(t)〉 with Σ(t) given
in Eq. (4.35). In the justification of the time average plateau, Section 4.2, we replaced a sum over
n with an integral over action space. Here the time is not small enough and furthermore the very
graininess of quantum actions is the source of resonances and we will have to explicitly consider
sums over n. We seek a condition, such that consecutive phases in the exponential build up an
interference pattern.

2π-resonance:

Let us expand the frequency around the centre of the packet

ω(j) = ω∗ + (j − j∗)ω′ + 1

2
(j − j∗)2ω′′ + . . . (4.72)

where ω∗ = ω(j∗), ω′ = dω(j∗)/dj and ω′′ = d2ω(j∗)/dj2. The phases in the sums of the form
(4.49) with factors eimω(h̄n) come into resonance, for m = 1 and hence for any higher m ≥ 1, when
they change by 2π per quantum number, which happens at time tr,

h̄ω′tr = 2π, tr =
2π

h̄ω′
, (4.73)

and its integer multiples. It is interesting to note that these resonant times correspond precisely
to the condition for revivals of the wave-packet in the forward evolution (apart from a phase-space
translation) studied in (Braun & Savichev, 1996) and (Leichtle et al. , 1996). In addition, we need
that the coherence of linearly increasing phases is not lost along the size of the wave-packet, i.e.

ζ := mω′′t∆2
j =

h̄mω′′t
2Λ

< 2π, (4.74)

where we denoted by ∆j :=
〈

(j − j∗)2〉1/2 =
√

h̄
2Λ the action-width of the initial wave-packet.

Therefore, if ζ ¿ 2π we will observe echo resonances at integer multiples of 2π-resonance time tr.

The shape of the echo resonance can also be derived. Let time t be close to ktr, k ∈ > , and
write t = ktr + t′ where t′ ¿ tr, so that h̄ω′t′ ¿ 2π. We can estimate the general time dependent
sum over n in entirely analogous fashion to Eq. (4.49) by: (i) shifting the time variable to t′, (ii)

‡In more than one dimension we would clearly need a strong condition on commensurability of frequency derivatives
over the entire region of the action lattice where the initial state is supported.
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incorporating the resonance condition, and (iii) approximating the resulting sum by an integral,
due to the smallness of t′,

∑

n

g(h̄n)eimω(h̄n)tdρ(h̄n) ∼=
∑

n

g(h̄n)eim(ω
∗+(h̄n−j∗)ω′+ 1

2
(h̄n−j∗)2ω′′)(tr+t′)dρ(h̄n)

= eimω
∗t
∑

n

g(h̄n)eim((h̄n−j
∗)ω′t′+ 1

2
(h̄n−j∗)2ω′′t)dρ(h̄n)

∼= eimω
∗tg(j∗)

√

Λ

πh̄

∫

dj eim((j−j
∗)ω′t′+ 1

2
(j−j∗)2ω′′t)−Λ

h̄
(j−j∗)2

= eimω
∗tg(j∗)

1√
1− iζ

exp

(

− h̄m
2ω′2t′2

4Λ

1 + iζ

1 + ζ2

)

. (4.75)

We see that the resonance has a Gaussian envelope, modulated with an oscillation frequency ≈ ω∗.
At the resonance centre t′ = 0, and assuming ζ ¿ 1, we can easily calculate the linear response
terms in the fidelity, getting

〈

Σ2(t)
〉

= 〈Σ(t)〉2. Therefore, for small ζ the fidelity at a 2π echo
resonance is 1. We get a perfect revival of fidelity. For non-negligible ζ, the resonance height dies
as (1 + ζ2)−1/2. As ζ depends on time t, the resonances will decrease in height with the increasing
order k of the resonance. That is, for the k-th resonance occurring at t = ktr we have

ζ = k
πm

Λ

ω′′

ω′
, (4.76)

and the magnitude of the resonances therefore falls as ∼ 1/k. We will get strong and numerous
resonances, i.e. small ζ, provided that either the second derivative ω′′ is small, or the initial state
is squeezed such that Λ À 1. For example, if the second derivative vanishes everywhere, ω ′′ ≡ 0,
then the resonances may appear even for extended states. This is the case for our numerical model,
where resonances can be seen also for a random state in Figure 4.10. The Gaussian envelope of the
resonance has an effective width

∆r =
mω′

∆j

√

1 + ζ2 ∼ k/
√
h̄. (4.77)

In the semiclassical limit, the resonance positions scale as tr ∝ h̄−1, while their widths grow only as
∆r ∝ h̄−1/2, so they are well separated. On the other hand, with increasing order k the resonance
width grows, and they eventually start to overlap at k ∼ 1/

√
h̄. This overlapping takes place at

time ∼ h̄−3/2 and is smaller than t2 provided δ < ν
−1/2
CIS h̄.

The structure of 2π−resonance is nicely illustrated in a numerical example in Figure 4.8, where
we consider a slightly modified model with

U0 = exp (−iS[α(Sz/S)2/2 + γ(Sz/S − j∗)3/6]), (4.78)

corresponding to h0(j) = αj2/2 + γ(j − j∗)3/6 and a coherent initial state at (ϑ, ϕ) = (1, 1). For
such a system ω′′ = γ may not be identically vanishing and ω′ = α.

π- and 2π/m-resonances:

We note that one may obtain a resonance condition for a single time-dependent term (4.75) with
fixed m even at a shorter time, namely for t = tr/m. This is trivially the case for perturbations
with many, or at least more than one Fourier components with |m| > 1. However, in such cases
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Figure 4.9: Two-time correlation function C(t′, t′′) (2.18) for the quantized top with α = 1.1, γ =
0, S = 16, and coherent initial state at (ϑ, ϕ) = (1, 1). The structures giving rise to a π and 2π
resonance can be seen.

only selected time-dependent terms of the moment will be affected, so the fidelity will generically
not come back to 1, even in the linear response regime and in the strongly resonant case ζ ¿ 1.
Such (incomplete) resonances at fractional times (k/m)tr will be called 2π/m-resonances.

However, we may obtain a resonant condition at t = tr/2 even for the first Fourier component
m = 1 of the perturbation, as taking the square of the operator Σ(t) produces Fourier components
m+m′ = ±2. Such a resonant behaviour at times (k + 1

2)tr will be called a π−resonance.
So for perturbations with a single Fourier mode m = ±1, or more generally with only odd-

numbered Fourier modesm = 2l+1, the π−resonance can affect only the term having ei(m+m′)ω(h̄n)t

in the expression for the second moment. All other terms (having a single m in the phase) result
in their time-averaged values. To see this, we observe that the time dependent parts of the form
g(h̄n)eimωt are proportional to

∑

n dρ(h̄n)g(h̄n)(−1)mn. As m is an odd number and dρ(h̄n)g(h̄n)
is a smooth function of n, this sum averages to zero. This allows us to again compute explicitly
the fidelity in linear response close to the peak in a strongly resonant case. We find

〈Σ(t)〉 ∼= −
∑

m=2l+1

wm(j
∗)eimθ

∗
, for |t− (k +

1

2
)tr| ¿ ∆t, and ζ ¿ 1,

〈Σ2(t)〉 ∼=
(

∑

m=2l+1

wm(j
∗)eimθ

∗
)2

+
(

∑

m=2l+1

wm(j
∗)eim(θ∗+ω∗t)

)2
, (4.79)

1− F (t) ∼= δ2

h̄2





∑

m=2l+1

|wm(j∗)| cos(mω∗t+ βm)





2

,

where βm are phases of complex numbers wm(j
∗)eimθ

∗
. So we have learned that the fidelity at the

peak of a π-resonance displays an oscillatory pattern, oscillating precisely around the plateau value
FCIS
plat (4.62) with an amplitude of oscillations equal to 1 − FCIS

plat so that the fidelity comes back to
1 close to the peak of the resonance.
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Again, our numerical example illustrates such an oscillatory structure of π−resonance in Fig-
ure 4.8. The resonances can also be nicely seen in ‘short-time’ Figure 4.4, and because ζ = 0
also in the ’long-time’ Figure 4.5. In Figure 4.9 we depict the structure of π− and 2π− resonance
as reflected in the two-time correlation function C(t′, t′′). Note that the first intersection of the
soliton-like-trains for t′−t′′ = const and t+t′ = const happens at tr/2 and produces a π−resonance,
while the second intersection at tr produces a 2π-resonance.

In analogy to the emergence of a π−resonance as a consequence of the contribution from the
second moment of Σ(t), even for the first Fourier mode m = 1, we shall eventually obtain also
fractional 2π/p-resonances at times (k/p)tr in the non-linear-response regimes where higher mo-
ments 〈Σp(t)〉 contribute to F (t) ∼ 〈exp(−iΣ(t)δ/h̄)〉. This is illustrated numerically in Figure 4.4c
showing the case of strong perturbation δS = 3.2 so that higher orders are important. One indeed
obtains fractional resonances, some of which have been marked on the figure.

4.2.4 Random Initial States

The second specific case of interest is that of random initial states. Here we shall assume that our
Hilbert space has a finite dimension N , like e.g. in the case of the kicked top or a general quantum
map with a finite classical phase space, or it is determined by some large classically invariant region
of phase space, e.g. we may consider all states |n〉 between two energy surfaces E1 < h0(h̄n) < E2

of an autonomous system. In any case we have the scaling

N ∼= V
(2πh̄)d

, (4.80)

where V is the volume of the relevant classical phase space. Throughout this section we will assume
that the Hilbert space size N is sufficiently large, so that the difference between the expectation
value in a single random state and an average over the whole space can be neglected. Also, as
discussed in Section 2.2.2, the difference between the average fidelity amplitude squared and the
average fidelity is semiclassically small.

The Plateau

To calculate the plateau we replace the quantum expectation value 〈•〉 with a classical phase space
average, resulting in a fidelity amplitude

fRISplat
∼= (2π)d

V

∫

ddj

∣

∣

∣

∣

∣

∫

ddθ

(2π)d
exp

(

− iδ

h̄
w(j,θ)

)

∣

∣

∣

∣

∣

2

. (4.81)

Interestingly, the plateau for a random initial state is just the average plateau for a coherent state
squared, where averaging is done over the position of the initial coherent state. If we denote the
plateau for a coherent initial state centred at j∗ by FCIS

plat (j
∗) (Eq. 4.61), then the plateau for a

random initial state FRIS
plat is simply

FRIS
plat
∼=
∣

∣

∣

∣

∣

(2π)d

V

∫

ddjFCIS
plat (j)

∣

∣

∣

∣

∣

2

. (4.82)

Similarly as in mixing dynamics there is a square relationship between the plateau for RIS and
CIS. In the mixing case the plateau for CIS does not depend on the position of the initial state due
to ergodicity, here though the plateau for CIS does depend on j∗ and one has to take a square of
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Figure 4.10: Short time fidelity for a quantized top with β = 1.4 (having no singularities) and a
random initial state. In order to reduce statistical fluctuations, averaging over 20 random initial
states is performed for S = 1600, and over 100 initial states for S = 200. The horizontal chain line
shows the semiclassical theory (4.82). Echo resonances (two spikes for S = 200) are here present
due to the special property ω′′(j) = 0 and will be absent for a more generic unperturbed system.
The main figure shows the case of the weak perturbation δS = 0.32, whereas the inset is for the
strong perturbation δS = 3.2.

the average plateau for CIS. In the linear response approximation one has a simple formula for the
plateau

1− FRIS
plat
∼= δ2

h̄2
νRIS, νRIS = 2

(2π)d

V

∫

ddj
∑

m6=0
|wm(j)|2. (4.83)

In Section 4.2 we already discussed possible divergence problems in wm. If we express wm in
terms of vm, Eq. (4.36), we have denominators sin (m · ω(j)/2). We therefore have divergences at
points in phase space where m ·ω(j) = 2πk with k an integer. For a coherent initial state this was
not a real problem as it would occur only if we placed initial packet at such a point. For random
initial state though, there is an average over the whole action space in the plateau formula and if
there is a single diverging point somewhere in the phase space it will cause divergence. The solution
is very simple as explained in Section 4.2. The integral is actually an approximation for a sum
over h̄n and so we have to retain the original sum over the eigenvalues of the action operator and
exclude possible diverging terms. The formula for the plateau in the case of such divergences is

FRIS
plat
∼=

∣

∣

∣

∣

∣

∣

1

N

m·ω(h̄n)6=2πk
∑

n

FCIS
plat (h̄n)

∣

∣

∣

∣

∣

∣

2

, (4.84)

where in the summation over n we exclude all terms for which for any constituent Fourier mode
m we would have m · ω(h̄n) = 2πk.
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Figure 4.11: Short time fidelity decay for β = 0 (we have singularities) and a random initial state.
The chain line shows the theoretical value of the plateau as computed from Eq. (4.84).

Again we find an excellent confirmation of our theoretical predictions in the numerical experi-
ment for the same system as for a coherent initial state (4.51). In the first calculation we choose
the shift β = 1.4 so that we have no singular frequency in the action space. In Figure 4.10 we
demonstrate the plateau, which in the case of random states starts earlier than for coherent states,
namely at t1 ∝ h̄0δ0 (4.46). The value of the plateau can be immediately written in terms of the
result for coherent states,

FRIS
plat
∼=
[

1

2

∫ 1

−1
djJ2

0

(

δS

√

1− j2
2 sin {α(j − β)/2}

)]2

. (4.85)

The integral has to be calculated numerically. Horizontal chain lines in Figure 4.10 correspond to
this theoretical values and agree with numerics, both for the weak perturbation δS = 0.32 and
the strong perturbation δS = 3.2 (inset). Small echo resonances visible in the figures are due
to the fact that the Hamiltonian is a quadratic function of the action and therefore ω ′′ ≡ 0, so
that the resonance condition (4.73) is satisfied also for extended states (4.74). For a more generic
Hamiltonian these narrow resonant spikes will be absent. In Figure 4.11 we also demonstrate the
plateau in the fidelity for the zero-shift case β = 0 with a singular-frequency, ω(j = 0) = 0, where we
again find an excellent agreement with the theoretical prediction (4.84). In this case the theoretical
value has been obtained by replacing an integral in (4.85) with a sum as implied by Eq. (4.84) and
summing over all quantum numbers except n = 0. Observe that the value of the plateau is much
lower than in the case of a non-zero shift β = 1.4 in Figure 4.10 as quantum numbers around n = 0
will be close-to resonant.
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Figure 4.12: Long time power law fidelity decay for random states in the kicked top with β = 0
and α = 1.1, for S = 200 (a), and S = 1600 (b). Here averaging for S = 200 is performed over
1000 initial random states, otherwise all is the same as for Figure 4.10. The heavy chain line
shows the theoretical asymptotic decay (4.87) with an analytically computed prefactor (no fitting
parameters). The inset in the bottom figure shows the diffractive quotient between the numerical
fidelity and the asymptotic formula (4.86) (chain line in the main figure).

Long Time Decay

After a sufficiently long time t > t2 fidelity will start to decay. To calculate this decay we have to
evaluate the ASI formula (4.42). For a uniform average over Hilbert space we have Dρ = 1/N with
the classical limit dρ(j) = (2πh̄)d/V. The fidelity amplitude is therefore

f(t) ∼= (2π)d

V

∫

ddj exp

(

−iδ
2t

2h̄
r̄(j)

)

. (4.86)

The stationary phase procedure is completely analogous to the situation for the case of non-residual
perturbation, described in Section 3.2.3, Eq. (3.46). We will only write the asymptotic result,

F (t) ³
(

tran
t

)d

, tran = const× h̄

δ2
. (4.87)

Here we should remember that the asymptotic formula (4.87) has been obtained as a stationary
phase approximation of an integral in the limit of an infinite action space. If we have a finite region
of the action space, as is the case for the kicked top, the stationary phase approximation gives an
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additional oscillating prefactor, whose amplitude is damped as (h̄/t)1/2 for h̄ → 0 and/or t → ∞,
and which can be interpreted as a diffraction. This oscillating prefactor can be seen in numerical
data for the fidelity in the inset of Figure 4.12. For random states the time t2 when the plateau
ends is independent of h̄ and is determined by the ratio of two competing terms in the BCH form
or the echo operator, t2 ∼ |δΣ(t)/h̄|/|δ2Γ̄/2h̄|, therefore we have

t2 ∼ 1/δ. (4.88)

This agrees with the numerical results shown in Figures 4.10 and 4.11.



Chapter 5

Coupling with the Environment

When a man tells you that he got rich through hard
work, ask him: ’Whose?’

—Don Marquis

The fidelity might not always be the relevant measure of stability. Coupling with the envi-
ronment is usually unavoidable so that the evolution of our system is no longer Hamiltonian. To
preserve the Hamiltonian formulation we have to include the environment in our description. We
therefore have a “central system”, denoted by a subscript “c”, and an environment, denoted by
subscript “e”. The names central system and environment will be used just to denote two pieces of
a composite system, without any connotation on their properties, dimensionality etc. The central
system will be that part which is of interest and the environment the rest. The Hilbert space is a
tensor product H = Hc ⊗He and the evolution of a whole system is determined by a Hamiltonian
or a propagator on the whole Hilbert space H of dimension N = NcNe. The unperturbed state
|ψ(t)〉 and the perturbed one |ψδ(t)〉 are obtained with propagators U(t) and Uδ(t) (2.3). Fidelity
would in this case be the overlap of two wave functions on the whole space. But if we are not
interested in the environment, this is clearly not the relevant quantity. Namely, the fidelity will be
low even if the two wave functions are the same on the subspace of the central system and differ
only on the environmental part.

5.1 Reduced Fidelity, Purity Fidelity

We can define a quantity analogous to the fidelity, but which will measure the overlap just on the
subspace of interest, i.e. on the subspace of the central system. Let us define a reduced density
matrix of a central subsystem

ρc(t) := tre[ρ(t)], ρMc (t) := tre[ρ
M(t)], (5.1)

where tre[•] denotes a trace over the environment and ρM(t) = Mδ(t)ρ(0)Mδ(t)
† is the so-called

echo density matrix. Throughout this chapter we will assume that the initial state is a pure product
state, i.e. a direct product,

|ψ(0)〉 = |ψc(0)〉 ⊗ |ψe(0)〉 =: |ψc(0);ψe(0)〉, (5.2)

77
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where we also introduced a short notation |ψc;ψe〉 for pure product states. The resulting initial
density matrix ρ(0) = |ψ(0)〉〈ψ(0)| is of course also pure. The fidelity was defined as F (t) =
tr[ρ(0)ρM(t)] (2.9) and in a similar fashion we will define a reduced fidelity (Žnidarič & Prosen,
2003) denoted by FR(t),

FR(t) := trc[ρc(0)ρ
M
c (t)]. (5.3)

The reduced fidelity measures the distance between the initial reduced density matrix and the
reduced density matrix after the echo. Note that our definition of the reduced fidelity agrees with
the information-theoretic fidelity (2.1) on a central subspace Hc only if the initial state is a pure
product state, so that ρc(0) is also a pure state.

One of the weirdest features of quantum mechanics is entanglement. Of some interest is therefore
also whether the coupling with the environment will produce entanglement and how fast. Due to
the coupling between the central system and the environment the initial product state will evolve
after an echo into the pure entangled state Mδ(t)|ψ(0)〉 and therefore the reduced density matrix
ρMc (t) will be a mixed one. For a pure state |ψ(t)〉 the criterion for entanglement is very simple. It
is quantified by a purity I(t), defined as

I(t) := trc[ρ
2
c(t)], ρc(t) := tre[|ψ(t)〉〈ψ(t)|]. (5.4)

Purity, or equivalently von Neumann entropy tr(ρ ln ρ), is a standard quantity used in decoherence
studies (Zurek, 1991). Iff the purity is less than one, I < 1, then the state |ψ〉 is entangled (between
the environment and the central system), otherwise it is a product state. Similarly, one can define
a purity after an echo, called purity fidelity (Prosen & Seligman, 2002) FP(t),

FP(t) := trc[{ρMc (t)}2]. (5.5)

All three quantities, the fidelity F (t), the reduced fidelity FR(t) and the purity fidelity FP(t) measure
stability to perturbations. If the perturbed evolution is the same as the unperturbed one, they are
all equal to one, otherwise they are less than one. The fidelity F (t) measures the stability of a whole
state, the reduced fidelity gives the stability on Hc and the purity fidelity measures separability of
ρM(t). One expects that fidelity is the most restrictive quantity of the three - ρ(0) and ρM(t) must
be similar for F (t) to be high. For FR(t) to be high, only the reduced density matrices ρc(0) and
ρMc (t) must be similar, and finally, the purity fidelity FP(t) is high if only ρM(t) factorizes. It looks
though as fidelity is the strongest criterion for stability.

5.1.1 Inequality Between Fidelity, Reduced Fidelity and Purity Fidelity

Actually, one can prove the following inequality for an arbitrary pure state |ψ〉 and an arbitrary
pure product state |φc;φe〉 (Žnidarič & Prosen, 2003; Prosen et al. , 2003a),

|〈φc;φe|ψ〉|4 ≤ |〈φc|ρc|φc〉|2 ≤ trc[ρ
2
c ], (5.6)

where ρc := tre[|ψ〉〈ψ|].
Proof. Uhlmann’s theorem (Uhlmann, 1976), i.e. noncontractivity of the fidelity, states that

tracing over an arbitrary subsystem can not decrease the fidelity,

tr[|φc;φe〉〈φc;φe||ψ〉〈ψ|] ≤ tr[|φc〉〈φc|ρc]. (5.7)

Then, squaring and applying the Cauchy-Schwartz inequality | tr[A†B]|2 ≤ tr[AA†] tr[BB†] we
immediately obtain the wanted inequality (5.6).
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The rightmost quantity in the inequality I = tr[ρ2c ] is nothing but the purity of state |ψ〉 and
so does not depend on |φc;φe〉. One can think of inequality (5.6) as giving us a lower bound on
purity. An interesting question for instance is, which state |φc;φe〉 optimises this bound for a
given |ψ〉, i.e. what is the maximal attainable overlap |〈φc;φe|ψ〉|4 (fidelity) for a given purity.
The rightmost inequality is optimised if we choose |φc〉 to be the eigenstate of the reduced density
matrix ρc corresponding to its largest eigenvalue λ1, ρc|φc〉 = λ1|φc〉. To optimise the left part
of the inequality, we have to choose |φe〉 to be the eigenstate of ρe := trc[ρ] corresponding to the
same largest eigenvalue λ1, ρe|φe〉 = λ1|φe〉. The two reduced matrices ρe and ρc have the same
eigenvalues (Araki & Lieb, 1970), λ1 ≥ λ2 ≥ . . . ≥ λNc . For such choice of |φc;φe〉 the left inequality
is actually an equality, |〈φc;φe|ψ〉|4 = |〈φc|ρc|φc〉|2 = λ21 and the right inequality is

λ21 ≤ tr[ρ2c ] =
Nc
∑

j=1

λ2j , (5.8)

with equality iff λ1 = 1. In the case when the largest eigenvalue is close to one, λ1 = 1 − ε, the
purity will be I = (1− ε)2 +O(ε2) ∼ 1− 2ε and the difference between the purity and the overlap
will be of the second order in ε, I − |〈φc;φe|ψ〉|4 ∼ ε2. Therefore, for high purity the optimal choice
of |φc;ψs〉 gives a sharp lower bound, i.e. its deviation from I is of second order in the deviation of
I from unity.

For our purpose of studying stability to perturbations, a special case of the general inequality
(5.6) is especially interesting. Namely, taking for |ψ〉 the state after the echo evolution Mδ(t)|ψ(0)〉
and for a product state |φc;φe〉 the initial state |ψ(0)〉 (5.2), we obtain

F 2(t) ≤ F 2
R(t) ≤ FP(t). (5.9)

Immediate consequence of this inequality is that if the fidelity is high, the reduced fidelity and the
purity fidelity will also be high. In the case of perturbations with a zero time average in Chapter 4,
the fidelity freezes at the plateau and from the inequality we immediately know that the same
phenomenon will be present for the reduced fidelity and the purity fidelity.

5.1.2 Uncoupled Unperturbed Dynamics

Special, but very important case is when the unperturbed dynamics U0 represents two uncoupled
systems, so that we have

U0 = Uc ⊗ Ue. (5.10)

This is a frequent situation if the coupling with the environment is “unwanted”, so that our ideal
evolution U0 would be an uncoupled one. The reduced fidelity FR(t) and the purity fidelity FP(t)
have especially nice forms in such case.

The reduced fidelity (5.3) can be rewritten as

FR(t) = trc[ρc(0)ρ
M
c (t)] = trc[ρc(t)ρ

δ
c(t)], (5.11)

where ρc(t) is the unperturbed state of the central system and ρδc(t) := tre[Uδ(t)ρ(0)U
†
δ (t)] the

corresponding state obtained by perturbed evolution. Whereas for a general unperturbed evolution
the reduced fidelity was an overlap of the initial state with an echo state, for a factorized unper-
turbed evolution it can also be interpreted as the overlap of the (reduced) unperturbed state at
time t with a perturbed state at time t, similarly as the fidelity.
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The purity fidelity can also be simplified for uncoupled unperturbed evolution. As the U0 is in
factorized form, we can bring it out of the innermost trace in the definition of the purity fidelity
and use the cyclic property of the trace, finally arriving at

FP(t) = trc[{ρMc (t)}2] = trc[{ρδc(t)}2] = I(t). (5.12)

The purity fidelity is therefore equal to the purity of the forward evolution. The general inequality
gives in this case

F 2(t) ≤ F 2
R(t) ≤ I(t), (5.13)

and so the fidelity and the reduced fidelity give a lower bound on the decay of purity. Because the
purity is frequently used in studies of decoherence this connection is especially appealing.

In all our theoretical derivations regarding the purity fidelity we will assume a general unper-
turbed evolution, but one should keep in mind that the results immediately carry over to purity
in the case of uncoupled unperturbed dynamics. Also a large part of our numerical demonstration
in next two sections will be done on systems with an uncoupled unperturbed dynamics as this is
usually the more interesting case.

5.1.3 Linear Response Expansion

We proceed with the linear response expansion of the reduced fidelity (5.3) and the purity fidelity
(5.5). We will use notation ρc := |ψc(0)〉〈ψc(0)| for initial pure density matrix on a central system
and ρe := |ψe(0)〉〈ψe(0)| for the environment. The perturbed propagator is defined in exactly the
same way as for the fidelity (2.6) in terms of the perturbation generator V . To order O(δ4) we get,

1− F (t) =

(

δ

h̄

)2

〈Σ(t)( ? ⊗ ? − ρc ⊗ ρe)Σ(t)〉
1− FR(t) =

(

δ

h̄

)2

〈Σ(t)( ? − ρc)⊗ ? Σ(t)〉
1− FP(t) = 2

(

δ

h̄

)2

〈Σ(t)( ? − ρc)⊗ ( ? − ρe)Σ(t)〉, (5.14)

where 〈•〉 = tr[(ρc ⊗ ρe)•] denotes the quantum expectation value in the initial product state
and Σ(t) is the sum of V (t) (2.12). If the expectation values are written explicitly in terms of
expectations in the base states |j; ν〉, j = 1, . . . ,Nc, ν = 1, . . . ,Ne, with the convention that the
first base state |1; 1〉 := |ψc;ψe〉 is the initial state, we have

1− F (t) =

(

δ

h̄

)2
{

〈1; 1|Σ2(t)|1; 1〉 − 〈1; 1|Σ(t)|1; 1〉2
}

1− FR(t) =

(

δ

h̄

)2
{

〈1; 1|Σ2(t)|1; 1〉 −
Ne
∑

ν=1

|〈1; ν|Σ(t)|1; 1〉|2
}

(5.15)

1− FP(t) = 2

(

δ

h̄

)2






〈1; 1|Σ2(t)|1; 1〉 −
Ne
∑

ν=1

|〈1; ν|Σ(t)|1; 1〉|2 −
Nc
∑

j=2

|〈j; 1|Σ(t)|1; 1〉|2






.

As one can see, the linear response expansion of course also satisfies the general inequality (5.9).
The difference between FR(t) and F (t) as well as between FP(t) and F (t) is in off-diagonal matrix
elements of operator Σ(t). Somehow reminiscent perturbative expansion, although without time
dependence, has been obtained in studying the eigenvalues of the reduced density matrix (Kübler
& Zeh, 1973). Depending on the growth of linear response terms with time we will again have two
general categories, that of mixing dynamics and that of regular dynamics.
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Mixing Dynamics

For mixing dynamics the correlations decay and the linear response term will grow linearly with
time. For large times one can argue that Σ(t) should look like a random matrix and the terms
giving the difference between the fidelity and the purity fidelity and the reduced fidelity can be
estimated as

∑Nc
j=2 |〈j; 1|Σ(t)|1; 1〉|2

〈1; 1|Σ2(t)|1; 1〉 ∼
∑

j |[Σ(t)](j;1),(1;1)|2
∑

j,ν |[Σ(t)](1;1),(j,ν)|2
∼ 1

Ne
, (5.16)

because there are more terms in the sum for fidelity. Therefore we can estimate the difference
FP(t)− F 2(t) ∼ 1/Nc + 1/Ne and FR(t)− F (t) ∼ 1/Nc. Provided both dimensions Nc,e are large
and for sufficiently long times, so the “memory” of the initial state is lost and the correlations
decay, we can expect the decay of all three quantities to be the same.

Regular Dynamics

For regular dynamics on the other hand, Σ(t) will not approach a random matrix but will grow
with time with a well defined long time limit Σ(t) → V̄ t. This will happen for times larger than
the averaging time tave (3.17). Expectation value of Σ2(t) will then grow quadratically with time.
In a similar way as we defined the average correlation function C̄ (3.15), we can also define a time
average of the correlation functions occurring in the linear response expressions for FR(t) and FP(t),

C̄R := lim
t→∞

〈Σ(t)( @ − ρc)⊗ @ Σ(t)〉
t2

= 〈V̄ ( @ − ρc)⊗ @ V̄ 〉
C̄P := lim

t→∞
〈Σ(t)( @ − ρc)⊗ ( @ − ρe)Σ(t)〉

t2
= 〈V̄ ( @ − ρc)⊗ ( @ − ρe)V̄ 〉. (5.17)

In the linear response regime purity fidelity and reduced fidelity will therefore decay quadratically
with time, if C̄R and C̄P are nonzero.

For coherent initial states the average correlation function C̄ is proportional to h̄ (3.36) provided
v̄(j) is sufficiently smooth. In the semiclassical limit we can make an expansion around the centre
of the wave packet v̄(j) ≈ v̄(j∗) + v̄′(j∗){j − j∗} + · · ·. The second moment 〈v̄2〉cl − 〈v̄〉2cl is then
proportional to the dispersion in j of the initial packet (3.33), i.e. to h̄. As we take a product
initial coherent packet we have a dc + de dimensional squeezing matrix Λ

Λ =

(

Λc 0
0 Λe

)

, (5.18)

and we can write derivatives of classical v̄ as

v̄′ =: (v̄′c, v̄
′
e), v̄′c :=

∂v̄(j∗)
∂jc

, v̄′e :=
∂v̄(j∗)
∂je

, (5.19)

where we split actions j into two components j =: (jc, je). The formula for C̄ (3.36) can then be
written as

C̄ =
1

2
h̄
(

v̄′cΛ
−1
c v̄′c + v̄

′
eΛ
−1
e v̄′e

)

, (5.20)

By a similar method one can calculate also C̄R (5.17) and gets

C̄R =
1

2
h̄
(

v̄′cΛ
−1
c v̄′c

)

. (5.21)
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For C̄P on the other hand, the lowest order expansion of v̄′ used for C̄ and C̄R gives zero. To get
C̄P we must expand v̄ to the second order in (j − j∗)

v̄(j) ≈ v̄(j∗) + v̄′(j∗){j − j∗}+ 1

2
{j − j∗} · v̄′′(j∗){j − j∗}+ · · · , (5.22)

where v̄′′(j∗) is a symmetric matrix of second derivatives evaluated at the position of initial packet
j∗,

v̄′′ =
(

v̄′′cc v̄′′ce
v̄′′ec v̄′′ee

)

, v̄′′lk(j
∗) :=

∂2v̄(j∗)
∂jl∂jk

. (5.23)

The only nonzero contribution to C̄P comes from off-diagonal terms v̄′′ce and v̄
′′
ec = (v̄′′ce)

T , with the
final result being

C̄P =

(

1

2
h̄

)2

tr[u], u := Λ−1c v̄′′ceΛ
−1
e v̄′′ec. (5.24)

The result for C̄P is very interesting as it means that the purity fidelity in regular systems will decay
as FP(t) = 2(δ/h̄)2C̄Pt

2 on h̄-independent time scale because of C̄P ∝ h̄2. Note that to reach this
conclusion of h̄-independent decay, we need only the existence of a smooth classical limit of Σ(t),
therefore FP(t) will decay on h̄-independent time scale even before V̄ converges, i.e. for t < tavg.

A simple special case of time averaged perturbation V̄ is the tensor product form V̄ = V̄c ⊗ V̄e.
Then we have v̄′′ce = v̄′c ⊗ v̄′e/v̄ (note that in order to comply with our previous notation we have
v̄′c = (∂cv̄c)v̄e). If in addition Λc,e are diagonal, then the average C̄P is

C̄P =

(

1

2v̄
h̄

)2 (

v̄′cΛ
−1
c v̄′c

) (

v̄′eΛ
−1
e v̄′e

)

. (5.25)

As we can see, for a tensor product forms of the time averaged perturbation there is a relation
between C̄, C̄R and C̄P,

v̄2C̄P ≡ C̄R(C̄ − C̄R). (5.26)

The purity fidelity will be high, i.e. decoherence will be slow, if we either make C̄R small or make
C̄R close to C̄. Note that if C̄R is small, then the inequality (5.9) already tells that C̄P will be also
small, but here we have a stronger result, that C̄P is of second order in h̄ whereas C̄R is only of
first order.

5.1.4 Numerical Illustration

Here we would like to briefly demonstrate quadratic decay of the purity fidelity for regular systems
and linear decay for chaotic systems. Furthermore, we will show that one can also have a situation
where the purity fidelity FP(t) decays slower for chaotic systems than for regular. We take a Jaynes-
Cummings model (Section 2.1.2) which is a two degrees of freedom model of a harmonic oscillator
coupled to a spin. As initial state we always take a product state of two coherent states, for the
spin the coherent state (2.26) is centred at (ϑ∗, ϕ∗) = (1, 1) and for the boson coherent state (2.30)
we take α = 1.15. We take two different sets of parameters. For the chaotic regime we choose
ω = ε = 0.3 and G = G′ = 1, for which the energy of the initial state is E = 1.0 and the classical
Poincaré section shows a single ergodic component. The second set of parameters is ω = ε = 0.3
and G = 1, while G′ = 0, for which the systems is integrable and the energy is E = 0.63. The
perturbation is chosen to be in the spin energy ε, i.e. a detuning, corresponding to the perturbation
generator V

V = h̄Sz. (5.27)
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Because the simulation is very time consuming for the chaotic case, we choose a small spin size
S = 4, resulting in an effective Planck’s constant h̄ = 1/4.

Note that, as opposed to previous kicked top model, here the system is conservative, and the
time index t is continuous. First we want to check the growth of linear response terms with time.
In Figure 5.1 we show the correlation integral SF(t) for fidelity and the difference SF(t) − SP(t)
between the correlation integrals for fidelity SF(t) and for purity fidelity SP(t),

SF(t) :=
1

t
〈Σ(t)( A ⊗ A − ρc ⊗ ρe)Σ(t)〉

SP(t) :=
1

t
〈Σ(t)( A − ρc)⊗ ( A − ρe)Σ(t)〉. (5.28)

Note that for chaotic systems SF(t) should converge to 2σ (3.3), where σ is the transport coefficient,
i.e. the integral of the correlation function. The difference SF(t)− SP(t) should on the other hand
be of the order ∼ 2σ(1/Nc +1/Ne) ∼ σ/2 (due to 1/Nc +1/Ne ≈ 1/S). These two predictions are
nicely confirmed by the lower two curves in Figure 5.1. We can see that the correction to the purity
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Figure 5.1: The correlation integral SF(t) and SF(t)−SP(t) (5.28) in the Jaynes-Cummings model
for regular dynamics (upper curves) and chaotic dynamics (lower curves). The horizontal dashed
lines (for the chaotic case) are at 2σ = 0.2 and 0.2/4. The two linearly increasing dashed lines for
regular dynamics have slopes C̄ = 0.046 and C̄(1− 0.98/4).

fidelity is really of order 1/S in the chaotic case and would therefore vanish in the semiclassical
limit. For regular dynamics we expect SF(t) to grow linearly with time, with the slope given by C̄,
SF(t) → C̄t, with C̄ ∝ 1/S (5.20). The purity fidelity integral should grow as SP(t) → C̄Pt with
C̄P ∝ 1/S2 (5.24). The difference should therefore be SF(t) − SP(t) ∼ SF(1 − const/S). This is
again confirmed in Figure 5.1. We checked that SP ∝ 1/S2 also for larger S, up to S = 24.

Next, we would like to demonstrate a faster decay of the purity fidelity in the regular regime
than in the chaotic one. We set the perturbation strength to δ = 0.005 for which we expect
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Figure 5.2: Echo dynamics in the Jaynes-Cummings model. The square of the Wigner function
for chaotic dynamics (top diagrams) and integrable dynamics (bottom diagrams) is shown as a
function of time at times corresponding to the axis. The purity fidelity is shown in the main frame
on the same time scale and for short times in the inset. Red curves give the integrable and blue
curves the chaotic evolution. In the inset full curves show the complete numerics, symbols the
evaluation starting from the numerical correlation integrals of Figure 5.1 and dashed curves the
linear or quadratic approximation using σ and C̄P.

the purity fidelity to become lower in the regular regime at the time determined by 1 − FP(t) =
2δ2S2C̄Pt

2 ≈ 1 − F (t) = δ2S22σt, i.e. at t ≈ 9, where we used σ = 0.1 and C̄P = 0.011 as given
in Figure 5.1. In Figure 5.2 we show the purity-fidelity for chaotic and regular regimes. We can
see the crossover at the predicted time t ≈ 9. We also illustrate the evolution of the purity fidelity
with the square of the Wigner function corresponding to the reduced density matrix ρMc (t) on the
central spin subspace. IfWρMc

(ϑ, ϕ) is the Wigner function, purity fidelity can be written as a phase
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space integral

FP(t) =

∫

dΩW 2
ρMc

(ϑ, ϕ). (5.29)

For details about the spin Wigner function see Appendix A. Near the top and bottom of Figure 5.2
we see this evolution for the chaotic and the integrable Hamiltonian respectively. In the centre of
the figure we plot the purity fidelity on the same time scale as the Wigner functions in the main
frame and an amplification of short times in the inset. We observe detailed agreement of numerics
with the results obtained from the numerical values of the correlation integrals SF(t) and SP(t),
reproducing the oscillatory structure of the decay. From the same correlation integrals we obtained
the coefficients for the linear and quadratic decay, which agree well if we discard the oscillations. It
is important to remember that the integral over the square of the Wigner function gives the purity
fidelity and therefore the fading of the picture will be indicative of the purity fidelity decay. On the
other hand the movement of the centre is an indication of the rapid decay of fidelity (not shown in
the figure).

5.2 Mixing Dynamics

Discussing linear response results (Section 5.1.3) in the case of mixing dynamics we have shown
that the linear decay is the same for all three quantities. Similar random matrix arguments as for
the linear response can be used also for higher order terms and therefore one expects that in the
semiclassical limit of small 1/Nc + 1/Ne we will have the same exponential decay (3.5)

FP(t) ≈ F 2
R(t) ≈ F 2(t) = exp (−2t/τm), (5.30)

with the decay time τm = h̄2/2δ2σcl (3.5) independent of the initial state. This result is expected to
hold when Σ(t) can be approximated with a random matrix for large times (5.16) and V does not
contain terms acting on only one subspace. Such terms could cause fidelity to decay while having
no influence on purity.

For numerical verification of this result we chose a double kicked top system (2.25) with ε = 0, so
that the unperturbed evolution is uncoupled. For the double kicked top model we will always have
an uncoupled unperturbed evolution in all our numerical demonstrations in this chapter. Other
parameters are γc,e = π/2.1 and αc,e = 30, ensuring chaotic classical dynamics. The spin size is
chosen to be S = 200, so that we have Nc,e = 2S + 1. The perturbation is

V =
1

S2
Sz ⊗ Sz, (5.31)

with the strength δ = 8 · 10−4. The coherent product initial state is placed at ϑ∗c,e = π/
√
3,

ϕ∗c,e = π/
√
2. We show in Figure 5.3 the decay of the fidelity F (t), the reduced fidelity FR(t) and

the purity I(t). Clean exponential decay is observed in all three cases, on a time scale τm (5.30)
given by the classical transport coefficient σcl. We numerically calculated the classical correlation
function

Ccl(t) = [〈zc(t)zc(0)〉cl]2, (5.32)

where we took into consideration that the unperturbed dynamics is uncoupled and is the same for
both subsystems and that 〈z〉cl = 0. Taking only the first term Ccl(0) = 1/9 would give σcl = 1/18
(3.3) while the full sum of Ccl(t) gives a slightly larger value σcl = 0.056. Exponential decay,
of course, persists only up to the saturation value determined by a finite Hilbert space size (see
Section 2.2.1).
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Figure 5.3: Decay of F 2(t), F 2
R(t) and I(t) (dotted curves) in the mixing regime of the double

kicked top. The solid line gives the theoretical exponential decay (5.30) with τm calculated from
the classical σcl = 0.056. Horizontal chain lines give the saturation values of the purity and the
reduced fidelity, 1/200 and 1/4002, respectively.

5.3 Regular Dynamics

5.3.1 Beyond Linear Response

Purity Fidelity

For regular dynamics and coherent initial states one can calculate purity fidelity to all orders in
the semiclassical limit and not just the linear response expansion (5.24). For times larger than the
averaging time tave the echo operator goes towards Mδ(t) → exp (−iδV̄ t/h̄). In the semiclassical
limit we can use the classical limit v̄ instead of V̄ . Classical v̄(J) is a function of action operators
only and so similarly to the evaluation of fidelity one can use the ASI (3.31) for the evaluation of
purity fidelity. A partial trace over the environment gives an integral over je and due to a square
in the definition of purity fidelity we end up with an integral over 2(dc + de) = 2d dimensions, if dc
is the dimension of jc and de of je,

FP(t) ∼= h̄−2d
∫

dΓ exp

[

−i δ
h̄
t
{

v̄(jc, je)− v̄(j ′c, je) + v̄(j ′c, j
′
e)− v̄(jc, j′e)

}

]

dρ(j)dρ(j
′), (5.33)

where dΓ = ddjddj′, j = (jc, je), j
′ = (j ′c, j

′
e) and dρ(j) is the classical limit of 〈n|ρ|n〉 (3.31).

Next we expand v̄(j) around the position of the initial packet (5.22). The constant term v̄(j∗) and
the linear terms cancel exactly as well as the diagonal quadratic terms, regardless of the position
of the initial packet. The argument of the exponential function which remains is then

−iδt
h̄

[

(jc − j ′c) · v̄′′ce(j∗)(je − j ′e)
]

, (5.34)
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with the matrix v̄′′ of second derivatives given in Equation (5.23). The resulting expansion can be
used in FP(t) (5.33) to calculate the purity fidelity for initial states having well defined classical
dρ(j). For coherent initial states dρ(j) are Gaussian (3.33) and so the whole integral is also a
Gaussian, giving

FP(t) =
1

√

det ( I − iδtL−1Ṽ ′′)
, (5.35)

where L and Ṽ ′′ are 2d dimensional matrices

L :=









Λc 0 0 0
0 Λc 0 0
0 0 Λe 0
0 0 0 Λe









, Ṽ ′′ :=
1

2









0 0 v̄′′ce −v̄′′ce
0 0 −v̄′′ce v̄′′ce
v̄′′ec −v̄′′ec 0 0
−v̄′′ec v̄′′ec 0 0









, (5.36)

with matrices of squeezing parameters Λc and Λe (5.18) of dimensions dc and de, respectively, and
dc×de dimensional matrix v̄′′ce (5.23). Note that the determinant is real despite the imaginary unit.
The determinant of the matrix I − iδtL−1Ṽ ′′ can be simplified using the following identity for block
matrices

det

(

A B
C D

)

= det (A) det (D − CA−1B) = det (D) det (A−BD−1C), (5.37)

with m × n dimensional matrices B and CT . Noting that the matrix I − iδtL−1Ṽ ′′ has I on the
diagonal, we obtain

det ( I − iδtL−1Ṽ ′′) = det ( I + (δt)2Z), (5.38)

with Z being the 2dc × 2dc dimensional matrix

Z :=
1

2

(

Λ−1c v̄′′ceΛ
−1
e v̄′′ec −Λ−1c v̄′′ceΛ

−1
e v̄′′ec

−Λ−1c v̄′′ceΛ
−1
e v̄′′ec Λ−1c v̄′′ceΛ

−1
e v̄′′ec

)

. (5.39)

To simplify the determinant of I + (δt)2Z we use the following identity

det

(

A B
C D

)

= det (DA−BC), (5.40)

for square matrices A,B,C and D and commuting B and D, [B,D] = 0. Using this finally gives

FP(t) =
1

√

det { I + (δt)2 u} , u := Λ−1c v̄′′ceΛ
−1
e v̄′′ec. (5.41)

Note that u is the same dc × dc matrix we had in the expression for C̄P (5.24). This very simple,
yet important result deserves a little discussion. It gives the purity fidelity (and thereby as a
special case also the purity) decay for regular systems and coherent initial states to all orders in
δ. Its validity is limited to times larger than the averaging time tave in which V̄ converges and for
sufficiently small h̄. Planck’s constant must be small to allow the replacement of V̄ with its classical
limit v̄ and v̄ must be smooth on the scale of the wave packet size

√
h̄. Furthermore, we replaced a

sum over the quantum numbers with an integral over the actions, the validity of this being given
by the condition δt|v̄′′ce|h̄2/h̄¿ 1, i.e. δtu < 1/h̄, if tu is the upper time limit of validity of the ASI.
As we will see, the asymptotic decay of purity fidelity as given by Equation (5.41) is between 1/(δt)
and 1/(δt)dc , depending on the matrix u. The FP(t) at the upper border tu is therefore between h̄
and h̄dc . The purity fidelity will for long times saturate at the plateau given by the finite Hilbert
space size, F̄P ≈ 1/Nc ∼ h̄dc . Comparing this, we see that the upper border tu coincides with
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the point where the asymptotic saturation F̄P is reached for one degree of freedom systems. For
dc > 1 the ASI break time tu is only by a constant factor smaller than the time when we reach
F̄P. Summarising, the purity fidelity decay (5.41) is valid from tave all the way to the asymptotic
plateau F̄P provided h̄ is sufficiently small, without any bound on δ.

Let us now explore the asymptotic decay of FP(t). To simplify theoretical arguments, we assume
that the squeezing parameters are all equal to one∗, L ≡ J so that we have u = v̄′′cev̄

′′T
ce . In 1 + de

degrees of freedom systems (dc = 1), the matrix u is just a number, and the purity fidelity decays
as

FP(t) =
1

√

1 + u (δt)2
, dc = 1. (5.42)

A single parameter u is already fixed by the linear response, i.e. by the value of C̄P (5.24).
Asymptotically we get FP(t) ³ 1/(δt) decay regardless of the second dimension de. For general
systems with dc > 1 one can see that the determinant det { J + (δt)2 u} is a polynomial of order at
most dc in (δt)2. Furthermore, as the matrix u is symmetric and positive definite, its eigenvalues
are positive, meaning that all the coefficients of the polynomial are positive and the FP(t) is always
less than one. In a special case, when the matrix u can be written as a tensor product of two
vectors, like u = v̄′′cev̄

′′T
ce =: x ⊗ y, the determinant is again simple regardless of the dimensions

involved and we get

FP(t) =
1

√

1 + (δt)2x · y , u = x⊗ y. (5.43)

In such case we again get the asymptotic FP(t) ³ 1/(δt) decay, but here regardless of both dimen-
sions. Matrix u has such a form for instance if all the matrix elements of v̄ ′′ce are the same (e.g.
for the perturbation v̄ =

∑

k,l (jc ⊗ je)kl). Our result of course applies also to the purity decay in
weakly coupled systems and does not agree with the result of Jacquod (2004).

Reduced Fidelity

For the reduced fidelity a similar procedure based on the ASI can be used. In the expansion of v̄(j)
around j∗ (5.22) the first non vanishing term is a linear one. The resulting Gaussian integrals are
analogous to the ones in the calculation of the fidelity decay for coherent initial states (but there
are twice as many), the final result being a Gaussian decay

FR(t) = exp

(

− δ
2

h̄2
C̄Rt

2

)

, (5.44)

with a single parameter C̄R = 1
2 h̄
(

v̄′cΛ
−1
c v̄′c

)

given by the linear response alone (5.21).

Numerical Illustration

To numerically confirm the above formulas for the decay of purity fidelity and reduced fidelity we
take a double kicked top model (2.25). To be in a regular regime we take αc,e = 0 and γc = π/2.1
and γe = π/

√
7. Different unperturbed frequencies γc 6= γe are chosen in order to have a general

situation, i.e. that the subsystems are not in resonance. Unperturbed dynamics is again uncoupled,
ε = 0, so that the purity fidelity equals purity. The spin size is chosen S = 100 and the initial

∗Usually this can be achieved by the right choice of actions.
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Figure 5.4: Decay of F (t), FR(t) and I(t) in the regular regime of the double kicked top. For param-
eters see text. The theoretical Gaussian decay for the fidelity (3.36) and the reduced fidelity (5.44),
with the theoretical value of C̄ (5.47) and C̄R (5.48), overlap with the numerics (symbols) within
the line width. Theoretical purity decay (5.42) (dotted curve) as determined by the theoretical u
(5.49) also nicely agrees with the numerics (full curve) up to the plateau.

product coherent state is placed at (ϑ∗, ϕ∗)c = π(1/
√
3, 1/
√
2) and (ϑ∗, ϕ∗)e = π(1/

√
3, 3/
√
7). The

perturbation with strength δ = 0.01 is of the form

V =
1

S4
S2
z ⊗ S2

z . (5.45)

Unperturbed classical evolution is very simple, namely rotation around y-axes for angles γc and
γe for the central system and the environment, respectively. The classical limit of V̄ is readily
calculated and expressed in terms of the actions jc = yc and je = ye,

v̄ =
1

4
(1− j2c )(1− j2e ). (5.46)

The derivatives of v̄ are v̄′c = −jc(1− j2e )/2 and similarly for v̄′e. The squeezing parameter for the
spin coherent states is Λ = 1/(1− j2) and the average correlation function C̄ (5.20) is

C̄ =
1

S
(1− j2c )(1− j2e ){j2c (1− j2e ) + j2e (1− j2c )}, (5.47)

which for our choice of the initial coherent packet gives C̄ = 0.024/S. For the reduced fidelity we
get

C̄R =
1

S
j2c (1− j2c )(1− j2e ), (5.48)

which evaluates to C̄R = 0.021/S. The above two parameters C̄ and C̄R completely determine the
Gaussian fidelity (3.36) and reduced fidelity (5.44) decays. As we have 1 + 1 degrees of freedom
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system, the purity is determined by a single parameter u (5.42). For our perturbation we get

u = j2c j
2
e (1− j2c )(1− j2e ), (5.49)

giving u = 0.032 for our initial product coherent state. As our perturbation V̄ is of the product
form, we could as well use a universal relation between C̄P, C̄R and C̄ (5.26) to calculate C̄P (or
equivalently u). The numerical results are shown in Figure 5.4, together with the theory. Agreement
is excellent.

5.3.2 The Jaynes-Cummings Model

In this section we will consider in detail the stability of a Jaynes-Cummings model, described in
Section 2.1.2, under various perturbations. The Jaynes-Cummings system can be experimentally
realized and so it is a possible model on which one could experimentally study the quantum stability.
In experiments one usually has only a co-rotating term, i.e. G′ is zero, therefore we will focus
on a situation when we have G′ = 0 in the unperturbed dynamics and so the classical limit of
the unperturbed system is integrable. For the initial state we will always choose a product of
coherent states for a harmonic oscillator, given by a real parameter α (2.30), and a spin, given
by the initial position (ϑ, ϕ) (2.26). In studies of the reduced fidelity and purity fidelity we will
consider the spin as a central system, and the harmonic oscillator as an environment. For regular
dynamics with coherent initial states the decay of fidelity and reduced fidelity is Gaussian with
the decay time determined by a single parameter C̄ and C̄R, while the decay of the purity fidelity
is FP(t) = 1/

√

1 + u (δt)2 (5.42) and is again determined by a single parameter u. With this in
view, it is sufficient to determine only the linear response parameters C̄ (5.20), C̄R (5.21) and C̄P

(5.24), to get the decay to all orders in δ. Therefore, we will focus only on the calculation of these
coefficients. The calculation of the expectation values in the coherent initial state is described in
Appendix B.

Our unperturbed system will be

H0 = h̄ωa+a+ h̄εSz +G
h̄√
2S

(aS+ + a+S−). (5.50)

For the perturbation we will look at four different situations:

• variation of ω, corresponding to V = h̄a+a =: [δω]

• variation of ε, corresponding to V = h̄Sz =: [δε]

• variation of G, corresponding to V = h̄√
2S

(aS+ + a+S−) =: [δG]

• variation of G′, corresponding to V = h̄√
2S

(aS− + a+S+) =: [δG′],

where we introduced short notation V = [δ•] symbolically denoting the perturbation in the param-
eter •. In the last case of V = [δG′] and if G = 0 all correlations average to zero, corresponding to
the residual perturbation (i.e. freezing), and this case will be considered separately in Section 5.5.

As an additional simplifying assumption, we will assume that we have ω = ε, i.e. spin and an
oscillator are in resonance. For G 6= 0 we have numerically checked that the average correlation
functions are quite insensitive to the resonance condition. The only exception being the V = [δG]
perturbation, for which C̄, C̄R and C̄P vanish if we are out of resonance and have G = 0. Because
this freezing case will be studied separately, we do not loose generality by taking ω = ε but
gain in the simpler theoretical calculations. Namely, in resonance the G term commutes with the
unperturbed Hamiltonian, [aS++a+S−, H0] = 0. In addition, in experimental implementations we
are usually close to the resonance condition.
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Figure 5.5: Numerically calculated dependence of C̄’s on the position of the spin coherent state
ϕ and cosϑ for ω = ε = 0.3, G = 1 (everything is independent of G provided it is nonzero),
G′ = 0, α = 1.15 and J = 4. Left column shows the results for ε perturbation and the right for the
perturbation in ω.

Perturbation of the frequency ω

We will first analyse the case when the perturbation consists of the variation of ω, so that the
perturbation generator is

V = h̄a+a. (5.51)

Due to the resonance condition ω = ε the unperturbed propagator U0 factorises into a part pro-
portional to the G term and the rest. The perturbation in the Heisenberg picture is therefore

V (t) = eiG(a+S−+aS+)t/
√
2S(h̄a+a)e−iG(a+S−+aS+)t/

√
2S . (5.52)
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To calculate the average correlation function one needs an integral of the perturbation Σ(t) =
∫ t
0 V (τ)dτ in the limit t→∞. As the constant G just re-scales time in the perturbation V (t) (5.52),
the C̄’s which are an infinite time limit property of Σ(t) will not depend on G, except possibly at
G = 0 where the symmetry of H0 changes and we might have an effect due to degeneracies. Direct
calculation in this simple case of G = 0 gives

C̄ =
1

S

α2

S
, C̄R = C̄P = 0, (if G = 0), (5.53)

for the initial product coherent state (2.26,2.30). Note that α2/S has a well defined classical limit,
namely the energy of the oscillator. The last two results are expected. The C̄P = 0 because
the perturbed dynamics is also uncoupled and C̄R = 0 because the perturbation is only in the
oscillator (“environment”) part of H0. For G > 0 we get an additional angle dependent term of
order h̄2 = 1/S2 which can be seen in numerically calculated C̄’s in Figure 5.5. Therefore, there
is a discontinuous jump in all three C̄’s at G = 0, the discontinuity being proportional to h̄2 and
thus of higher order for C̄ while it is the leading order term for C̄R and C̄P. Otherwise the values
of the plateaus C̄ are independent of the coupling G, but of course the time scale on which we get
the convergence of C̄’s scales as 1/G. For small G the discontinuity will happen at large times.

Perturbation of the spin energy ε

In this case the perturbation generator is

V = h̄Sz. (5.54)

Everything is analogous to the previous case and in the simple uncoupled case of G = 0 (and ω = ε)
we get

C̄ = C̄R =
1

S

sin2 ϑ

2
, C̄P = 0, (if G = 0). (5.55)

The C̄ now does not depend on the oscillator coherent state parameter α but instead depends on
the position of the spin coherent state. Also, the C̄R is now nonzero as we make the perturbation
in our central system. At G = 0 there is again a discontinuity of order h̄2 in all three C̄’s, otherwise
they are independent of G. For C̄ and C̄R this discontinuity is of higher order in h̄ and can be
neglected in the semiclassical limit. Dependence of numerically calculated C̄’s on the initial position
of the spin coherent packet is shown in Figure 5.5. One can see, that C̄P is equal for [δω] and [δε]
perturbations. Therefore the decoherence (purity fidelity) is insensitive to which frequency we
detune, whereas fidelity and reduced fidelity are not.

Perturbation in the coupling G

The perturbation generator is

V =
h̄√
2S

(a+S− + aS+). (5.56)

We again take the resonant condition ω = ε. Now the perturbation is constant in time V (t) = V (0)
regardless of the value of G and we can calculate all three C̄’s for an arbitrary G. These are written
in Figure 5.6 next to each plot showing its dependence on the initial spin packet position. There is
no dependence on G and also no discontinuity at G = 0, contrary to previous two examples. Also
the C̄ and C̄P are strictly larger than in the case of ω or ε perturbation whereas the C̄R is of order
h̄ and is smaller than for the ε perturbation. Now C̄P ∝ h̄2 is of course nonzero and gives us the
decay time scale of purity fidelity (or purity in the case of G = 0).
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Figure 5.6: Dependence of C̄’s on the position of the spin coherent initial state (ϕ and cosϑ) for
ω = ε = 0.3, G = 1 (everything is independent of G), G′ = 0, α = 1.15 and J = 4. The left column
shows exact theoretical results whereas the right one shows numerical plots of this dependence. All
is for the perturbation in the coupling constant G.

5.4 Separation of Time Scales

Until now we have discussed two broad categories, mixing systems in which the whole correlation
function decays and regular systems where we had a plateau in the correlation function. In this
section we will consider situation where the time scale of the environment is much smaller than
that of the central system and the correlation function can be considerably simplified. We will
furthermore consider perturbations of the product form

V = Vc ⊗ Ve. (5.57)
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For numerical illustrations we will use a coupled double kicked top with ε = 0, i.e. an uncoupled
unperturbed system. To simplify notation we will use 〈Ac〉 to denote the average of operator Ac

acting only on the central system in the initial state of the central system, 〈Ac〉 = trc[Acρc(0)], and
similarly for the environment. If the operator acts on the whole system, then 〈A〉 denotes the expec-
tation in the whole initial state, as before. When the time scale of the environmental correlations
〈Ve(t)Ve(t′)〉 is much smaller than the time scale of the central systems’ correlations 〈Vc(t)Vc(t′)〉,
time averaging over the fast environmental part of the perturbation can be performed. Regarding
the environmental correlation function two extreme situations are possible. If the correlations of
the environment decay, we will call such a case “fast mixing environment”, and we have a finite
integral of the environmental correlation function. If the correlations of the environment do not
decay, we will call it a “fast regular environment”, and we have generically a non vanishing average
correlation function of the environment.

5.4.1 Fast Mixing Environment

The situation, when the time scale te on which the correlation function for the environment decays
is much smaller than the time scale tc of the central system, is of considerable physical interest. This
includes various “brownian” like baths, where the correlation times are smaller than the dynamical
times of the central system in question. The correlation sums SF(t), SP(t) (5.28) and SR(t),

SR(t) :=
1

t
〈Σ(t)( � − ρc)⊗ � Σ(t)〉, (5.58)

giving the linear response decay of the fidelity F (t) = 1−(δ/h̄)2tSF(t), the reduced fidelity FR(t) =
1 − (δ/h̄)2tSR(t) and of the purity (or generally purity fidelity) I(t) = 1 − 2(δ/h̄)2tSP(t) can
be significantly simplified in such situation. We will furthermore assume 〈Ve〉 = 0, with 〈A〉 =
limt→∞ t−1

∫ t
0 〈A(ξ)〉 dξ denoting a time average. This assumption corresponds to an equilibrium

situation where the average “force” Ve vanishes. The integration over the fast variable Ve can be
carried out and we get for tÀ tc À te

SF(t) = 2σe〈V 2
c 〉

SR(t) = 2σe
{

〈V 2
c 〉 − 〈Vc〉2

}

SP(t) = 2σe
{

〈V 2
c 〉 − 〈Vc〉2

}

, (5.59)

with

σe := lim
t→∞

〈Σ2
e(t)〉/2t, with Σe(t) =

∫ t

0
Ve(ξ)dξ, (5.60)

being the integral of the autocorrelation function for the environmental part of the perturbation
Ve alone. The result does not depend on the initial state of the environment. Some interesting
conclusions can be drawn from these linear response results (5.59).

We can see that the decay time scale depends only on the time average diagonal correlations of
the central system

〈

V 2
c (t)

〉

and not on the full correlation function. This is a simple consequence
of the separation of time scales and means that the decay of all three stability measures does not
depend on the dynamics of the central system (e.g. being mixing or regular). Furthermore, reduced
fidelity FR(t) and the purity I(t) will decay on the same time scale (5.59), meaning that the decay
of the reduced fidelity is predominantly caused by the loss of coherence, i.e. entanglement between
the two factor spaces. This in turn means that the reduced fidelity, which is a property of echo
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dynamics, i.e. of comparison of two slightly different Hamiltonian evolutions, is equivalent to the
decay of the purity.

If the initial state of the central system ρc(0) is a Gaussian wave packet (coherent state) then

the dispersion 〈V 2
c 〉 − 〈Vc〉2 is by factor of order h̄ smaller than 〈V 2

c 〉. Thus for coherent initial
states of the central system, irrespective of the initial state of the environment, the FR(t) and
I(t) are going to decay on a 1/h̄ times longer time scale than F (t). We have therefore reached a
general conclusion based on the assumption of chaotic fast environment (which is often the case),
namely that the coherent states are most robust against decoherence (decay of purity), provided
te ¿ tc and decoherence time is longer than the correlation time of the environment, te ¿ tdec. If
decoherence is even faster than the time scale of the environment, as is the case for macroscopic
superpositions, then formulas (5.59) are not valid any more as one is effectively in a regular regime
with SP(t) ∝ t2. Decoherence time is then independent not just of systems dynamics but also of
environmental dynamics characterised by σe (Braun et al. , 2001; Strunz et al. , 2003; Strunz &
Haake, 2003).
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Figure 5.7: Various correlation sums from formulas (5.59) in a fast chaotic regime (solid curves, as
indicated in the figure). Chain lines indicate corresponding theoretical time averages. For details
see text.

In the regime of fast chaotic environment one can derive a master equation for a reduced density
matrix of the central system (Kolovsky, 1994; Meystre & Sargent III, 1990). We take a partial trace
over the environment of the echo density matrix ρM(t) and write it for a small time step ∆t. This
time step ∆t must be larger than the correlation time te of the environment and at the same
time smaller than the correlation time tc of the central system. For the environmental part of the
correlation function we assume fast exponential decay (particular exponential form is not essential)
which is independent of the state ρ(0)

tre[Ve(t)Ve(t
′)ρ] −→ σe

te
exp {−|t− t′|/te} tre[ρ]. (5.61)
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Assuming the perturbation to be a product V (t) = Vc(t)⊗Ve(t) and the average “force” tre[Ve(t)ρ]
to vanish together with the exponential decay of environmental correlations of the form (5.61) for
an arbitrary state, yields a master equation for the reduced density matrix ρMc (t) := tre[ρ

M(t)],

ρ̇Mc (t) = − δ
2

h̄2
σe[Vc(t), [Vc(t), ρ

M
c (t)]]. (5.62)

Master equation is strictly valid in the Markovian limit of the correlation function being a delta
function in time or if considered on time scales larger than the correlation time.
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Figure 5.8: Decay of F 2(t), F 2
R(t) and I(t) for fast chaotic environment. The dashed line is an

exponential function with the exponent given by the values of σe and 〈V 2
c 〉 (5.59) while the two

dotted lines have slopes −2 and −1. For parameters see text.

For numerical demonstration we use a double kicked top with: Vc,e = Sz/S, S = 200, δ =
1.5 · 10−3, coherent initial state at (ϑ, ϕ)c,e = (π/

√
3, π/

√
2) and parameters αc = 0, γc = π/50

for the central system and αe = 30, γe = π/2.1 for the environment. Actually, we could take any
value of αc and would get qualitatively similar results. The only advantage of using regular central

dynamics αc = 0 is that it is then possible to explicitly calculate averages 〈V 2
c 〉 and 〈V 2

c 〉 − 〈Vc〉2.
Namely, if αc = 0 and γc ¿ 1 we get

〈V 2
c 〉 =

1

2
(1− y2c ) +

1

4S
(1 + y2c )

〈V 2
c 〉 − 〈Vc〉2 =

1

4S
(1 + y2c ). (5.63)

The values of these two quantities for our initial condition are 〈V 2
c 〉 = 0.202 and 〈V 2

c 〉 − 〈Vc〉2 =
0.399/S, and are shown in Figure 5.7 with two dotted lines (by pure coincidence we have σe =
0.20 ≈ 〈V 2

c 〉), together with numerically calculated time dependent (not yet averaged)
〈

V 2
c (t)

〉

and
〈

V 2
c (t)

〉−〈Vc(t)〉2. This time dependent values oscillate on a time scale ≈ 50, which is much longer
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than the time ≈ 10 in which σe converges and so the assumption te ¿ tc is justified. The values of
all three quantities are then used in the linear response formulas (5.59) to give us the time scales on
which F, FR and I decay. The results are shown in Figure 5.8. We can see that the fidelity again
decays exponentially as predicted, but the reduced fidelity and the purity have a power-law tails.
The decay time can be estimated by the lowest order expansions (5.59). Using the values of σe and

〈V 2
c 〉 − 〈Vc〉2 (theoretical expression (5.63)), we get τF ≈ 1/(0.16δ2S2) and τR,P ≈ 1/(0.32δ2S) (τF

and τR are for F 2 and F 2
R) which agrees with numerics in Figure 5.9. The same general conclussion

again holds: the more chaotic the environment is (smaller σe), the slower the decay of all three
quantities. Purity and reduced fidelity both decay on a 1/h̄ longer time scale than the fidelity in
accordance with expressions (5.63) for coherent initial states.

5.4.2 Fast Regular Environment

Here we will explore perhaps a less physical situation of a regular environmental dynamics, i.e. one
with non-decaying correlation function. The double integral of environmental correlations grows as
∝ t2 and we can define the average correlation function

C̄e := lim
t→∞

〈Σ2
e(t)〉/t2. (5.64)

If in addition the correlations of the system also do not decay then the correlation sum of the total
system will grow as ∝ t2 which is just the regular regime already discussed before. Here, we will
focus on a different situation where the integral of systems correlation function converges, i.e. the
dynamics of the central system is mixing. We will additionally assume the average “position” Vc
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Figure 5.10: Correlation sums occurring in (5.66) (solid curves) for S = 200. The top chain line
gives the best fit for σc and the two lower chain lines give theoretical time averaged correlation
functions for the environment (5.67). All is for a fast regular environment. See text for details.

to be zero 〈Vc〉 = 0. The transport coefficient of the central system σc is then

σc := lim
t→∞

〈Σ2
c(t)〉/2t, Σc(t) =

∫ t

0
Vc(ξ)dξ. (5.65)

The expressions for SF(t), SP(t) (5.28) and SR(t) (5.58) are independent of time and can be
simplified to

SF = 2σcC̄e

SR = 2σcC̄e

SP = 2σc
{

C̄e − 〈Ve〉
2
}

. (5.66)

Note that now the reduced fidelity FR(t) decays on the same time scale as the fidelity F (t). This
must be contrasted to the case of a fast mixing environment (5.59), where FR(t) decayed on the
same time scale as the purity. If the initial state of the environment ρe(0) is a coherent state, then
purity will decay on a 1/h̄ times longer time scale than fidelity or reduced fidelity. On the other
hand, for a random initial state of the environment, the average force 〈Ve〉 = 0 vanishes, and all
three quantities decay on the same time scale.

For the purpose of numerical experiment we chose Vc = Sz/S, and Ve = S2
z/S

2 in order to
have a less trivial situation of non-vanishing average force 〈Ve〉. The initial condition is again
(ϑ, ϕ)c,e = (π/

√
3, π/

√
2) and the parameters are J = 200, αc = 30, γc = π/7 and αe = 0,

γe = π/2.1 and the perturbation strength δ = 6 · 10−4. By choosing the explicitly solvable case

αe = 0 we can calculate C̄e and 〈Ve〉
2
, say for the simple case of a π/2 rotation, γe = π/2,

C̄e =
1

4
(1− y2e )2 +

1

4S
(−3y4e + 2y2e + 1) +O(1/S2)
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line has slope −1. See text for details.

C̄e − 〈Ve〉
2

=
1

2S
y2e (1− y2e ) +

1

16S2
(11y4e − 11y2e + 2) +O(1/S3). (5.67)

For our parameters we have yc,e = 0.772 giving C̄e = 0.0407 and C̄e − 〈Ve〉
2
= 0.120/S. The values

of these coefficients are shown in Figure 5.10 (lower two dotted lines) and nicely agree with the
numerics. In Figure 5.11 we can observe the exponential decay of fidelity and reduced fidelity on
the same time scale (both curves almost overlap) and the decay of the purity on a 1/h̄ longer time
scale. For longer times purity decay is again algebraic. In Figure 5.12 we show dependence of the
decay times on δ. The dependence for purity is quite interesting. If one looks at the time the purity
falls to 0.99 one has agreement with linear response (by definition). But if one looks at the purity
level 0.37, they don’t agree as well, meaning that the shape of purity decay may change (not only
the scale) as one varies δ or h̄. On the other hand, this may also be simply a finite size effect.

5.5 Freeze in a Harmonic Oscillator

Previously we have discussed the so called freeze of fidelity in regular systems having a nonsingular
derivative of the unperturbed frequencies, Ω = ∂ω/∂j 6= 0. In the present section we will consider
the case of a harmonic oscillator, for which Ω = 0 and the theory explained in Section 4.2 can
not be used. For the sake of numerical demonstration we will use a Jaynes-Cummings model
(see Section 2.1.2) with the perturbation in the G′ parameter, i.e. the only case not explained in
Section 5.3.2. The initial state will be a product of coherent state for a spin and an oscillator. The
perturbation will be

V =
h̄√
2S

(a+S+ + aS−) = [δG′]. (5.68)
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Figure 5.12: Times τ at which F 2(t) (pluses), F 2
R(t) (circles) and I(t) (triangles) fall to level 0.37,

and times τ when I(t) falls to 0.99 (squares) for varying δ and fast regular environment. Symbols
are the numerics and lines give theoretical dependences of τ . Everything is for S = 100.

Provided we have G′ = 0 for the unperturbed system the correlation function has a zero time
average regardless of other parameters. This is a simple consequence of the symmetries as the
perturbation is a “counter-rotating” term, while the unperturbed Hamiltonian has only a “co-
rotating” term. Due to the symmetry the perturbation is residual. The fact that the perturbation
is residual has nothing to do with the perturbation G′ breaking integrability. For instance, if we
make a perturbation in G′ and any other parameter at the same time, we will have a perturbation
that breaks integrability but is not residual.

Because we want to study the case of Ω = 0, we choose G = 0 so the unperturbed Hamiltonian,

H0 = h̄ωa+a+ h̄εSz, (5.69)

is uncoupled. As a consequence purity fidelity equals purity. Residual perturbation can be written
as a time derivative of another operator W (4.6), which is in our case

V :=
i

h̄
[H0,W ] =

dW

dt
, W =

ih̄√
2S(ω + ε)

(

a+S+ − aS−
)

. (5.70)

The echo operator can than be written as

Mδ(t) = exp

{

− i

h̄

(

{W (t)−W (0)}δ + 1

2
Γ(t)δ2 + . . .

)}

, (5.71)

with Γ(t) given by

Γ(t) :=

∫ t

0
R(τ)dτ − i

h̄
[W (0),W (t)],

R :=
i

h̄
[W,

dW

dt
] =

h̄2

(ω + ε)

(

S2 − S2
z − Sz − 2a+aSz

)

. (5.72)
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For the semiclassical calculations we will also need the classical limits of W and R. Introducing
canonical action angle variables for the spin (i.e. “central”) system,

h̄Sz → jc = cosϑ, h̄S± →
√

1− j2c e±iθc , θc = ϕ, (5.73)

and for the oscillator (“environment”),

a→ i√
2h̄

√

2je e
−iθe , je = |α|2/S, (5.74)

the classical Hamiltonian reads

h0 = ω · j, ω = (ε, ω), j = (jc, je). (5.75)

The classical limits w of W and r of R are

w = −
√

2je(1− j2c )
ω + ε

cos (θc + θe)

r =
1

ω + ε

(

1− j2c − 2jcje
)

. (5.76)

5.5.1 The Plateau

10-6

10-5

10-4

10-3

10-2

10-1

 20  40  60  80  100  120  140  160  180  200

1-
F,

 1
-I

t

Figure 5.13: The plateau 1 − F (t) (upper symbols) and 1 − I(t) (lower symbols) for S = 50 and
coherent initial state. Perturbation of strength δ = 0.01 is in G′, ω = ε = 0.3, G = 0, α = 1.15.
Chain lines represent the theory (5.87,5.88) and circles full numerical simulations.

The height of the plateau is given by the expectation value of the echo operator

Fplat = | 〈exp (−iδ{W (t)−W (0)}/h̄)〉 |2. (5.77)
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For a harmonic oscillator one has to evaluate this expression explicitly and can not use time
averaging as has been done for a general unperturbed dynamics in Section 4.2. We immediately
see, that the leading semiclassical order will vanish for coherent initial states. We would get
| exp (−iδs(j∗,θ∗, t)/h̄)|2 = 1, where we denoted

s(j,θ, t) := w(j,θ + ωt)− w(j,θ). (5.78)

Recall that in case of Ω 6= 0 this leading order already gave a nonzero contribution. Here though, we
have to calculate the next order. For coherent initial states this is easily done using the stationary
phase method, i.e. expanding the phase around the position of the packet to lowest order. The
calculation is actually very similar to the calculation of the fidelity decay for coherent initial state
and non-residual perturbations. Expansion of the phase gives

s(j,θ, t) = s(j∗,θ∗, t) + s′ · (j − j∗,θ − θ∗) + · · · , (5.79)

with

s′ := (
∂s(j∗,θ∗, t)

∂j
,
∂s(j∗,θ∗, t)

∂θ
). (5.80)

Note that now s(j,θ, t) depends also on the angles and therefore the ASI method cannot be used
directly. Instead, we will use the classical averaging over the initial Gaussian distribution in a
phase space. We will replace the quantum expectation value with the classical average. Using the
compact notation x := (j,θ) = (jc, je,θc,θe), we can write the classical density corresponding to
the coherent initial state as

ρ(x;x∗) =
(

2

πh̄

)d√
detD exp (−(x− x∗) ·D(x− x∗)/h̄), (5.81)

with x∗ being the position of the initial packet and a matrix D (of size 2d × 2d) determining the
squeezing of the initial packet in d = dc+de degrees of freedom system. The above classical density
is normalised as

∫

ρ dx = 1. For our choice of the initial state being a product of a spin coherent
state (2.28) and an oscillator coherent state (2.31) the matrix D is diagonal with elements

D11 =
1

1− j2c
, D22 =

1

2je
, D33 = 1− j2c , D44 = 2je. (5.82)

The fidelity plateau is now calculated as

Fplat =

∣

∣

∣

∣

∫

dxρ(x; 0) exp (−iδs′ · x/h̄)
∣

∣

∣

∣

2

, (5.83)

resulting in a Gaussian function

FCIS
plat = exp

(

−δ
2

h̄
νhar

)

, νhar :=
1

2
s′ ·D−1s′. (5.84)

Note that the result is formally very similar to the expression for the fidelity decay for a non-residual
perturbation (3.36). Linear response expansion of the plateau is of course F CIS

plat = 1 − δ2

h̄ νhar and
so the plateau for a harmonic oscillator is by factor 1/h̄ higher than for general systems (4.62).
Beyond linear response though, the plateau will decay faster (i.e. as a Gaussian) for a harmonic
oscillator than for systems with Ω 6= 0 where the asymptotic decay of the plateau was a power law
(e.g. 1/(δS) for the numerical model used in Section 4.2).
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For our Jaynes-Cummings model we have

s(j,θ, t) = 2 sin

(

ω + ε

2
t

)

√

2je(1− j2c )
ω + ε

sin

(

θc + θe + t
ω + ε

2

)

. (5.85)

The coefficient νhar is then

νhar =
2

(ω + ε)2
sin2

(

ω + ε

2
t

){

(1− j2c ) + 2je

[

j2c + (1− j2c ) cos2
(

θc + θe + t
ω + ε

2

)]}

. (5.86)

The same νhar would be obtained from the quantum calculation of the second moment of Σ(t).
Results of the numerical calculation are shown in Figure 5.13. The initial packet was at (ϑ, ϕ) =

(1, 1) and α = 1.15, giving actions jc = 0.54 and je = 0.026 and angles θc = 1 and θe = π/2. Because
je ¿ jc we can neglect the second term in νhar and get

1− FCIS
plat = 3.93 δ2S sin2 (0.3t). (5.87)

The agreement of this theoretical prediction with numerics can be seen in Figure 5.13.
For the reduced fidelity and the purity one can go trough similar calculations. We will just list

the linear response result obtained from the quantum expectation values,

1− FR = δ2S
2

(ω + ε)2
sin2

(

ω + ε

2
t

)

2je

[

j2c + (1− j2c ) cos2
(

θc + θe + t
ω + ε

2

)]

1− I = δ2
2

(ω + ε)2
sin2

(

ω + ε

2
t

)

(1− jc)2. (5.88)

Theory for the purity shown in Figure 5.13 also agrees well with numerics. The purity plateau for
coherent initial states is h̄-independent, just as the whole decay of purity.

5.5.2 Beyond the Plateau

After a sufficiently long time, when the second term Γ(t) becomes important in the echo operator
(5.71), the decay will be determined by the operator R. As our R is non-residual, we can use
the theory for general perturbations, just using a “renormalised” perturbation strength δ2/2. The
fidelity and the reduced fidelity will decay as Gaussians, with the decay times given by C̄ (5.20)
and C̄R (5.21), respectively, while the decay of the purity in our 1 + 1 degrees of freedom system
will be I(t) = 1/

√

1 + u (δt)2 (5.42), with u = 4C̄P/h̄
2 (5.24). For our simple example, the average

r̄ is equal to r and the derivatives occurring in the expressions for C̄’s are

∂r̄

∂jc
= − 2

ω + ε
(jc + je),

∂r̄

∂je
= − 2

ω + ε
jc,

∂2r̄

∂jc∂je
= − 2

ω + ε
. (5.89)

Taking into account that the squeezing parameters for coherent initial states are Λc = 1/(1 − j2c )
and for an oscillator Λe = 1/(2je), we obtain

C̄ = h̄
2

(ω + ε)2

{

(jc + je)
2(1− j2c ) + 2j2c je

}

C̄R = h̄
2

(ω + ε)2
(jc + je)

2(1− j2c )

C̄P = h̄2
2

(ω + ε)2
(1− j2c )je. (5.90)
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This then immediately gives the fidelity decay (4.66), the reduced fidelity (5.44) and the purity
(5.42),

F (t) = exp (−δ4S2C̄t2/4), FR(t) = exp (−δ4S2C̄Rt
2/4), I(t) =

1
√

1 + C̄PS2δ4t2
. (5.91)

Note the h̄-independent decay of purity.
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Figure 5.14: Long time fidelity and purity decay for the same data as in Figure 5.13. The theoretical
decay for purity (chain curve)(5.91), agrees with the numerical I(t) until the asymptotic plateau is
reached. Similarly, theory for the fidelity overlaps with the numerics. Symbols show the numerical
result for classical fidelity which in this case agrees with the quantum fidelity.

In Figure 5.14 we show numerical results for the Jaynes-Cummings model with spin size S =
1/h̄ = 50 and a coherent initial state placed at (ϑ, ϕ) = (1, 1) and α = 1.15, giving actions jc = 0.54
and je = 0.026. The perturbation is V = [δG′] of strength δ = 0.01, while the parameters of the
unperturbed Hamiltonian are ω = ε = 0.3, G = 0. The average correlation functions (5.90) are
C̄S = 1.35, C̄RS = 1.26 and C̄PS

2 = 0.10. For clarity we show in the figure only the fidelity
and the purity as the reduced fidelity would almost overlap with the fidelity. This theoretical
values are then used to compare with numerics. Agreement is excellent. We also show a numerical
calculation of the classical fidelity (symbols). One can see that for a harmonic oscillator and a
residual perturbation the classical fidelity agrees with the quantum one. Recall, that for a residual
perturbation and a general unperturbed system, i.e. having Ω 6= 0, the classical fidelity followed
the quantum only up to t1 ∝

√

1/h̄ time. For harmonic oscillators though, the quantum fidelity is
equal to the classical despite the perturbation being residual. Purity can also be calculated purely
classically. The classical purity can be defined as

Icl :=

∫

dxcρ
2
c(t), ρc(t) :=

∫

dxeρ(t), (5.92)
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with ρ(t) being the classical density at time t, i.e. ρ(t) = ρ(φ−t(x);x∗) with φ(x) being the Hamil-
tonian flow in phase space†. Such classical purity (linear entropy) has been used before (Wehrl,
1978; Angelo et al. , 2004). For our system and perturbation the integrals in (5.92) are Gaussian
and the result is the same as the one obtained from the quantum definition of purity (5.91).

5.6 Decoherence for Cat States

In this section we want to study decoherence for macroscopic superpositions of states, the so-called
Schrödinger cat states. We would like to demonstrate the accelerated decoherence for macroscopic
superpositions, without resorting to any effective master equation description. The goal is to show
that if we start with the initial state of the central system in the superposition of two macroscopically
separated states |τ1〉 and |τ2〉, the decoherence (decay of purity) is much faster than if we start
with a single state |τ1〉 of the central system.

We can explain the accelerated purity decay for cat states using our results for the reduced
fidelity decay for coherent initial states. Decoherence of a cat state will cause the reduced density
matrix to evolve from a coherent superposition of two packets at the beginning to a mixture of two
packets after the decoherence time tdec,

ρc(0) ∼
1

2
(|τ1〉〈τ1|+ |τ2〉〈τ2|+ |τ1〉〈τ2|+ |τ2〉〈τ1|) tdec−→ 1

2
(|τ1〉〈τ1|+ |τ2〉〈τ2|) , (5.93)

The purity I(t) of the initial coherent state is I(0) = 1 while the purity of the final state is
I(tdec) = 1/2, if the states |τ1〉 and |τ2〉 are orthogonal.

Let us suppose that the initial state is a product state of the coherent state of the environment
|α〉 and a cat state of the central system, i.e. a superposition of two coherent states |τ1〉 and |τ2〉,

|ψ(0)〉 = 1√
2
(|τ1〉+ |τ2〉)⊗ |α〉. (5.94)

We will assume that we are in a regular regime, for which the decay of purity of individual product
coherent states has been derived before (5.41) and was seen do decay on a h̄-independent time scale
td ∼ 1/δ, where δ is a coupling strength between the central system and the environment. For
times smaller than the decoherence time of individual coherent states td, the initial cat state (5.94)
will evolve into a superposition of product states,

|ψ(t)〉 ≈ |χ1〉 ⊗ |β1〉+ |χ2〉 ⊗ |β2〉, (5.95)

where we used the notation |χ1〉 ⊗ |β1〉 ≈ U(t)|τ1〉 ⊗ |α〉 and |χ2〉 ⊗ |β2〉 ≈ U(t)Rc|τ1〉 ⊗ |α〉, where
for the second state we have written |τ2〉 =: Rc|τ1〉 with some unitary matrix Rc. Note that
the propagator U(t) has a coupling of strength δ between the two subsystems. The second state
can therefore be thought of to be obtained from the same initial state |τ1〉 ⊗ |α〉 under a slightly
different, perturbed evolution Uδ(t) := U(t)Rc. The coherences in the reduced matrix (off diagonal
elements in ρc) of the evolved state (5.95) are proportional to the overlap 〈β1|β2〉. The square of
the overlap 〈β1|β2〉 is in fact the overlap of two reduced density matrices, one obtained with the
unperturbed evolution U(t) and the other with the perturbed one Uδ(t). Because the final states
|β1,2〉 as well as the perturbed evolution Uδ(t) depend on the initial states of the central system

†Here the density has to be square normalised,
∫

dxρ2 = 1.



106 Chapter 5. Coupling with the Environment

|τ1,2〉, the square of the overlap is nothing but the reduced fidelity ‡ of the environment §. The
decay of coherences and therefore of the purity will be given by the reduced fidelity of a product
coherent initial state |τ1〉 ⊗ |α〉. As we have seen before (5.44), the C̄R for a coherent state in a
regular regime is C̄R = 1

2 h̄(v̄
′
e · Λ−1e v̄′e) giving the reduced fidelity decay exp (−l2C̄Rt

2/h̄2), which
in turn determines the decay of coherences and therefore also purity decay. Here the perturbation
strength l depends on the unitary matrix Rc, i.e. on the “distance” between the initial states |τ1,2〉
of the central system, as well as on U(t). This perturbation strength l is of course different than the
coupling δ of the evolution U(t). For instance, in the simple case of |τ2〉 being a space shifted packet
|τ1〉, |τ2〉 = e−ix p/h̄|τ1〉, the perturbation strength is proportional to the distance x between the two
states. As the coupling δ causes decoherence of individual packets on a time scale td ∼ 1/δ while
the decoherence of the cat state happens on the decay time scale of the reduced fidelity tdec ∼

√
h̄/l,

it is sufficient to have l > δ
√
h̄ in order to obtain faster decoherence for cat states. The separation

l of the two packets constituing the cat state has to scale only as l ∼
√
h̄ and therefore does not

have to be macroscopically large in the semiclasical limit. For an environment with many degrees
of freedom de, and if derivatives v̄′e are all nonzero, C̄R will be proportional to d2e . The reduced
fidelity for the central system on the other hand will have C̄R proportional to d2c and so if de À dc,
the reduced fidelity of the environment will decay faster than the reduced fidelity of the central
system. Therefore, at the decoherence time tdec we will still have |χ1,2〉 ≈ |τ1,2〉, justifying the
decoherence scenario (5.93). For cat states we therefore have C̄P ∝ h̄ instead of C̄P ∝ h̄2 as for a
single coherent state, resulting in an accelerated decoherence.

Of course, the above argumentation is by no means a strict proof but is just a simple illustration
of how an accelerated decoherence arises. An argumentation using the fidelity has been used
by Karkuszewski et al. (2002), but without realizing the key role played by the time scales of
purity and reduced fidelity decays. To repeat, several ingredients were needed: (i) the dynamics
was assumed to be regular, (ii) for the reduced fidelity of product coherent states we have C̄R ∝ h̄,
(iii) the purity of constituent product coherent states decays on much longer h̄-independent time
scale (i.e. C̄P ∝ h̄2) and approximation (5.95) was possible, (iv) furthermore, if de À dc the
resulting decohered states |χ〉 are still approximately equal to the initial states |τ〉 of the central
system as the reduced fidelity decay is faster for the environment than for the central system. All
this together enabled us to “derive” a faster decoherence decay for macroscopic cat states.

For chaotic dynamics and times longer than the Ehrenfest time ∼ ln h̄ we have seen that
fidelity, reduced fidelity and purity all decay on the same time scale irrespective of the initial state.
A natural question arises: How does decoherence of macroscopic superposition in chaotic system
behave? Actually, decoherence for macroscopic superpositions is so fast, that it happens on time
scales shorter than any dynamical scale of the system (Braun et al. , 2001; Strunz et al. , 2003;
Strunz & Haake, 2003). It therefore happens on an “instantaneous” time scale on which every
system behaves as a regular one (i.e. no decay of correlation functions). The chaoticity therefore
has no influence on decoherence of macroscopic superpositions.

Numerical Example

We take a Jaynes-Cummings model with the unperturbed Hamiltonian H0 = h̄ωa†a + εh̄Sz and
the perturbation in the coupling G of strenght δ, V = [δG]. Purity fidelity is then equal to the
purity which will be used as a measure of decoherence. The initial state will be a product state of a

‡Actually we used a slightly different definition of the reduced fidelity as an overlap of the initial and the echo
state.

§In general the states |β1,2〉 can not be obtained by a Hamiltonian evolution on the environmental subspace alone.
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Figure 5.15: Dependence of C̄P (Eq. 5.99, exact expression) for the cat state (5.96) on the position
angles of two constituent coherent packets. We have take ϕ1 = ϕ2 = 1 and S = 4 (left figure) and
S = 64 (right figure).

coherent state |α〉 for the oscillator acting as an environment and the superposition of two coherent
packets for the spin,

|ψ(0)〉c ∝ |τ1〉 + |τ2〉. (5.96)

The Heisenberg evolution is simple, so that the integral of perturbation Σ(t) is

Σ(t) =
2h̄

∆
√
2S

sin

(

t∆

2

)

{

e−it∆/2a+S− + eit∆/2aS+
}

, (5.97)

where ∆ := ε− ω is a detuning. From now on we set ∆ = 0 in order to have a non vanishing C̄P.
As we take a coherent oscillator initial state, the expectations over oscillator space in correlation
function sum (5.17) can be explicitly made and one ends up with the very neat result

C̄P =
1

2S3
{〈S+S−〉 − 〈S+〉〈S−〉} , (5.98)

where now the expectation values are only over a spin state, e.g. the cat state (5.96) or any other.
A similar result has been obtained before trough a master equation approach to decoherence, see
for instance (Benedict & Czirjak, 1999; Földi et al. , 2001). Our result though has quite different
perspective as it was derived directly from the Hamiltonian dynamics without any resort to a
Markovian description of the reduced dynamics or to dissipation. The calculation of C̄P (5.98) for
a cat state (5.96) using formulas from Appendix B is straightforward although tedious, with the
exact but considerably involved result. Rather than showing the whole result, we concentrate on
the leading order in 1/S (i.e. h̄) which will dictate the decay in the semiclassical limit and therefore
will also govern the decoherence of macroscopic superpositions. The result is

C̄P =
l2

8S
+O(h̄2), l2 := sin2 ϑ1 + sin2 ϑ2 − 2 sinϑ1 sinϑ2 cos (ϕ1 − ϕ2). (5.99)

The l in the above expression has an interesting geometrical interpretation: it is a distance between
the projections of positions of the two coherent states to the x-y plane. There is indeed a faster
decoherence for cat states than for a single coherent state. For a cat state C̄P ∝ h̄ = 1/S whereas
we had C̄P ∝ h̄2 for a single coherent packet. The exact dependence of C̄P on the position of
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Figure 5.16: The purity decay for a random spin initial state (fastest decaying curve), Schrödinger
cat state (middle curve) and coherent state (slowest decaying curve). The oscillator initial state
is always a coherent state with α = 1.15. The parameters of the Jaynes-Cummings model are
ω = ε = 0.3, G = G′ = 0 and the perturbation is in G (i.e. in the coupling) with δ = 0.02,
S = 20. The cat state consists of two coherent SU(2) packets at (ϑ, ϕ) = (1, 1) and (0, 1). The
theoretical decay times τ = h̄/δ

√

2C̄P are τ = 46, 26 and 13 for the coherent state, the cat state
and the random state, respectively. C̄P for the coherent state has been calculated according to the
theoretical formula in Figure 5.6, for the cat state according to (5.99) and for a random state using
(5.100).

both packets in a cat state can be seen in Figure 5.15. The accelerated decoherence can be seen
as the increasing of C̄P away from the diagonal (ϑ1 6= ϑ2) for S = 64, where the exact result
for C̄P can be approximated by the leading order expression (5.99). Note that due to symmetry
there is a slow decoherence for states with ϑ1 + ϑ2 = π despite of the fact that this leads to a
macroscopic superpositions. Linear response decay time of purity for macroscopic superpositions
is therefore (5.99) tdec = 2

√
h̄/(δl), while the decay time for individual coherent packets is (using

C̄P from Figure 5.6) td = 1/(
√
2 cos2 (ϑ/2)δ). We get an accelerated decoherence, tdec ¿ td, for

lÀ
√
8h̄ cos2 (ϑ/2).

For random initial state of a spin and a coherent packet for an oscillator we can calculate C̄P

using the expression (5.98) and get

C̄P =
S + 1

3S2
, random spin i.c.. (5.100)

Again we have C̄P ∝ h̄, just like for cat states, but with a smaller prefactor. If we had a random
state on the whole Hilbert space, i.e. also for an oscillator, we would have C̄P ∝ h̄0. Therefore,
the decoherence rate for a cat state is between the decoherence rate of a single packet and the
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Figure 5.17: Dependence of numerically determined decay times of purity on S (= 1/h̄) for a
random spin initial state, a Schrödinger cat state and a coherent state. The perturbation strength
is δ = 0.01 while all other parameters are the same as for Figure 5.16. Theoretical decay times
τ = h̄/δ

√

2C̄P are shown with full lines.

decoherence rate for a random state.
The accelerated decoherence can be seen in Figure 5.16 where we show numerically calculated

purity decays for all three different initial spin states. Revivals of purity on a classical time scale
∼ 1/δ due to integrability of unperturbed Hamiltonian can also be seen. This revivals will be absent
in a general non-integrable Hamiltonian. To further illustrate the scaling of decay times with S we
show in Figure 5.17 numerically calculated decay times in which the purity decays to level 0.9 for
all three different initial states, coherent, cat state and random state of a spin, while the oscillator
is initially always in the same coherent state.





Chapter 6

Application: Quantum Computation

In theory, there is no difference between theory and
practice. In practice, there is no relationship between
theory and practice.

—Anonymous

Quantum information theory is relatively recent, for a review see (Nielsen & Chuang, 2001;
Steane, 1998; Ekert & Josza, 1996). Its beginnings go back to ’80 and in recent years theoretical
concepts have been demonstrated in experiments. While quantum cryptography, a method of
provably secure communication, is already commercially available, quantum computation on the
other hand is still limited to small laboratory experiments.

In order to perform quantum computation you obviously need a quantum computer. A quantum
computer can be considered as a many-body system of n elementary two-level quantum systems
— called qubits. The union of all n qubits is called a quantum register |r〉. The size of the Hilbert
space N and therefore the number of different states of a register grows with the number of qubits
as N = 2n. Quantum computation then consists of the following steps:

• Load the data for the quantum computation in the initial state of the quantum register |r〉,
resulting in a general superposition of N basis states.

• Then perform the actual computation, represented by a unitary transformation U . As U acts
on an exponentially large space it is usually decomposed into simpler units U = UT · · ·U2U1.
Such sequence of T elementary one-qubit and two-qubit quantum gates Ut, t = 1, 2, . . . , T is
called a quantum algorithm.

• Finally, we read out the result of the computation by performing measurements on the qubits
of the final register state U |r〉.

A quantum algorithm is called efficient if the number of needed elementary gates T grows with
at most polynomial rate in n = log2N , and only in this case it can generally be expected to
outperform the best classical algorithm. At present only few efficient quantum algorithms are
known, perhaps the most generally useful being the Quantum Fourier Transformation (QFT) (Shor,
1994; Coppersmith, 1994) which will also be the subject of our study.

There are two major obstacles for performing practical quantum computation. First, there is
the problem of decoherence (Chuang et al. , 1995) resulting from an unavoidable generally time-
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dependent perturbation due to the coupling between the qubits and the environment. If the per-
turbation couples only a small number of qubits at a time then such errors can be eliminated at
the expense of extra qubits by quantum error correcting codes (Steane, 1996a; Calderbank & Shor,
1996; Steane, 1996b), for another approach see (Tian & Lloyd, 2000). Second, even if one knows
an efficient error correcting code or assumes that quantum computer is ideally decoupled from the
environment, there will typically exist small unknown or uncontrollable residual interaction among
the qubits which one may describe by a general static perturbation. Therefore, understanding
the stability of quantum algorithms with respect to various types of perturbations is an important
problem, for some results on this topic see (Miquel et al. , 1996, 1997; Gea-Banacloche, 1998, 1999,
2000; Song & Shepelyansky, 2001; Georgeot & Shepelyansky, 2000; Berman et al. , 2001, 2002a,b;
Celardo et al. , 2003).

6.1 General Framework

Let us perturbe the t-th quantum gate by a perturbation∗ generated by Vt,

U δ
t := exp (−iδVt)Ut. (6.1)

We set h̄ = 1 and use the superscript δ to denote a perturbed gate and the subscript t to denote a
discrete time index, i.e. a gate number. We allow for different perturbations Vt at different gates.
The perturbed algorithm is simply a product of perturbed gates, U δ = U δ

T · · ·U δ
1 . Fidelity will

again serve as a measure of stability and we have

F (T ) = | 〈Mδ(t)〉 |2, Mδ := U(−T )U δ(T ), (6.2)

with U(t) := Ut · · ·U1 and similarly for U δ(t). For our generally time dependent perturbation the
echo operator equals to

Mδ = e−iδVT (T ) · · · e−iδV2(2)e−iδV1(1), (6.3)

where Vt(t) := U †(t)VtU(t) is the perturbation of t-th gate Vt propagated with the unperturbed
gates U(t) = Ut · · ·U1. Beware that Vt(t) is time dependent due to two reasons, one is due to the
interaction picture (time in parentheses) and the second is that the perturbation itself is explicitly
time dependent, i.e. different perturbation for different gate (time as a subscript). In quantum
computation one is usually interested in initial states containing a maximum amount of information,
thereby being close to random states. With this in view, we take the initial state average to be a
trace over the whole Hilbert space,

〈•〉 := 1

N tr(•). (6.4)

By this prescription we study the average fidelity over the whole Hilbert space. Without sacrificing
generality we furthermore assume the average perturbation to be traceless,

∑T
t=1 trVt = 0. Trace

of the average perturbation only changes the phase of the fidelity amplitude and has therefore no
influence on the fidelity (i.e. probability). The linear response expansion of the fidelity then reads

F (T ) = 1− δ2
T
∑

t,t′=1

C(t, t′), (6.5)

with the correlation function

C(t, t′) :=
1

N tr[Vt(t)Vt′(t
′)]. (6.6)

∗It is expected that the computation is stable only when the evolution is close to unitary.
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Here we used the fact that the average trace vanishes so the term 〈Σ(t)〉 is zero. Decomposition of
a given quantum algorithm U into quantum gates is by no means unique. An interesting question
then is, given perturbations Vt, which form of the algorithm has the highest fidelity, i.e. is the most
stable? We will see that the standard QFT algorithm can be rewritten in a non trivial way so that
it becomes more stable against static perturbations. The guiding principle in the construction of
this new algorithm will be to study the correlation function (6.5) and trying to minimise its sum.

6.1.1 Time Dependent Perturbations

If our perturbation Vt is time dependent, i.e. we have different perturbations on different gates,
then the decay of correlation function will not only depend on the unperturbed dynamics, but also
on how strong these perturbations are correlated at different gates. Let us have a closer look at
one extreme example. If the perturbation Vt is an uncorrelated noise, as it would be in the case
of coupling to an ideal heath bath, then the matrix elements of Vt may be assumed to be Gaussian
random variables which are uncorrelated in time,

〈

Vjk(t)Vlm(t
′)
〉

noise =
1

N δjmδklδtt′ . (6.7)

Hence one finds 〈C(t, t′)〉noise = δtt′ , where we have averaged over noise. In fact the average of the
product in Mδ (6.3) equals to the product of the average and yields the noise-averaged fidelity

〈F (T )〉noise = exp(−δ2T ), (6.8)

which is independent of the quantum algorithm U . This result is completely general provided that
the correlation time of the perturbation is smaller than the duration of a single gate. On the other
hand, for a static perturbation Vt ≡ V one may expect slower correlation decay, depending on the
’regularity’ of the evolution operator U , and hence faster decay of fidelity. Importantly, note that in
a physical situation, where perturbation is expected to be a combination Vt = Vstatic+Vnoise(t), the
fidelity drop due to a static component is expected to dominate long-time quantum computation
T →∞ (i.e. large number of qubits n) over the noise component, as soon as the quantum algorithm
exhibits long time correlations of the operator Vstatic. If Vstatic = 0 is zero, the quantum computation
can be stabilised by making “adiabatically” slow evolution of gates. In the following we will focus
exclusively on the static perturbations being the worst ones.

6.2 Quantum Fourier Transformation

We will consider Quantum Fourier Transformation algorithm (QFT) and will consider its stability
against static random perturbations. The perturbation Vt ≡ V will be a random hermitian matrix
from a Gaussian unitary ensemble (GUE). Gaussian unitary ensamble is invariant under unitary
transformations and the matrix elements in an arbitrary basis are independent random Gaussian
variables (Mehta, 1991). Due to hermitian symmetry they are real on the diagonal and complex
off-diagonal. The GUE matrices can be used to model quantum statistical properties of classically
chaotic Hamiltonians and have been first applied to studies of nuclear resonances. Second moments
of a GUE matrix V are normalised as

〈VjkVlm〉GUE = δjmδkl/N , (6.9)

where the averaging is done over a GUE ensemble.
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Let us briefly describe the QFT algorithm. Basis qubit states in a Hilbert space of dimension
N = 2n will be denoted by |k〉, k = 0, . . . , 2n−1. The unitary matrix UQFT performs the following
transformation on a state with expansion coefficients xk

UQFT(
N−1
∑

k=0

xk|k〉) =
N−1
∑

k=0

x̃k|k〉, (6.10)

where x̃k = 1√
N
∑N−1

j=0 exp (2πijk/N )xj . The resulting expansion coefficients x̃k are Fourier trans-

formed input coefficients xk. The “dynamics” of the QFT is decomposed into three kinds of unitary
gates: One-qubit gates Aj acting on j-th qubit

Aj =
1√
2

(

1 1
1 −1

)

, (6.11)

where the basis is ordered as (|0〉, |1〉), diagonal two-qubit gates Bjk = diag{1, 1, 1, exp (iθjk)},
with θjk = π/2k−j , and transposition gates Tjk which interchange the j-th and k-th qubit,
Tjk| . . . j . . . k . . .〉 = | . . . k . . . j . . .〉. There are n A-gates, n(n − 1)/2 B-gates and [n/2] trans-
position gates, where [x] is the integer part of x. The total number of gates for the algorithm is
therefore T = [n(n+ 2)/2]. For instance, in the case of n = 4 we have a sequence of T = 12 gates
(time runs from right to left)

UQFT = T03T12A0B01B02B03A1B12B13A2B23A3. (6.12)

For the GUE perturbation we can average the correlation function C(t, t′) (6.6) over the GUE
ensemble, resulting in

〈

C(t, t′)
〉

GUE =

∣

∣

∣

∣

1

N trU(t, t′)
∣

∣

∣

∣

2

, (6.13)

where U(t, t′) is the unperturbed propagator from gate t′ + 1 to t, U(t, t′) := Ut · · ·Ut′+1 with the
convention U(t, t) ≡ � . Averaging over the GUE is done only to ease analytical calculation and to
yield a quantity that is independent of a particular realization of the perturbation. Qualitatively
similar (numerical) results are obtained without the averaging.

We have calculated the correlator 〈C(t, t′)〉 for the QFT (6.13) which is shown in the right
Figure 6.1. One can clearly see square red plateaus on the diagonal due to blocks of successive
B-gates. Similar square plateaus can also be seen off diagonal (from orange, yellow to green), so the
correlation function has a staircase-like structure, with the A-gates responsible for the drops and
B-gates responsible for the flat regions in between. This can be easily understood. For “distant”
qubits k− j À 1 the gates Bjk are close to the identity and therefore cannot reduce the correlator.
This slow correlation decay results in the correlation sum

ν :=
T
∑

t,t′=1

C(t, t′), (6.14)

being proportional to ν ∝ n3 (sum of the first n squares) as compared to the theoretical minimum
ν ∝ T ∝ n2.

In view of this, we will now try to rewrite the QFT with a goal to achieve a smaller correlation
sum, hopefully ν ∝ n2. From (6.13) we learn that the gates that are traceless (e.g. A-gates) reduce
the correlator very efficiently. In the plain QFT algorithm (6.12) we have n− 1 blocks of B-gates,
where in each block all B-gates act on the same first qubit, say j. In each such block, we propose
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Figure 6.1: Correlation functions 〈C(t, t′)〉GUE (6.13) for n = 10 qubits and static GUE perturba-
tion. The right figure shows the standard QFT (6.12) with T = 60, while the left figure shows the
IQFT with T = 105 gates. Colour represents the size of elements in a log-scale from red (e−0) to
blue (e−14 and less).

to replace Bjk with a new gate Gjk = R†jkBjk, where a unitary gate Rjk will be chosen so as to
commute with all diagonal gates Bjl in the block, whereas at the end of the block we will insert Rjk

in order to “annihilate” R†jk so as to preserve the evolution matrix of a whole block. The unitarity

condition R†jkRjk = 1 and [Rjk,Bjl] = 0 for all j, k, l leaves us with a 6 parametric set of matrices
Rjk. By further enforcing trRjk = 0 in order to maximally reduce the correlator, we end up with
4 free real parameters in Rjk. One of the simplest choices, that turned out to be as suitable as any
other, is the following

Rjk =









0 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 −1









, (6.15)

with the basis states (|jk〉) ordered as (00, 10, 01, 11). The R gate can be compactly written as
Rjk| . . . aj . . . bk . . .〉 = (−1)bk | . . . aj . . . (aj⊕bk) . . .〉, where ⊕ is an addition modulo 2, bar denotes a
negation and aj , bk are 0 or 1. Furthermore, we find that R-gates also commute among themselves,
[Rjk,Rjl] = 0, which enables us to write a sequence of R-gates whichever way we like, e.g. in
the same order as a sequence of G’s, so that pairs of gates Gjk, Rjk operating on the same pair of
qubits (j, k), whose product is a bad gate Bjk, are never neighbouring. This is best illustrated by an

example. For instance, the block B01B02B03 will be replaced by R01R02R03R
†
01B01R

†
02B02R

†
03B03 =

R01R02R03G01G02G03. This is how we construct an improved quantum Fourier transform algorithm
(IQFT). For the IQFT we need one additional type of gate, instead of diagonal B-gates, we use
nondiagonal ones R and G. To illustrate the obvious general procedure we write out the whole
IQFT algorithm for n = 4 qubits (compare with (6.12))

UIQFT = T03T12A0R01R02R03G01G02G03A1R12R13G12G13A2R23G23A3. (6.16)

Such IQFT algorithm consists in total of T = [n(2n + 1)/2] gates (note that it does not pay of
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Figure 6.2: Dependence of the fidelity F (T ) on the number of qubits n for the QFT (pluses)
and the IQFT algorithms (crosses), for fixed δ = 0.04. Numerical averaging over 50 GUE real-
izations is performed. The full curve is exp (−δ2{0.47n3 − 0.76n2 + 2.90n}) and the dashed one
exp (−δ2{1.22n2 + 1.78n}). For n = 10 the trace is approximated by an average over 200 Gaussian
random register states.

to replace a block with a single B gate as we have done, so we could safely leave B23 ≡ R23G23).
The correlation function for the IQFT algorithm is shown on the left of Figure 6.1. Almost all off-
diagonal correlations are greatly reduced (to the level ∝ 1/N 2), leaving us only with a dominant
diagonal. If we would have only diagonal elements, the fidelity would be F (T ) = 1 − δ2T , (as in
the case of noisy perturbation or decoherence, however, with a different physical meaning of the
strength scale δ) where the number of gates scales as T ∝ n2. From Figure 6.1 it is clear that we
have a very fast correlation decay for the IQFT. Studying the scaling with n, the correlation sum
ν has decreased from ν ∝ n3 to ν ∝ n2. To further illustrate this, we have numerically calculated
fidelity by simulating the quantum algorithm and applying the perturbation exp (−iδV ) at each
gate. The results are shown in Figure 6.2 where one can see much faster decay of the fidelity
for the QFT than for the IQFT. Note that the IQFT has higher fidelity despite the perturbation
being applied ∼ n2 times for the IQFT and only ∼ n2/2 times for the QFT. As we have argued
before, the sum of 2-point correlator (6.5) gives us only the first nontrivial order in the δ-expansion.
For dynamical systems, being either integrable or mixing and ergodic, we have shown in previous
chapters that also higher orders of the fidelity can approximately be written as simple powers of
the correlation sum ν, so that the fidelity has the simple form

F (T ) ≈ exp(−νδ2). (6.17)

Although quantum algorithm is quite inhomogeneous in time, we may still hope that exp (−νδ2)
is a reasonable approximation of the fidelity also to higher orders in δ. This is in fact the case
as can be seen in Figure 6.3. Note also that the leading coefficient in the exponent for the IQFT
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fidelity, limn→∞ ν/n2 = 1.22, is close to the theoretical minimum of 1. As the definition of what is
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Figure 6.3: Dependence of the fidelity F (T ) on δ for the QFT (pluses) and the IQFT (crosses), for
fixed n = 8. Solid curves are functions exp (−νδ2) (see text) with ν calculated analytically (6.13)
and equal to ν = 216 for the QFT and 93.2 for the IQFT.

a fundamental single gate is somehow arbitrary, the problem of minimising the sum ν depends on a
given technical realization of gates and the nature of the perturbation V for an experimental setup.
It has been shown (Celardo et al. , 2003), that the IQFT algorithm improves stability against GUE
perturbations also for a more realistic model of a quantum computer, namely for an Ising quantum
computer.

We should mention that the optimisation becomes harder if we consider few-body (e.g. two-body)
random perturbation. This is connected with the fact that quantum gates are two-body operators
and can perform only a very limited set of rotations on a full Hilbert space and consequently have
a limited capability of reducing correlation function in a single step. For such errors the fidelity
will typically decay with the square of the number of errors T (i.e. gates), like ∼ exp(−δ2T 2), that
is the same as for regular systems, see also (Gea-Banacloche, 2000) for a similar result. This means
that the very fact that the algorithm is efficient, having a polynomial number of gates, makes it
very hard to reduce the correlation function and therefore causes a fast fidelity decay. However, our
simple approach based on n-body random matrices seems reasonable, if the errors due to unwanted
few-body qubit interactions can be eliminated by other methods.





Chapter 7

Conclusion

I hate quotations. Tell me what you know.

—Ralph Waldo Emerson

We have studied the decay of quantum fidelity, of reduced fidelity and of purity in quantum sys-
tems. We considered two extreme cases of system’s dynamics, mixing and regular. The dependence
on the initial conditions, in particular for a random and coherent initial state, and the influence of
the perturbation type on quantum stability has been analysed.

For a general type of perturbation, having a nonzero diagonal matrix elements in the eigenbasis
of the unperturbed system, i.e. having a nonzero time average, the fidelity decay depends on the
mixing properties of system dynamics. For mixing systems in the Fermi golden rule regime fidelity
decay is exponential, with the decay time given by the transport coefficient, which is in turn
the integral of the correlation function of the perturbation. The decay time scales with Planck’s
constant and with the perturbations strength as τm ∼ h̄2/δ2. In this regime quantum fidelity decay
is much slower than classical fidelity decay and moreover, it will in general be the slower the more
chaotic the corresponding classical system is. This surprising result does not violate the quantum-
classical correspondence though, as for large perturbation strengths, in the so called Lyapunov
regime, quantum fidelity agrees with classical fidelity. Whether we observe the quantum or the
classical behaviour depends on the order of two noncommuting limits, namely the semiclassical
limit of vanishing Planck constant h̄ → 0 and the limit of vanishing perturbation strength δ → 0.
For sufficiently long times fidelity decay in mixing systems does not depend on the initial state. In
regular systems and for perturbations with a nonzero time average the fidelity decay for wave packets
is governed by a ballistic separation of the packets. For coherent initial states the resulting decay is
Gaussian with the decay time scaling as τr ∼

√
h̄/δ, and can be for sufficiently small perturbations

smaller than for chaotic systems. For random initial states in a regular regime quantum fidelity
decays according to a power law, F ∼ (h̄/δt)d in d degrees of freedom system. In regular systems
we also considered the decay averaged over random positions of the initial coherent state, resulting
in an algebraic decay but with the power being system specific. By a semiclassical method we
theoretically calculated all decay times in both cases of regular and mixing dynamics in terms of
classical quantities only, despite the fact that the quantum and the classical fidelity do not agree
for mixing systems.

The quantum fidelity decay is markedly different for perturbations with a zero time average,
which can be written as a time derivative of another operator. For such perturbations fidelity freezes
at a constant plateau regardless of the dynamics and starts to again decay only after a much longer
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time, scaling as ∼ 1/δ. This freezing is a pure quantum phenomenon as the correspondence with
classical fidelity ends before the plateau starts and classical fidelity decays much faster. The only
exception where the classical fidelity also exhibits freezing and agrees with quantum fidelity is
for a harmonic oscillator, for which the plateau is higher than for other systems. We explicitly
calculate the plateau value for mixing and regular dynamics and coherent and random initial
states. For mixing dynamics a universal relation holds between the plateau FRIS

plat for random and

FCIS
plat for coherent states, (FCIS

plat )
2 = FRIS

plat . In the linear response regime the scaling of the plateau

is 1− Fplat ∼ δ2/h̄2 regardless of the dynamics. The asymptotic decay of fidelity after the plateau
ends is also theoretically calculated in terms of a “renormalised” perturbation with strength δ2/2.
For regular systems this long time Gaussian decay happens on a time scale ∼

√
h̄/δ2 for coherent

initial states whereas it is power law with the prefactor scaling as ∼ h̄/δ2 for random initial states.
For mixing dynamics the long time decay does not depend on the initial state and is exponential
with the decay time ∼ h̄2/δ4 or Gaussian with the decay time ∼ h̄1−d/2/δ2. The crossover from the
exponential to the Gaussian decay happens at the Heisenberg time. For one dimensional regular
systems we also explain echo resonances, a sudden revivals of fidelity.

We also study composite systems, composed of a central system and an environment, and con-
nect the decay of purity with the decay of reduced fidelity. We prove a rigorous inequality between
the fidelity (characterising the stability of the whole system), the reduced fidelity (characterising
the stability of the central system) and the purity (characterising the entanglement). For mixing
systems fidelity, reduced fidelity and purity all decay on the same time scale. For regular systems
though, reduced fidelity has a Gaussian decay for coherent states whereas purity decays on an h̄
independent time scale. We explicitly calculate the purity decay and the power of the asymptotic
algebraic decay depends on the perturbation and can range between 1 and dc, the dc being number
of degrees of freedom of the central system. All decay constants are explicitly calculated. We also
discuss an interesting case where the time scales of the central system and the environment are
vastly different and one can use averaging over the faster system to simplify the theory. Decoher-
ence for macroscopic superpositions of coherent states is derived and shown to be faster than for a
single coherent state.

Finally, we show an application of fidelity theory. By “randomising” the quantum Fourier
transform algorithm we are able to make it more resistant against random perturbations from the
environment.



Appendix A

Spin Wigner functions

The Wigner function enables us to represent the quantum density matrices in a phase space and
thereby compare it with the classical probability densities. If we have a one particle quantum
system, described by a canonical pair [q̂, p̂] = ih̄, the Wigner function Wρ of a quantum state given
by a density matrix ρ̂ is

Wρ(q, p) :=
1

2πh̄

∫

dx〈q − x|ρ|q + x〉 exp (−i2px/h̄), (A.1)

if |x〉 is an eigenstate of operator q̂ with an eigenvalue x. In this appendix we will use a hat for
quantum operators. For spin state such a definition can not be used as the Hilbert space has
different structure due to SU(2) commutation relations of spin operators.

We would like to obtain a Weyl symbol of an arbitrary operator Â acting on a Hilbert space of
size 2S+1, i.e. on a state space of spin of size S. In the special case when the operator Â is equal to
a density matrix, the resulting Weyl symbol is called a Wigner function. Such functions have been
first proposed by Agarwal (1981). The Weyl symbol WA(ϑ, ϕ) will be a function of coordinates on
a sphere. Furthermore, we would like the standard trace dot product for operators to carry over to
Weyl symbols, i.e. we demand that the following equality should hold

tr(Â, B̂†) =
∫

WAW
∗
BdΩ, (A.2)

with dΩ = dϕ sinϑdϑ. Spherical harmonic functions Y m
l constitute an orthonormal basis on a

sphere,
∫

Y m
l Y m′∗

l′ dΩ = δll′δmm′ , (A.3)

and so we can expand the Weyl symbol over Y m
l . On the other hand, an arbitrary operator Â can

be in turn expanded over multipole operators T̂ml forming an orthogonal basis in the Hilbert space
of operators,

tr(T̂ml T̂
m′†
l′ ) = δll′δmm′ . (A.4)

Therefore we can write the operator Â as

Â :=
2S
∑

l=0

l
∑

m=−l
almT̂

m
l , alm = tr(ÂT̂m†l ). (A.5)
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From this and the orthogonality property of Y m
l we immediately see that the Weyl symbol defined

as

WA(ϑ, ϕ) :=
2S
∑

l=0

l
∑

m=−l
almY

m
l (ϑ, ϕ), (A.6)

will satisfy dot property (A.2) we demanded. The coefficients alm can be calculated using the
explicit form of the multipole operators

T̂ml :=
S
∑

q=−S
(−1)S−m−q

√
2l + 1

(

S l S
−m− q m q

)

|m+ q〉〈q|, (A.7)

with

(

S l S
−m− q m q

)

being the Wigner 3j symbol.

The spin Wigner function for a state represented by a density matrix ρ̂ is obtained by taking
Â = ρ̂ in the above formulas. As the density matrix is a Hermitian operator, the resulting Wigner
function is real. In the case of two pure states, ρ1 = |ψ1〉〈ψ1|, ρ2 = |ψ2〉〈ψ2| the dot condition gives
simply

|〈ψ1|ψ2〉|2 =
∫

Wρ1Wρ2dΩ. (A.8)

For examples of Wigner functions of some simple states see e.g. (Dowling et al. , 1994).



Appendix B

Coherent State Expectation Values

Boson coherent states

Expectation values of expressions involving creation and annihilation operators a+ and a for a
harmonic oscillator coherent state |α〉 are frequently needed. Using the definition of |α〉 (2.30) it is
easy to show the following equality

〈α|g(a+)f(a)|α〉 = g(α∗)f(α), (B.1)

with two polynomials g and f . Let p(a, a+) be some polynomial function and by : p(a, a+) : we
will denote a polynomial in a normal order which can be obtained from p(a, a+) by using the
commutation relation [a, a+] = 1 to bring all terms involving a+ to the left of terms with a. For
instance, :aa+ : = a+a+ 1. Then we can write the expectation value of an arbitrary polynomial as

〈α|p(a, a+)|α〉 = 〈α| : p(a, a+) : |α〉 =: p(α, α∗) : . (B.2)

Spin coherent states

For spin coherent states formulas are a bit more complicated due to different group structure. The
easiest systematic method for the calculation of expectation values of polynomials in operators
Sx,y,z in coherent state |ϑ∗, ϕ∗〉 (2.26) is using generating function formalism (Arecchi et al. , 1972).
For brevity let us denote a spin coherent state with a complex parameter τ := eiϕ

∗
tan (ϑ∗/2), i.e.

|τ〉 := |ϑ∗, ϕ∗〉. The following expression holds,

〈τ1|Sa+SbzSc−|τ2〉 =
{

(

∂

∂ξ

)a ( ∂

∂η

)b ( ∂

∂ζ

)c

X(ξ, η, ζ)

}

ξ=η=ζ=0

, (B.3)

where

X(ξ, η, ζ) := 〈τ1|eξS+eηSzeζS− |τ2〉 =

{

eη/2 + e−η/2(τ∗1 + ξ)(τ2 + ζ)
}2S

(1 + |τ1|2)S(1 + |τ2|2)S
ei(ϕ

∗
1−ϕ∗2)S . (B.4)

This formula, together with the commutation relations, can be used to calculate some of the lowest
powers

〈τ |Sz|τ〉 = Sz

〈τ |S2
z |τ〉 = S2z2 +

S

2
(1− z2)
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〈τ |S3
z |τ〉 = S3z3 +

3S2

2
z(1− z2)− S

2
z(1− z2)

〈τ |S4
z |τ〉 = S4z4 + 3S3z2(1− z2) + S2

4
(11z4 − 14z2 + 3) +

S

4
(−3z4 + 4z2 − 1), (B.5)

where z = cosϑ∗. The expressions for other spin operators Sy and Sx are obtained by replacing z
with y or x on the right hand side, respectively. Some other useful expectation values are

〈τ |S+S−|τ〉 = S2(1− z2) + S

2
(1 + z)2

〈τ |S−S+|τ〉 = S2(1− z2) + S

2
(1− z)2. (B.6)
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terms of correlation functions. Phys. Rev. A, 67, 062108.
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Žnidarič, Marko, & Prosen, Tomaž. 2003. Fidelity and purity decay in weakly coupled com-
posite systems. J. Phys. A, 36, 2463–2481.



Izjava

Izjavljam, da sem v doktorskem delu predstavil rezultate lastnega znanstvenoraziskoval-
nega dela.
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