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This paper addresses the realistic economic emission dispatch (EED) problem of power system by 

considering the operating fuel cost and environmental emission as two conflicting objectives, and power 

balance and generator limits as two constraints. A novel dynamic multi-objective optimization 

algorithm, namely the multi-objective differential evolution with recursive distributed constraint 

handling (MODE-RDC) has been proposed and successfully employed to address this challenging EED 

problem. It has been thoroughly investigated in two different test cases at three different load demands. 

The efficiency of the MODE-RDC is also compared with two other multi-objective evolutionary 

algorithms (MOEAs), namely, the non-dominated sorting genetic algorithm (NSGA-II) and multi-

objective particle swarm optimization (MOPSO). Performance evaluation is carried out by comparing 

the Pareto fronts, computational time and three non-parametric performance metrics. The statistical 

analysis is also performed, to demonstrate the ascendancy of the proposed MODE-RDC algorithm. 

Investigation of the performance metrics revealed that the proposed MODE-RDC approach was capable 

of providing good Pareto solutions while retaining sufficient diversity. It renders a wide opportunity to 

make a trade-off between operating cost and emission under different challenging constraints. 

Povzetek: Opisan je izvirni multi-kriterijski optimirni algoritem za energetske sisteme, ki kombinira 

kriterij onesnaževanja in kriterij energetske potrošnje. 

1 Introduction 
The Economic Load Dispatch (ELD) problem deals with 

the estimation of the scheduled real power generation 

from the committed units for best economic operation. 

Over the years the problem has become more complex 

due to the increasing effects of emissions from fossil fuel 

based power plants on the environment. The emission 

and fuel cost of each unit depend on the quantity of 

power to be generated. Both of them are nonlinear 

functions of power output. Minimum operating cost does 

not ensure minimum emission. Each operating condition 

must satisfy the power balance criterion and should obey 

the generating limits of the committed units. These can 

be considered as constraints. Generally, better quality 

fuel ensures less emission but it can be further reduced 

by proper scheduling of generation from different units. 

The cost coefficients and emission coefficients of these 

generating units do not match. Hence, achieving these 

two objectives, i.e. less cost and less emission is 

contradictory in nature. Thus, the EED problem has 

evolved as a modification of the ELD problem. 

Therefore, the EED problem is a multi-objective 

optimization problem with nonlinear constraints. 

In [1-2], the power engineers solved the ELD 

problem by scheduling of the generation of multi-unit 

systems using the derivative based Gauss-Siedel and 

Newton-Raphson algorithms along with the Lagrangian 

multiplier. These conventional methods suffer from the 

problem of getting trapped in local minima and also fail 

for system discontinuities due to prohibited zones. These 

techniques are inadequate to solve multi-objective 

problems with nonlinear constraints. Chang et al. [3] 

rehabilitated the inherently multi-objective EED problem 

to a single objective one by assigning weights to the 

operating cost and emission. This weighted sum 

approach requires many runs of the same algorithm to 

find the Pareto optimal front. The solutions arrived at by 

this method do not ensure a uniform Pareto front. The 

trade-off information is lost when the function is 

concave. To avoid this bottom-hole different 

evolutionary based heuristic approaches have been 

introduced by many researchers [4-5]. These 

evolutionary algorithms have considered the two 

objectives simultaneously and are shown to perform 

better as compared to the conventional ones. Chiang et 

al. [6] made a further refinement and proposed an 

improved genetic algorithm to speed up the search 

process. He used the ϵ-constraint technique for efficient 
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constraint handling and proposed a multiplier updating 

mechanism for better exploration of the search space. 

Deb et al. [7] proposed the non-dominated sorting 

genetic algorithm which utilized rank and crowding 

distance as parameters to arrive at a compromise between 

the two conflicting objectives. This was applied to the 

multi-objective environmental economic load dispatch 

problem in [8]. The Pareto optimal front could be 

obtained by a single run of the algorithm. But, this 

population based genetic algorithm depends upon 

biologically inspired factors like mutation and crossover 

parameters. It needs further improvement in terms of 

exploring a wider area in the search space. Brar et al. [9] 

made improvements in the search space by adding the 

fuzzy inference system. Muthuswamy et al. [10] 

modified the non-dominated sorting technique by 

incorporating a dynamic crowding distance to improve 

the diversity of solutions in the search space. These 

algorithms fail when there are discontinuities in the cost 

function. 

Nayak et al. [11] implemented another evolutionary 

algorithm, the artificial bee colony (ABC) optimization, 

and improved the convergence rate and reliability under 

the presence of the prohibited zones and ramp rate limits. 

Liang et al. [12] modified the ABC algorithm to form an 

improved artificial bee colony (IABC) by addition of a 

new skill called chaos ques in the search process. Mori et 

al. [13] made an excellent improvement in the 

exploration of search space through the implementation 

of the particle swarm optimization (PSO) for this 

multimodal problem. They also used adaptive parameter 

adjustment to improve the results. A significant 

improvement in search space exploration was made by 

Hadji et al. [14]. They incorporated a time varying 

acceleration of the particles to improve the robustness of 

the algorithm. Recently, a differential evolution (DE) 

algorithm came up which generates the next set of 

population of new particles by the addition of a 

differential vector obtained from the difference of the 

position vectors of two different particles other than the 

particle undergoing evolution [15]. This algorithm is still 

dependent on the bio-inspired parameters but is able to 

avoid premature convergence. Meza et al. [16] improved 

the algorithm by incorporating spherical pruning for 

better exploitation of the search space. Di et al. [17] 

introduced a marginal analysis correction operator to 

improve the constraint handling. 

 In [18], the particle swarm optimization algorithm 

has been developed which is based on the intelligence of 

flock of birds. The same has been improved and tested 

for multi-objective problems in [19-21]. The EED 

problem has been solved to decide the unit commitment 

of the power system by considering operational power 

flow and environmental constraints in [22]. But, it again 

utilized the method of conversion of the multi-objective 

problem to a single objective one. A new approach to 

optimization is proposed in [23] which hybridized 

adaptive PSO and DE for improvement of the search 

space. An improvement over ABC called as multi-

objective global best artificial bee colony (MOGABC) 

optimization is suggested in [24] for better constraint 

handling in EED problem. The EED problem has been 

further modified and applied to the micro-grid containing 

renewable sources along with the conventional thermal 

power stations in [25]. It also converts the problem to a 

single objective one by incorporating a h-index.  

In this paper, a new constraint handling mechanism 

has been implemented, and a new multi-objective 

optimization (MOP) algorithm, namely the multi-

objective differential evolution with recursive distributed 

constraint handling (MODE-RDC) has been proposed. 

The constraint handling mechanism is suitably 

incorporated in three multi-objective optimization (MOP) 

algorithms, and the effectiveness of the algorithms has 

been tested under various load conditions. 

2 Multi-objective optimization: a 

review 
The main aim of the multi-objective optimization 

technique is to optimize two or more conflicting 

objectives simultaneously. The MOP is denoted by a 

decision variable vector, each element of which 

represents the objective functions [21]. The solution to 

the MOP is the optimum value of the vector function by 

considering all the constraints. A multi-objective 

minimization problem can be generalized as follows: 

Minimize f(x⃗ ) = (f1(x⃗ ), f2(x⃗ ), …, fM(x⃗ ))        (1)   

Subject to constraints: 

gj(x⃗ ) ≤ 0; j=1, 2, ⋯, J     (2) 

hk(x⃗ ) = 0; k =1, 2, …, K                 (3)                                                   

where, x⃗  is a vector with N decision variables 

x⃗ =[x1, x2, …, xN]T 

The search space may be limited by lower and upper 

bounds 

lbi ≤ xi ≤ ubi;   i =1, 2, …, N   (4) 

A solution vector u⃗ =[u1, u2, …, uN]T dominates over 

another solution v⃗ =[v1, v2, …, vN]T if and only if 

fi(u⃗ )≤fi(v⃗ )∀ i∈[1,2,…,M]

fi(u⃗ )<fi(v⃗ ) for at least one i∈[1,2,…,M]
}  (5) 

         Solutions that are not dominated by other 

solutions within the given solution space are said to be 

non-dominated solutions. The front obtained by mapping 

such points onto the objective space is said to be the 

Pareto optimal front (POF) 

POF = f(x⃗ ) = [{f1(x⃗ ), f2(x⃗ ), …, fk(x⃗ )}; |x⃗ ∈p] (6) 

where, p is the set of non-dominated particles. 

3 Economic emission dispatch 

problem 
The generation schedule for minimum operating cost is 

called ELD. This schedule is obtained when the 

committed units of the power system are able to supply 

the load demanded and the associated transmission losses 

by satisfying the generator limits. The thermal generating 

units are associated with emissions which are highly 

polluting in nature. Therefore, it is essential to minimize 
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the emissions along with the fuel cost. The problem has 

been transformed to EED problem. It is considered as a 

multi-objective optimization problem as minimum 

operating cost does not ensure minimum emission [5]. 

The operating cost of thermal power systems depends 

mostly on the cost of fuel used. The quantity of fuel used 

by each unit depends on the generated power, efficiency 

of turbine etc. 

The fuel cost characteristics of the generating units 

are normally of the second order polynomial of the 

generated power. Thus, the operating fuel cost of the ith 

generator supplying a real power PGi
is given by 

Fi = aiPGi
2  + biPGi + ci                  (7)                                        

where, ai, bi and ci are the coefficients of cost function. 

The emission from the generator 𝑖 can be 

approximated as 

Ei = αi + βiPGi + γiPGi
2                   (8)                                                                         

where, αi, βi, γi are the coefficients of emission function. 

The aim of the ELD problem is to determine 

generation schedule for the minimum total fuel cost 

given by 

FT = ∑ Fi
N
i=1                                  (9)              

subject to the constraints. 

The total real power generation must be equal to the 

demand plus transmission losses 

∑ PGi
N
i=1 = PD + PL                (10) 

where, PD is the load demand on the system and PL is 

the transmission loss. It is given by Kron’s formula 

PL=∑ ∑ PGiBijPGj
N
j=1

N
i=1 +∑ Bi0PGi

N
i=1 +B00.          (11) 

The constants Bij, Bi0 and B00 are dependent on the 

line parameters. The generated real power of each unit 

must be within the feasible lower and upper bounds. 

PGi(min) ≤ PGi ≤ PGi(max); i =1, 2, …, N.                  (12) 

Thus, the sole objective of the EED problem is to 

optimize both the fuel cost and emission simultaneously. 

Hence, it is inherently a multi-objective optimization 

problem where these two objectives which are 

conflicting in nature need to be optimized. The set of all 

the potential compromised solutions is represented by the 

Pareto optimal front. 

The problem can be stated as: 

minimize
PG

[FT(PG),ET(PG)]                            (13) 

Subject to: g(PG)=0; h(PG)≤0 

where, the equality constraint is represented by 

equation (14) and inequality constraint by equation (15).  

∑ PGi-PD-PL=0N
i=1                              (14) 

PGi-PGi
max≤0;P

Gi
min-PGi≤0                            (15) 

4 Multi-objective optimization 

algorithms 
The multi-objective evolutionary algorithms can be 

categorized mostly into four types in accordance with the 

algorithmic framework, such as indicator based, 

convolution based, memetic based and non-dominated 

sorting based. In this paper, we have solved the economic 

emission dispatch problem using three different multi-

objective optimization algorithms that are based on non-

dominated sorting. 

4.1 Non-dominated Sorting Genetic 

Algorithm-II (NSGA-II) 

This algorithm was formulated by Deb et al. [7], [8] for 

solving the multi-objective optimization problems. It is 

initialized with a random population, and used some 

operators for covering the objective space uniformly on 

the Pareto set. For multi-criteria optimization it uses 

three strategies: non-domination sorting, ranking based 

on density and crowding comparison. The individuals are 

classified into several layers based on their rank and 

crowding distance. The diversity in the solutions is 

maintained by rejecting the solutions with lower 

crowding distance. The quality of solutions is ensured by 

selecting the individuals with lower ranks. The advantage 

of this algorithm is that the complexity of computation is 

lowered and elitism is maintained. 

4.2 Non-dominated Sorting Multi-

Objective Particle Swarm 

Optimization (NS-MOPSO) 

Kennedy and Eberhart proposed that any optimization 

problem can be solved by mimicking the movement of a 

flock of birds and school of fish [18]. The social behavior 

of the swarm is to change their position and velocity to 

maximize their chance of getting food and follow the 

best successful neighbor. This lead to the formulation of 

particle swarm optimization (PSO). In this method of 

optimization, a local best and a global best solution are 

identified. The ith particle in the population having the 

best position (pbest) may be represented by pi, that gives 

the best fitness value represented as 

pi = (pi1, pi2, …, piN)   (16)                                                                                                                                                                                              

The old and new velocity of the particles will be shown 

in equation (17) and (18) respectively.   

Vi = (vi1, vi2, …,  viN)               (17) 

vid(t) = wvid(t -1) + c1r1(pid- xid)(t -1)+c2r2(pid -
xid)(t -1)                              (18) 

and the new position of the particle will be 

xid(t)=xid(t -1)+χvid(t)                            (19) 

where, d = 1, 2, … , D is the dimension of the 

decision variables and i = 1,2, … , N, andχ is the 

constriction factor which constricts and controls the 

velocity magnitude. w, c1 and c2are weight parameters 

and r1, r2are random numbers known as acceleration 

constants in the range [0, 1]. This method of 

improvement of position and velocity is applied to the 

non-dominating vectors to solve the multi-objective 

problem [14], [19] & [20]. 
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4.3 Multi-Objective Differential Evolution 

with Recursive Distributed Constraint 

handling (MODE-RDC) 

The differential evolution (DE) algorithm as developed 

by Stern and Price [15] is less dependent on bio-inspired 

mechanisms, and serves better for multivariable 

problems. The multi-objective optimization using 

differential evolution (MODE) proposed by Meza et al. 

[16] is an improvement of DE to solve multiple number 

of conflicting objectives simultaneously. The MODE is 

an evolutionary multi-objective optimization algorithm 

that retains the diversity of solutions on the Pareto front. 

This real coded stochastic algorithm uses an initial 

population to explore the search space by avoiding 

convergence to local optimal points. It uses two main 

operators: mutation and cross over. Each initial particle 

of the population is improved using these two operators. 

The mutation operator uses a differential vector selected 

from the particles other than the target particle. Three 

vectors xr0,g, xr1,g and  xr2,gare selected randomly from 

the population and the first one is updated with the 

difference of the other two. It is done as follows: 

vi,g=xr0,g+F∙(xr1,g-xr2,g)                                        (20) 

where, vi,g is the mutant vector created from the 

target vector xr0,g and xr1,g, xr2,g are two other vectors; 

F∈(0,1+) is the scale factor that controls the rate of 

evolution. 

A new trial vector (child) is created from the mutant 

vector and the target vector after cross over. 

ui,g=uj,i,g= {
vj,i,gif(randj(0,1)≤Crorj=j

rand
)

xj,i,gotherwise
           (21)            

where, the cross over probability Cr∈[0,1]. The child 

and the parent are tested for their fitness. The one with 

the best fitness is selected for participation in the next 

generation. 

xi,g+1= {
ui,g if f(ui,g)≤f(xi,g)

xi,gotherwise
                             (22) 

This is done for all i =1, 2, ⋯, n where n = 

population size. The steps of the proposed MODE-RDC 

algorithm are summarized as follows: 

I. Initialize the number of individuals N and the 

population P(0) by random selection within the 

limits of the search space. Set the fitness function, 

constraints, maximum number of generations, 

mutation factor, cross over rate and tolerance. 

II. Evaluate P(0)using the fitness function and 

constraint 

III. If constraint violation is out of bounds call the 

recursive distributed constraint handler 

IV. Obtain the non-dominated solutions in P(0) and 

store in D(0) 

V. Update the populations till the maximum number of 

generations or the convergence criterion is reached 

1. Randomly select a subpopulation of Ns(k)  with 

the proposed solution on P(k) 

2. Apply the DE operators on Ns(k) to get the 

offspring O(k) : 

a) Perform the mutation operation. 

b) Apply the fixing rule for boundary constraint 

violations. 

c) Perform cross over operation. 

3. Evaluate offspring O(k) and determine 

constraint violations 

4. Call the recursive distributed constraint handler 

until constraint violation is within tolerable 

limits 

5. Compare the parent and offspring and select the 

best store in D(k) 

6. Apply dominance, 

VI. Modify D(k), perform non dominated sorting on 

D(k) and plot the Pareto front. Terminate the 

algorithm. Select the proper solution using the high 

level decision making rules. Here, we have used the 

allowable emission norms as the accepted solution. 

4.3.1 Constraint handling 

The main problem in finding the solution to the EED 

problem is that every new population evolved must 

satisfy the upper and lower bounds along with the 

nonlinear power balance constraint. The power balance 

constraint, being a polynomial of the individual 

solutions, makes it a complicated task to ensure 

convergence. Therefore, a continuous effort has to be 

made to restrict the solutions in the feasible area. Here, 

we propose a recursive distributed constraint handling 

method. The constraint c is the mismatch of power 

defined as 

c= ∑ PGi
N
i=1 -PD-PL                              (23) 

if c≤ε , then PGi=PGi 

else PGi=PGi-
|c|

N
 

Start

Set the population size, maximum number of 

iterations, objective functions, limits, constraints, 

maximum constraint violation (tolerance), mutation 

factor, crossover rate and stopping criteria

Initialize the population within the lower and upper 

bounds

Evaluate the objective functions and the 

constraint violations

Constraint violations

 ≤ tolerance?

Update the population within the lower 

and upper bounds using the recursive 

distributed constraint handling

Perform non dominated sorting and plot the 

Pareto front

Stopping criteria/maximum 

iterations achieved?

Print results 

and stop

Perform mutation, 

crossover and selection

Yes

Yes

No

No Increment 

iteration

 

Figure 1: Flowchart of MODE-RDC algorithm. 
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subject to PGi
min≤PGi≤PGi

max 

where, ε is the maximum allowable constraint 

violation. The constraint violation is evaluated and 

distributed over the decision variables. The values of the 

N decision variables will change until the constraint 

violation is restricted within the permissible limits. Thus 

the solutions are confined within the feasible work space. 

The proposed algorithm is implemented using 

sequences shown in the flowchart (fig. 1). In the first 

block, the parameters including the limits are set. The 

second block initializes the population randomly between 

the upper and lower limits of the generating units. The 

population created is evaluated for the constraint 

violation; if the violation is high, then the population is 

updated using the constraint handler. The non-dominated 

sorting is performed, and Pareto optimal front is plotted 

from the updated population. This population represents 

the first iteration; subsequent iterations are performed to 

get further modified populations by applying equations 

(20), (21) and (22). This process is continued till 

convergence or the maximum number of iterations 

performed.  

5 Performance measures 
The following three performance metrics [21] have been 

applied to investigate the performance quality of the non-

dominated solutions obtained in the form of Pareto fronts 

using different algorithms. 

5.1 Generation Distance (GD) 

It is the estimated distance between the non-dominated 

solution vectors from the standard efficient front. It is 

mathematically expressed as 

GD= 
√∑ di

2n
i=1

n
                 (24)                                                                                    

where, n is the number of solution vectors and di is 

the minimum Euclidean distance between each of them. 

GD=0 indicates that all the solution vectors are present in 

the standard Pareto front. A smaller positive value of GD 

means the Pareto front obtained from the proposed 

algorithm is closer to the standard Pareto front. 

5.2 Spacing (S) 

Spacing is the measure of the spread of the solution 

vectors. It is expressed as 

S≜√
1

n-1
∑ (d̅-di)

2n
i=1                 (25)                                                                      

where,di= min
j

(|f1
i (x⃗ )-f1

j (x⃗ )|+|f2
i (x⃗ )-f2

j (x⃗ )|) for all 

i, j=1, 2, …, n and d̅=mean of all di and n is the number 

of non-dominated solution vectors found so far. The 

lower the value of 𝑆 the better is the Pareto solution. 

5.3 Diversity metric (Δ) 

It measures how evenly the solution vectors are 

distributed in the search space, i.e. extent of the spread 

on the Pareto front. It is found from the Euclidean 

distances as follows 

 =
𝑑𝑓 + 𝑑𝑙 + ∑ |𝑑𝑖 − �̅�|𝑁−1

𝑖=1

𝑑𝑓 + 𝑑𝑙 + (𝑛−1)�̅�
                             (26)                                                                                  

where, di is the distance between the consecutive 

solution vectors in the non-dominated solution set. The 

average of these distances is d̅. Here,dfand dlare the first 

and last Euclidean distances. A low value of Δ indicates 

better diversity, and ∆=0 means the non-dominated 

solution vectors are uniformly spread on the Pareto front. 

6 Simulation study and results 
The EED problem was simulated for two different 

standard test cases i.e., IEEE 14 bus and IEEE 30 bus. 

The system data of these two test cases were obtained 

from the website www.ee.washington.edu/research/pstca. 

The cost and emission coefficients were also recorded 

from standard sources [22] and are presented in the 

Appendix along with the B coefficients. Each test case is 

solved for three different load demands. The solutions 

are obtained by applying three different algorithms e.g., 

NSGA-II, MOPSO and proposed MODE-RDC. The 

algorithms are run in a MATLAB environment with a PC 

running on Microsoft windows 8 platform having a core 

i3 processor with a clock speed of 1.3 GHz and RAM of 

4 GB.A maximum generation of 300 is taken with a 

population size of 100. The crossover rate is chosen as 

intermediate with the ratio set as 1.2 and mutation chosen 

as Gaussian with a scale of 0.1 and a shrink of 0.5 for 

NSGA-II. The velocity weight of MOPSO is selected as 

0.4 and position weights as 1 with a population size of 

100 and a maximum number of iterations of 100. The 

scaling factor of differential evolution is set as 0.5 and 

crossover rate as 0.5 with a population size of 100. 

6.1 Test case I: IEEE-14 bus system 

The algorithms were applied to this test case for three 

different load demands; i.e., for 200 MW, 259 MW and 

300 MW. The performance was compared with respect to 

Pareto optimal front, computational time, fuel cost, 

transmission loss involved and statistical performance 

metrics. 

6.1.1 IEEE-14 bus system: load demand 200 

MW 

The Pareto optimal fronts obtained by applying the three 

algorithms are compared and shown in Fig.2 for a load 

demand of 200MW. 

http://www.ee.washington.edu/research/pstca
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The comparative generation schedule, fuel cost, 

emission and transmission loss are presented in Table 1. 

The Pareto front obtained by applying the proposed 

MODE-RDC algorithm and other two algorithms for 

different load conditions are depicted from Fig.2 to Fig. 

7. The fuel cost value (518.399$/hour) obtained is lowest 

among all the three competitive algorithms. The emission 

obtained from the proposed algorithm is also comparable 

with other two. Similarly, the algorithms were run for 25 

times, and the performance metrics were calculated 

which are presented in Table 2.  The average spacing 

obtained is 0.37959 which is the lowest among all the 

three algorithms. The average values of other two 

performance matrices show improved performance of the 

proposed algorithm. This indicates that the Pareto 

solutions obtained by the proposed algorithm are superior 

to the competing algorithms. 

6.1.2 IEEE-14 bus system: load demand 259 

MW 

Figure 3 shows the Pareto optimal fronts obtained for the 

test case with the load demand of 259 MW. 

 

Figure 2: Solution of IEEE 14 bus system for a load demand of 

200 MW. 

Algorithm NSGA-II MOPSO MODE-RDC 

PG1 (MW) 121.894 117.4404 121.1744 

PG2 (MW) 37.4252 41.0169 41.8528 

PG3 (MW) 19.3125 19.9156 20.4068 

PG4 (MW) 10.0000 13.9457 10.9482 

PG5 (MW) 15.6575 11.8954 10.0000 

Time (sec) 85.4620 0.963873 9.0003 

PL (MW) 4.2892 4.2230 4.3822 

Fuel Cost ($/hour) 518.569 518.6977 518.3990 

Emission(lb/hour) 244.963 241.1887 242.3576 

Table 1: Results of EED of EEE 14 bus system for a 

load demand of 200 MW. 

Algorithm NSGA-II MOPSO 
MODE-

RDC 

Generation 

Distance 

(GD) 

Minimum 0.0452 0.0714 0.0273 

Maximum 0.0819 0.0714 0.0772 

Average 0.051075 0.0714 0.050145 

Standard 

Deviation 
0.0144013 0.0000 0.0059599 

Spacing 

(S) 

Minimum 0.2266 0.5864 0.2659 

Maximum 0.7777 0.5864 0.5576 

Average 0.469715 0.5864 0.37959 

Standard 
Deviation 

0.135470 0.0000 0.0643687 

Diversity 

(Δ) 

Minimum 1.2497 0.7446 0.4843 

Maximum 1.6853 0.7446 0.7300 

Average 1.47758 0.7446 0.613785 

Standard 
Deviation 

0.134289 0.0000 0.0710588 

Table 2: Performance of algorithms for IEEE 14 bus 

system at load demand of 200 MW. 

 

 
Figure 3: Solution of IEEE 14 bus system for a load 

demand of 259 MW. 

Algorithm NSGA-II MOPSO MODE-RDC 

PG1 (MW) 150.416 150.6611 130.7742 

PG2 (MW) 51.3048 50.2912 53.0186 

PG3 (MW) 23.5338 23.7902 26.3320 

PG4 (MW) 23.5837 22.8592 30.7226 

PG5 (MW) 17.29 18.3925 24.2551 

Time (sec) 91.4121 2.380883 8.0020 

PL (MW) 7.1283 6.9942 6.1025 

Fuel Cost 

($/hour) 

720.3 720.1619 720.1591 

Emission 

(lb/hour) 

360 359.2373 359.1248 

Table 3: Results of EED for IEEE 14 bus system at 

load demand of 259 MW. 

Algorithm NSGA-II MOPSO MODE-

RDC 

Generation 

Distance 

(GD) 

Minimum 0.061130 0.1056 0.056818 

Maximum 0.247369 0.1056 0.215051 

Average 0.115768 0.1056 0.094455 

Standard 

Deviation 

0.052146 0.0000 0.037827 

Spacing 

(S) 

Minimum 0.531774 0.6438 0.527058 

Maximum 2.442706 0.6438 1.926600 

Average 1.099879 0.6438 0.641592 

Standard 

Deviation 

0.528886 0.0000 0.428131 

Diversity 

(Δ) 

Minimum 1.200668 0.5898 0.526846 

Maximum 1.702898 0.5898 0.825663 

Average 1.456543 0.5898 0.569785 

Standard 

Deviation 

0.124752 0.0000 0.077072 

Table 4: Performance of algorithms for IEEE 14 bus 

system at load demand of 259 MW. 
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The generation schedule for this load is presented in 

Table 3, and the statistical performance metric values are 

shown in Table 4. The values of fuel cost and emission 

obtained by the proposed algorithm are better as 

compared to the other two algorithms. The generation 

schedule obtained by the former leads to less 

transmission loss. The proposed MODE-RDC algorithm 

shows lower average values of GD, S and ∆ as compared 

to the other two competitive algorithms. 

6.1.3 IEEE-14 bus system: load demand 300 

MW 

With a higher load of 300 MW the Pareto optimal fronts 

obtained using the algorithms are shown in Fig. 4. 

The generation schedule and performance metrics of 

the solution points are presented in Tables 5 and 6 

respectively. The fuel cost and emission obtained using 

proposed MODE-RDC algorithm is better in terms of 

emission and PL in MW. The transmission losses 

involved due to the schedule obtained by the proposed 

algorithm is also lower. The average value of GD, S and 

∆ metrics of the solutions arrived from the proposed 

algorithm are less than that of the other two. Thus the 

quality of solutions is maintained. 

6.1.4 IEEE-14 bus system: summary of results 

The summary of generation schedules obtained for the 

three load conditions using the three algorithms as 

presented in Tables 1, 3 and 5 show that the fuel cost for 

the proposed algorithm provides improved performance 

for the load conditions. For the IEEE 14 bus test case, the 

two-tailed Sign tests [21] is conducted for the pair-wise 

comparison of the algorithms by considering three 

different performance metrics, and are presented in 

Tables 7, 8 and 9. The tests were carried out for all the 

three load conditions and by repeated run of the three 

algorithms for 25 times. It is observed from Tables 7, 8 

and 9 that the proposed algorithm wins over the other 

two for all loads in terms of all the three performance 

metrics i.e. the generation distance, spacing and diversity 

metric as winning parameters. It can be pointed in Table-

10 that in Sign test, if more than 17 wins are recorded, 

then the algorithm is better with a detected difference 

α=0.1; and if more than 18 wins are recorded then, 

α=0.05.  

 

Figure 4: Solution of IEEE 14 bus system for a load 

demand of 300 MW. 

Load 

(MW) 

Algorithm MODE-

RDC 

Wins 

MODE-

RDC 

Losses 

Detected 

differences 

200 NSGA-II 17 8 α = 0.1 

MOPSO 13 12 - 

259 NSGA-II 18 7 α = 0.5 

MOPSO 13 12 - 

300 NSGA-II 18 7 α = 0.5 

MOPSO 13 12 - 

Table 7: Result of sign test on MODE-RDC algorithm 

for IEEE 14 bus system with GD metric as winning 

parameter. 

Load 

(MW) 

Algorithm MODE-

RDC 

Wins 

MODE-

RDC 

 Losses 

Detected 

difference

s 

200 NSGA-II 14 11 - 

MOPSO 13 12 - 

259 NSGA-II 16 9 - 

MOPSO 13 12 - 

300 NSGA-II 14 11 - 

MOPSO 13 12 - 

Table 8: Result of sign test on MODE-RDC algorithm 

for IEEE 14 bus system with S metric as winning 

parameter. 

 

Algorithm NSGA-II MOPSO MODE-RDC 

PG1 (MW) 158.385 159.5448 144.5312 

PG2 (MW) 59.5374 57.2405 61.6878 

PG3 (MW) 28.554 29.1715 30.9264 

PG4 (MW) 34.3464 36.9012 41.7176 

PG5 (MW) 27.8335 26.9604 29.1517 

Time (sec) 94.0921 2.303318 8.0025 

PL (MW) 8.6563 9.8184 8.0147 

Fuel Cost 

($/hour) 

880.909 879.916 880.4091 

Emission 

(lb/hour) 

440.116 440.862 440.234 

Table 5: Results of EED of IEEE 14 bus system for 

load demand of 300 MW. 

Algorithm NSGA-II MOPSO MODE-

RDC 

Generation 

Distance 

(GD) 

Minimum 0.056728 0.1245 0.055189 

Maximum 0.216685 0.1245 0.345505 

Average 0.123737 0.1245 0.120521 

Standard 

Deviation 

0.044166 0.0000 0.058929 

Spacing 

(S) 

Minimum 0.510125 0.7691 0.568051 

Maximum 2.065131 0.7691 1.644507 

Average 1.154852 0.7691 0.764450 

Standard 

Deviation 

0.428284 0.0000 0.666390 

Diversity 

(Δ) 

Minimum 1.269374 0.6529 0.491511 

Maximum 1.580342 0.6529 0.964161 

Average 1.426765 0.6529 0.648467 

Standard 

Deviation 

0.087880 0.0000 0.102660 

Table 6: Performance of algorithms for IEEE 14 bus 

system at load demand of 300 MW. 
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It is evident from the Table 7 and 8 that the proposed 

MODE-RDC algorithm shows better performance as 

compared to other two competitive algorithms. The 

algorithm is better with respect to NSGA-II a detected 

difference α=0.1 for load of 200 MW, and a detected 

difference of α=0.05 for load of 259MW and 300 MW. 

However, the proposed algorithm does not show much 

improvement as compared to MOPSO algorithm. 

6.2 Test case II: IEEE-30 bus system 

The algorithms were applied to this test case for three 

different load demands; i.e., for 200 MW, 283.4 MW and 

350 MW. The performance is compared with respect to 

Pareto optimal front, computational time, fuel cost, 

transmission loss involved and statistical performance 

metrics. 

6.2.1 IEEE-30 bus system: load demand 200 

MW 

The Pareto optimal fronts obtained by applying the three 

algorithms for the load demand of 200 MW are presented 

in Figure 5. 

From the simulation output it reveals that the Pareto 

curve obtained by applying the proposed algorithm 

covers a wider area of the search space. The generation 

 

Figure 5: Solution of IEEE 30 bus system for load 

demand of 200 MW. 

Load 

(MW) 

Algorithm MODE-

RDC 

Wins 

MODE-

RDC 

Losses 

Detected 

differences 

200 NSGA-II 25 0 0.05 

MOPSO 13 12 - 

259 NSGA-II 25 0 0.05 

MOPSO 13 12 - 

300 NSGA-II 25 0 0.05 

MOPSO 13 12 - 

Table 9: Result of sign test on MODE-RDC algorithm 

for IEEE 14 bus system with ∆ metric as winning 

parameter. 

No. of 

algorithm runs 
α = 0.05 α = 0.1 

5 5 5 

6 6 6 

7 7 6 

8 7 7 

9 8 7 

10 9 8 

11 9 9 

12 10 9 

13 10 10 

14 11 10 

15 12 11 

16 12 12 

17 13 12 

18 13 13 

19 14 13 

20 15 14 

21 15 14 

22 16 15 

23 17 16 

24 18 16 

25 18 17 

Table 10: Significant values for decision on two-tailed 

sign test. 

 

Algorithm NSGA-II MOPSO MODE-RDC 

PG1 (MW) 103.927 104.4705 100.8991 

PG2 (MW) 37.512 37.7012 41.8153 

PG3 (MW) 18.996 19.3131 19.4211 

PG4 (MW) 18.718 16.8090 14.9330 

PG5 (MW) 13.021 12.7445 14.9143 

PG6 (MW) 12.000 12.9950 12.0000 

Time (sec) 90.8698 1.5908 8.0285 

PL (MW) 4.1740 4.0333 3.9828 

Fuel Cost 

($/hour) 

524.966 523.9469 523.7250 

Emission 

(lb/hour) 

244.007 244.0324 244.9227 

Table 11: Results of EED of IEEE 30 bus system for a 

load demand of 200 MW. 

Algorithm NSGA-II MOPSO MODE-

RDC 

Generation 

Distance 

(GD) 

Minimum 0.018414 0.0457 0.013645 

Maximum 0.088774 0.0457 0.094384 

Average 0.034309 0.0457 0.032455 

Standard 

Deviation 

0.015609 0.0000 0.009311 

Spacing 

(S) 

Minimum 0.159507 0.2623 0.156047 

Maximum 0.870246 0.2623 0.807493 

Average 0.304470 0.2623 0.255573 

Standard 

Deviation 

0.157360 0.0000 0.099082 

Diversity 

(Δ) 

Minimum 0.975386 0.5672 0.547595 

Maximum 1.575610 0.5672 0.853479 

Average 1.223858 0.5672 0.558198 

Standard 

Deviation 

0.173773 0.0000 0.052061 

Table 12: Performance of algorithms for IEEE 30 bus 

system at load demand of 200 MW. 

Algorithm NSGA-II MOPSO MODE-

RDC 

PG1 (MW) 132.672 134.7225 111.077 

PG2 (MW) 53.443 50.2415 51.679 

PG3 (MW) 27.719 27.0213 31.856 

PG4 (MW) 29.870 31.4431 33.083 

PG5 (MW) 25.102 23.0641 30.000 

PG6 (MW) 21.916 24.2446 31.969 

Time (sec) 94.5415 2.0302 8.003 

PL (MW) 7.32 7.3371 6.264 

Fuel Cost 

($/hour) 
821.269 820.1034 822.0048 

Emission 

(lb/hour) 
380.213 380.7899 379.5462 

Table 13: Results of EED of IEEE 30 bus system for a 

load demand of 283.4 MW. 
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schedule for an acceptable emission level is achieved, 

and is presented in Table 11. 

The quality of solutions is assessed by evaluating all 

the three performance metrics, and is presented in Table 

12. The cost of fuel obtained by employing the proposed 

algorithm is lower, and the corresponding schedule 

causes lower transmission loss. It surpasses the 

performance of NSGA-II in terms of computational time. 

The lower average values of all the three performance 

matrices imply superior performance of the proposed 

algorithm over other two. 

6.2.2 IEEE-30 bus system: load demand 283.4 

MW 

The test case is subjected to the rated load of 283.4 MW, 

and performance of the algorithms is assessed. The 

Pareto fronts obtained for this demand are presented in 

Figure 6. 

The Pareto curve corresponding to the proposed 

algorithm covers a wide area of the search space. The 

generation schedules obtained by applying the algorithms 

are shown in Table 13. The proposed algorithm yields 

lower values of fuel cost and emission. The transmission 

losses involved with this schedule is less than the other 

two algorithms. The quality of solutions is assessed by 

running the algorithms for 25 times; statistical values of 

the performance metrics thus obtained are presented in 

Table 14. The average diversity of the solutions using the 

proposed algorithm is less than that of the other two 

algorithms. It also requires less computational time as 

compared to the NSGA-II. 

6.2.3 IEEE-30 bus system: load demand 350 

MW 

The test case is further subjected to a higher load of 350 

MW, and performance of the algorithms is assessed. The 

Pareto optimal fronts are shown in Figure 7. The 

generating schedule for the system obtained for this 

demand is presented in Table 15. 

The statistical behavior of the performance metrics 

obtained for the solutions are shown in Table 16. It is 

observed that the proposed algorithm performs better 

than NSGA-II in terms of diversity of solutions, 

computational time, fuel cost and emission values. 

 

Figure 6: Solution of IEEE 30 bus system for load 

demand of 283.4 MW. 

Algorithm NSGA-II MOPSO MODE-

RDC 

Generation 

Distance 

(GD) 

Minimum 0.054373 0.1407 0.021384 

Maximum 0.116501 0.1407 0.233931 

Average 0.077291 0.1407 0.065103 

Standard 

Deviation 

0.017481 0.0000 0.029863 

Spacing 

(S) 

Minimum 0.383454 0.9516 0.339348 

Maximum 1.026579 0.9516 2.075391 

Average 0.621816 0.9516 0.621204 

Standard 

Deviation 

0.189580 0.0000 0.360044 

Diversity 

(Δ) 

Minimum 0.603026 0.6719 0.563586 

Maximum 1.229024 0.6719 0.767057 

Average 0.968746 0.6719 0.670803 

Standard 

Deviation 

0.163341 0.0000 0.066364 

Table 14: Performance of algorithms for IEEE 30 

bus system at load demand of 283.4 MW. 

Algorithm NSGA-II MOPSO MODE-RDC 

PG1 (MW) 159.003 163.500 162.974 

PG2 (MW) 68.918 66.800 65.864 

PG3 (MW) 46.060 32.600 36.256 

PG4 (MW) 25.070 35.000 33.083 

PG5 (MW) 30.000 30.000 27.768 

PG6 (MW) 31.711 33.300 33.351 

Time (sec) 89.7484 3.3319 8.03545 

PL (MW) 10.762 11.200 10.970 

Fuel Cost 

($/hour) 

1111.24 1082.10 1081.3329 

Emission 

(lb/hour) 

540.295 

 

539.90 539.1846 

Table 15: Results of EED of IEEE 30 bus system for 

load demand of 350 MW. 

Algorithm NSGA-

II 

MOPSO MODE-

RDC 

Generation 

Distance 

(GD) 

Minimum 0.064384 0.1329 0.056721 

Maximum 0.162268 0.1329 0.391057 

Average 0.094781 0.1329 0.093724 

Standard 

deviation 

0.025093 0.0000 0.056003 

Spacing 

(S) 

Minimum 0.474948 0.7443 0.403432 

Maximum 1.483643 0.7443 3.664206 

Average 0.789943 0.7443 0.741615 

Standard 

Deviation 

0.255086 0.0000 0.609410 

Diversity 

(Δ) 

Minimum 0.807397 0.5516 0.509509 

Maximum 1.353364 0.5516 0.958338 

Average 1.095059 0.5516 0.531211 

Standard 

deviation 

0.136457 0.0000 0.069968 

Table 16: Performance of algorithms for IEEE 30 bus 

system at load demand of 350 MW. 

Load 

(MW) 

Algorithm MODE-

RDC 

Wins 

MODE-

RDC 

Losses 

Detected 

differences 

200 NSGA-II 14 11 - 

MOPSO 13 12 - 

283.4 NSGA-II 13 12 - 

MOPSO 15 10 - 

350 NSGA-II 13 12 - 

MOPSO 13 12 - 

Table 17: Result of sign test on MODE-RDC algorithm 

on IEEE 30 bus system with GD metric as winning 

parameter. 
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6.2.4 IEEE-30 bus system: summary of results 

The summary of results for this test case with the three 

load demands by applying all the three algorithms is 

presented in Tables 11, 13 and 15. It shows that the fuel 

cost obtained using the proposed algorithm provides 

improved performance as compared to other two 

algorithms. The transmission loss involved with the 

generation schedule thus arrived is also lower. The 

quality of solutions arrived using the algorithms is 

further estimated from pair wise sign test [21] on 25 runs 

of the algorithms. The results are presented in Tables 17, 

18 and 19. Based on the number of wins and losses it is 

observed from Tables 17, 18 and 19 that the solutions 

obtained by applying the proposed algorithm yield lower 

average values in terms of all the three performance 

metrics. So, these solutions can be considered to be better 

than those from the other two algorithms. Also, the 

proposed MODE-RDC algorithm does not perform very 

well in terms of GD and S metric as in case of IEEE 30 

bus system for load demand of 350 MW as depicted in 

Tables 17 and 18. This is clear in these tables as it does 

not have a significant detected difference that needs at 

least 17 wins out of 25 runs. This is due to the reduction 

in the number of non-dominated solutions in the 

successive iterations in the proposed algorithm. 

Here, it can be pointed out that in most cases the 

average value of S metric has increased with rise in load 

demand for all the three algorithms this can be verified 

from Tables 2, 4 and 6 for test case I and Tables 12, 14 

and 16 for test case II. This is due to the fact that when 

the load demand on the system rises, the size of the 

feasible space decreases due to the generator limits. The 

situation is further limited by the power balance 

constraint as the transmission losses increase with 

increase in power generation. Thus, the feasible solutions 

fall apart causing increase in the spacing parameter. 

7 Conclusion 
A set of three multi-objective optimization algorithms 

have been applied to solve the EED problem for two test 

cases on three different load demands. The performance 

of the proposed MODE-RDC algorithm along with other 

two is assessed by considering three different 

performance metrics. The performances of these 

algorithms have been critically analyzed. The Pareto 

optimal fronts obtained by all the three algorithms 

incorporating the proposed recursive distributed 

constraint handling technique have sufficient diversity by 

exploiting the entire available range of search space. In 

particular, the Pareto front obtained by the multi-

objective differential evolution with the recursive 

distributed constraint handling (MODE-RDC) approach 

has a better diversity in most cases. The spacing between 

the Pareto solutions has found to be increased with rise in 

the load demand on the system for all the three 

 

Figure 1: Solution of IEEE 30 bus system for load 

demand of 350 MW. 

Load 

(MW) 

Algorithm MODE-

RDC 

Wins 

MODE-

RDC 

Losses 

Detected 

differences 

200 NSGA-II 16 9 - 

MOPSO 13 12 - 

283.4 NSGA-II 14 11 - 

MOPSO 16 9 - 

350 NSGA-II 13 12 - 

MOPSO 13 12 - 

Table 18: Result of sign test on MODE-RDC algorithm 

for IEEE 30 bus system with S metric as winning 

parameter. 

Load 

(MW) 

Algorithm MODE-

RDC 

Wins 

MODE-

RDC 

Losses 

Detected 

differences 

200 NSGA-II 15 10 0.05 

MOPSO 13 12 - 

283.4 NSGA-II 14 11 0.05 

MOPSO 13 12 - 

350 NSGA-II 23 2 0.05 

MOPSO 12 13 - 

Table 19: Result of sign test on MODE-RDC 

algorithm for IEEE 30 bus system with Δ metric as 

winning parameter. 

Gen no 1 2 3 4 5 

Max MW 250 140 100 120 45 

Min MW 10 20 15 10 10 

γ 0.0126 0.02 0.027 0.0291 0.029 

β -0.9 -0.1 -0.01 -0.005 -0.004 

α 22.983 25.313 25.505 24.9 24.7 

a 0.00375 0.0175 0.0625 0.00834 0.025 

b 2.0 1.75 1.0 3.25 3.0 

c 0 0 0 0 0 

Table 20: IEEE 14 bus system cost and emission 

coefficients. 

Gen 

no 

1 2 3 4 5 6 

Max 

MW 

200 80 50 35 30 40 

Min 

MW 

50 20 15 10 10 12 

γ 0.0126 0.02 0.027 0.0291 0.029 0.0271 

β -0.9 -0.1 -0.01 -0.005 -
0.0004 

-
0.0055 

α 22.983 25.313 25.505 24.9 24.7 25.3 

a 0.00375 0.0175 0.0625 0.00834 0.025 0.025 

b 2.0 1.7 1.0 3.25 3.0 3.0 

c 0 0 0 0 0 0 

Table 21: IEEE 30 bus system cost and emission 

coefficients. 
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algorithms. Moreover, the time requirement to achieve 

the Pareto front by applying the proposed recursive 

distributed constraint handling based technique is 

satisfactory.  

Further research on this topic may include the 

inclusion of different evolutionary local search 

mechanisms into the approaches. It is expected to obtain 

lower computational speed and exploitation of the multi-

dimensional search space. There is a need for further 

investigation to explore the strengths and weaknesses of 

the proposed algorithm, so that it can be applied to other 

multi-objective problems in power systems, such as 

management of voltage profiles, reactive power 

compensation etc. The performance of the proposed 

algorithm can also be investigated by considering other 

real world constraints like ramp rate limits, power loss 

etc. 

Appendix 

The standard test cases taken for the solution are IEEE 

14 bus and IEEE 30 bus power systems. The parameters 

of the test cases have been adopted from standard 

sources. The cost and emission coefficients used for 

solution of the problem are shown in tables 20 and 21 

below. 

The values of B coefficients used for the IEEE 14 

bus test case are 

B= 

[
 
 
 
 

0.0208  0.0090 -0.0021  0.0024  0.0006

0.0090  0.0168 -0.0028  0.0035  0.0000

-0.0021 -0.0028  0.0207 -0.0152 -0.0179

0.0024  0.0035 -0.0152  0.0763 -0.0103

0.0006  0.0000 -0.0179 -0.0103  0.0476 ]
 
 
 
 

 

B0= [-0.0001  0.0023 -0.0012  0.0027  0.0011] 

B00=3.1826×10-4 

The values of B coefficients used for the IEEE 30 bus 

test case are 

B=

[
 
 
 
 
 
0.0218  0.0103  0.0010 -0.0025  0.0007  0.0033

0.0103  0.0233  0.0001 -0.0043  0.0009  0.0032

0.0010  0.0001  0.0525 -0.0380 -0.0111 -0.0066

-0.0025-0.0043 -0.0380 -0.1011  0.0132  0.0045

0.0007  0.0009 -0.0111  0.0132  0.0163 -0.0001

0.0033  0.0032 -0.0066  0.0045 -0.0001  0.0270]
 
 
 
 
 

 

B0=[-0.0002 0.0029 -0.0033 0.0035 0.00016 0.0048] 
B00=0.0025 
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