
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 16 (2019) 349–358
https://doi.org/10.26493/1855-3974.1485.0b1

(Also available at http://amc-journal.eu)

Decomposition method related to saturated
hyperball packings
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Abstract

In this paper we study the problem of hyperball (hypersphere) packings in 3-dimen-
sional hyperbolic space. We introduce a new definition of the non-compact saturated ball
packings with generalized balls (horoballs, hyperballs) and describe to each saturated hy-
perball packing, a new procedure to get a decomposition of 3-dimensional hyperbolic space
H3 into truncated tetrahedra. Therefore, in order to get a density upper bound for hyper-
ball packings, it is sufficient to determine the density upper bound of hyperball packings in
truncated simplices.

Keywords: Hyperbolic geometry, hyperball packings, Dirichlet-Voronoi cell, packing density, Coxeter
tilings.
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1 Introduction
In n-dimensional hyperbolic space Hn (n ≥ 2) there are 3 kinds of generalized “balls”
(spheres): the usual balls (spheres), horoballs (horospheres) and hyperballs (hyperspheres).

The classical problems of ball packings and coverings with congruent generalized balls
of hyperbolic spaces Hn are extensively discussed in the literature, however there are sev-
eral essential open questions e.g.:

1. What are the optimal ball packing and covering configurations of usual spheres and
what are their densities (n ≥ 3) (see [1, 5, 7, 12])?

2. The monotonicity of the density related to the Böröczky type ball configurations
depending on the radius of the congruent balls (n ≥ 4) (see [4, 10]).
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3. What are the optimal horoball packing and covering configurations and what are their
densities allowing horoballs in different types (n ≥ 4) (see [3, 8, 9])?

4. What are the optimal packing and covering arrangements using non-compact balls
(horoballs and hyperballs) and what are their densities? These are the so-called hyp-
hor packings and coverings (see [21]).

5. What are the optimal hyperball packing and covering configurations and what are
their densities (n ≥ 3)?

In this paper we study the 5th question related to saturated, congruent hyperball packings
in 3-dimensional hyperbolic space H3.

In the hyperbolic plane H2 the universal upper bound of the hypercycle packing density
is 3
π , proved by I. Vermes in [24] and the universal lower bound of the hypercycle covering

density is
√
12
π determined by I. Vermes in [25].

In [15] and [16] we studied the regular prism tilings (simply truncated Coxeter or-
thoscheme tilings) and the corresponding optimal hyperball packings in Hn (n = 3, 4) and
we extended the method developed in the former paper [20] to 5-dimensional hyperbolic
space. Moreover, their metric data and their densities have been determined. In paper
[19] we studied the n-dimensional hyperbolic regular prism honeycombs and the corre-
sponding coverings by congruent hyperballs and we determined their least dense covering
densities. Furthermore, we formulated conjectures for the candidates of the least dense
hyperball covering by congruent hyperballs in the 3- and 5-dimensional hyperbolic space
(n ∈ N, 3 ≤ n ≤ 5).

In [22] we discussed congruent and non-congruent hyperball (hypersphere) packings
of the truncated regular tetrahedron tilings. These are derived from the Coxeter simplex
tilings {p, 3, 3} (7 ≤ p ∈ N) and {5, 3, 3, 3, 3} in 3- and 5-dimensional hyperbolic space.
We determined the densest hyperball packing arrangement and its density with congru-
ent hyperballs in H5 and determined the smallest density upper bounds of non-congruent
hyperball packings generated by the above tilings in Hn (n = 3, 5).

In [21] we deal with packings derived by horo- and hyperballs (briefly hyp-hor pack-
ings) in n-dimensional hyperbolic spaces Hn (n = 2, 3) which form a new class of the
classical packing problems. We constructed in the 2- and 3-dimensional hyperbolic spaces
hyp-hor packings that are generated by complete Coxeter tilings of degree 1 i.e. the funda-
mental domains of these tilings are simple frustum orthoschemes and we determined their
densest packing configurations and their densities. We proved using also numerical ap-
proximation methods that in the hyperbolic plane (n = 2) the density of the above hyp-hor
packings arbitrarily approximate the universal upper bound of the hypercycle or horocy-
cle packing density 3

π and in H3 the optimal configuration belongs to the {7, 3, 6} Coxeter
tiling with density≈ 0.83267. Furthermore, we analyzed the hyp-hor packings in truncated
orthoschemes {p, 3, 6} (6 < p < 7, p ∈ R) whose density function is attained its maxi-
mum for a parameter which lies in the interval [6.05, 6.06] and the densities for parameters
lying in this interval are larger that ≈ 0.85397. That means that these locally optimal hyp-
hor configurations provide larger densities that the Böröczky-Florian density upper bound
(≈ 0.85328) for ball and horoball packings but these hyp-hor packing configurations can
not be extended to the entirety of hyperbolic space H3.

In [23] we studied a large class of hyperball packings in H3 that can be derived from
truncated tetrahedron tilings. In order to get a density upper bound for the above hyperball
packings, it is sufficient to determine this density upper bound locally, e.g. in truncated
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tetrahedra. Thus, we proved that if the truncated tetrahedron is regular, then the density
of the densest packing is ≈ 0.86338. This is larger than the Böröczky-Florian density
upper bound for balls and horoballs but our locally optimal hyperball packing configuration
cannot be extended to the entirety of H3. However, we described a hyperball packing
construction, by the regular truncated tetrahedron tiling under the extended Coxeter group
{3, 3, 7} with maximal density ≈ 0.82251.

Recently, (to the best of author’s knowledge) the candidates for the densest hyperball
(hypersphere) packings in the 3, 4 and 5-dimensional hyperbolic space Hn are derived by
the regular prism tilings that have been published in papers [15, 16] and [20].

In this paper we study hyperball (hypersphere) packings in 3-dimensional hyperbolic
space. We develope a decomposition algorithm that for each saturated hyperball packing
provides a decomposition of H3 into truncated tetrahedra. Therefore, in order to get a
density upper bound for hyperball packings, it is sufficient to determine the density upper
bound of hyperball packings in truncated simplices.

2 Projective model and saturated hyperball packings in H3

We use for H3 (and analogously for Hn, n ≥ 3) the projective model in the Lorentz space
E1,3 that denotes the real vector space V4 equipped with the bilinear form of signature
(1, 3),

〈x,y〉 = −x0y0 + x1y1 + x2y2 + x3y3,

where the non-zero vectors

x = (x0, x1, x2, x3) ∈ V4 and y = (y0, y1, y2, y3) ∈ V4,

are determined up to real factors, for representing points of Pn(R). Then H3 can be in-
terpreted as the interior of the quadric Q = {(x) ∈ P3 | 〈x,x〉 = 0} =: ∂H3 in the real
projective space P3(V4,V4) (here V4 is the dual space of V4). Namely, for an interior
point y holds 〈y,y〉 < 0.

Points of the boundary ∂H3 in P3 are called points at infinity, or at the absolute of H3.
Points lying outside ∂H3 are said to be outer points of H3 relative to Q. Let (x) ∈ P3, a
point (y) ∈ P3 is said to be conjugate to (x) relative toQ if 〈x,y〉 = 0 holds. The set of all
points which are conjugate to (x) form a projective (polar) hyperplane pol(x) := {(y) ∈
P3 | 〈x,y〉 = 0}. Thus, the quadric Q induces a bijection (linear polarity V4 → V4) from
the points of P3 onto their polar hyperplanes.

PointX(x) and hyperplane α(a) are incident if xa = 0 (x ∈ V4\{0}, a ∈ V4\{0}).
The hypersphere (or equidistance surface) is a quadratic surface at a constant distance

from a plane (base plane) in both halfspaces. The infinite body of the hypersphere, con-
taining the base plane, is called hyperball.

The half hyperball with distance h to a base plane β is denoted by Hh+. The volume
of a bounded hyperball piece Hh+(A), delimited by a 2-polygon A ⊂ β, and its prism
orthogonal to β, can be determined by the classical formula (2.1) of J. Bolyai [2].

Vol(Hh+(A)) =
1

4
Area(A)

[
k sinh

2h

k
+ 2h

]
(2.1)

The constant k =
√
−1
K is the natural length unit in H3, where K denotes the constant

negative sectional curvature. In the following we may assume that k = 1.
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Let Bh be a hyperball packing in H3 with congruent hyperballs of height h.
The notion of saturated packing follows from that fact that the density of any packing

can be improved by adding further packing elements as long as there is sufficient room to
do so. However, we usually apply this notion for packings with congruent elements. Now,

A0

A

1
P

1

P
0

T

(a)

A0

A
1

P1

P
0

(b)

Figure 1: (a) Saturated hyp-hor packing, at present a = 0.7. (b) Saturated horocycle
packing with parameter a = 1√

2
.

we modify the classical definition of saturated packing for non-compact ball packings with
generalized balls (horoballs, hyperballs) in n-dimensional hyperbolic space Hn (n ≥ 2
integer parameter):

Definition 2.1. A ball packing with non-compact balls (horoballs or/and hyperballs) in Hn
is saturated if no new non-compact ball can be added to it.

We illustrate the meaning of the above definition by 2-dimensional Coxeter tilings given
by the Coxeter symbol [∞] (see Figure 1), which are denoted by Ta. The fundamental
domain of Ta is a Lambert quadrilateral A0A1P0P1 (see [21]) that is denoted by Fa. It
is derived by the truncation of the orthoscheme A0A1A2 by the polar line π of the outer
vertex A2. The other initial principal vertex A0 of the orthoscheme is lying on the absolute
quadric of the Beltrami-Cayley-Klein model.

The images of Fa under reflections on its sides fill the hyperbolic plane H2 without
overlap. The tilings Ta contain a free parameter 0 < a < 1, a ∈ R. The polar straight
line of A2 is π and π ∩ A0A2 = P0, π ∩ A1A2 = P1. If we fix the parameter a then a
optimal hypercycle tiling can be derived from the mentioned Coxeter tiling (see Figure 1(a))
but here there are sufficient rooms to add horocycles with centre A0 and with centres at
the images of A0. This saturated hyp-hor packing (packing with horo- and hyperballs) is
illustrated in Figure 1(a). The Figure 1(b) shows a saturated horocycle packing belonging
to the same Coxeter tiling.

To obtain hyperball (hypersphere) packing bounds it obviously suffices to study satu-
rated hyperball packings (using the above definition) and in what follows we assume that
all packings are saturated unless otherwise stated.
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3 Decomposition into truncated tetrahedra
We take the set of hyperballs {Hhi } of a saturated hyperball packingBh (see Definition 2.1).
Their base planes are denoted by βi. Thus, in a saturated hyperball packing the distance
between two ultraparallel base planes d(βi, βj) is at least 2h (where for the natural indices
holds i < j and d is the hyperbolic distance function).

In this section we describe a procedure to get a decomposition of 3-dimensional hy-
perbolic space H3 into truncated tetrahedra corresponding to a given saturated hyperball
packing.

Step 1. The notion of the radical plane (or power plane) of two Euclidean spheres can be
extended to the hyperspheres. The radical plane (or power plane) of two non-intersecting
hyperspheres is the locus of points at which tangents drawn to both hyperspheres have the
same length (so these points have equal power with respect to the two non-intersecting hy-
perspheres). If the two non-intersecting hyperspheres are congruent also in Euclidean sense
in the model then their radical plane coincides with their “Euclidean symmetry plane” and
any two congruent hypersphere can be transformed into such an hypersphere arrangement.

Using the radical planes of the hyperballs Hhi , similarly to the Euclidean space, can be
constructed the unique Dirichlet-Voronoi (in short D-V) decomposition of H3 to the given
hyperball packing Bh. Now, the D-V cells are infinite hyperbolic polyhedra containing the
corresponding hyperball, and its vertices are proper points of H3. We note here (it is easy
to see), that a vertex of any D-V cell cannot be outer or boundary point of H3 relative to Q,
because the hyperball packing Bh is saturated by the Definition 2.1.

Step 2. We consider an arbitrary proper vertex P ∈ H3 of the above D-V decomposition
and the hyperballs Hhi (P ) whose D-V cells meet at P . The base planes of the hyper-
ballsHhi (P ) are denoted by βi(P ), and these planes determine a non-compact polyhedron
Di(P ) with the intersection of their halfspaces containing the vertex P . Moreover, denote
A1, A2, A3, . . . the outer vertices of Di(P ) and cut off Di(P ) with the polar planes αj(P )
of its outer vertices Aj . Thus, we obtain a convex compact polyhedron D(P ). This is
bounded by the base planes βi(P ) and “polar planes” αj(P ). Applying this procedure for
all vertices of the above Dirichlet-Voronoi decomposition, we obtain an other decomposi-
tion of H3 into convex polyhedra.

Step 3. We consider D(P ) as a tile of the above decomposition. The planes from the finite
set of base planes {βi(P )} are called adjacent if there is a vertex As of Di(P ) that lies on
each of the above plane. We consider non-adjacent planes βk1(P ), βk2(P ), βk3(P ), . . . ,
βkm(P ) ∈ {βi(P )} (kl ∈ N+, l = 1, 2, 3, . . . ,m) that have an outer point of intersection
denoted by Ak1···km . Let ND(P ) ∈ N denote the finite number of the outer points Ak1···km
related to D(P ). It is clear, that its minimum is 0 if Di(P ) is tetrahedron. The polar plane
αk1···km of Ak1···km is orthogonal to planes βk1(P ), βk2(P ), . . . , βkm(P ) (thus, it con-
tains their poles Bk1 , Bk2 , . . . , Bkm ) and divides D(P ) into two convex polyhedra D1(P )
and D2(P ).

Step 4. If ND1(P ) 6= 0 and ND2(P ) 6= 0 then ND1(P ) < ND(P ) and ND2(P ) < ND(P )

then we apply the Step 3 for polyhedra Di(P ), i ∈ {1, 2}.

Step 5. If NDi(P ) 6= 0 or NDj(P ) = 0 (i 6= j, i, j ∈ {1, 2}) then we consider the
polyhedron Di(P ) where NDi(P ) = ND(P ) − 1 because the vertex Ak1···km is left out and
apply the Step 3.



354 Ars Math. Contemp. 16 (2019) 349–358

Step 6. If ND1(P ) = 0 and ND2(P ) = 0 then the procedure is over for D(P ). We continue
the procedure with the next cell.

Step 7. It is clear, that the above plane αk1···km intersects every hyperball Hhj (P )
(j = k1, . . . , km).

Lemma 3.1. The plane αk1···km ofAk1···km does not intersect the hyperballsHhs (P ) where
Ak1···km /∈ βs(P ).

Proof. Let Hhs (P ) (Ak1···km /∈ βs(P )) be an arbitrary hyperball corresponding to D(P )
with base plane βs(P ) whose pole is denoted by Bs. The common perpendicular σ of
the planes αk1···km and βs(P ) is the line through the point Ak1···km and Bs. We take
a plane κ containing the above common perpendicular, and its intersections with αk1···km
andHhs (P ) are denoted by φ and η. We obtain the plane arrangement illustrated in Figure 2
which coincides with the configuration that is investigated in [24]. There I. Vermes noticed
that the straight line φ = αk1···km ∩ κ does not intersect the hypercycle η = Hhs (P ) ∩ κ.
The plane αk1···km and the hyperballHhs (P ) can be generated by rotation of φ and η about
the common perpendicular σ; therefore, they are disjoint.

Bs
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k= f
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s

km....k
1

km....k
1

Figure 2: The plane κ and its intersections with D(P ) andHhs (P ).

Step 8. We have seen in Steps 3, 4, 5 and 6 that the number of the outer vertices Ak1···km
of any polyhedron obtained after the cutting process is less than the original one, and we
have proven in Step 7 that the original hyperballs form packings in the new polyhedra
D1(P ) andD2(P ), as well. We continue the cutting procedure described in Step 3 for both
polyhedra D1(P ) and D2(P ). If a derived polyhedron is a truncated tetrahedron then the
cutting procedure does not give new polyhedra, thus the procedure will not be continued.
Finally, after a finite number of cuttings we get a decomposition of D(P ) into truncated
tetrahedra, and in any truncated tetrahedron the corresponding congruent hyperballs from
{Hhi } form a packing. Moreover, we apply the above method for the further cells.
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Finally we get the following:

Theorem 3.2. The above described algorithm provides for each congruent saturated hy-
perball packing a decomposition of H3 into truncated tetrahedra. �

The above procedure is illustrated for regular octahedron tilings derived by the reg-
ular prism tilings with Coxeter-Schläfli symbol {p, 3, 4}, 6 < p ∈ N. These Coxeter
tilings and the corresponding hyperball packings are investigated in [15]. In this situation
the convex polyhedron D(P ) is a truncated octahedron (see Figure 3) whose vertices Bi
(i = 1, 2, 3, 4, 5, 6) are outer points and the octahedron is cut off with their polar planes βi.
These planes are the base planes of the hyperballs Hhi . We can assume that the centre of
the octahedron coincides with the centre of the model.

First, we choose three non-adjacent base planes β2, β3, β4. Their common point, de-
noted by A234 and its polar plane α234 are determined by points B2, B3, B4 containing the
centre P as well. Then we consider the non-adjacent base planes β2, β4, β5 and the polar
plane α245 of their common point A245. It is clear that the points B2, B4, B5 lie in the
plane α245 (see Figure 3).

By the above two “cuttings” we get the decomposition of D(P ) into truncated sim-
plices.
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Figure 3: Truncated octahedron tiling derived from the regular prism tilings with Coxeter-
Schläfli symbol {p, 3, 4} and its decomposition into truncated tetrahedra.

Remark 3.3.

1. If we try to define the density of system of sets in hyperbolic space as we did in
Euclidean space, i.e. by the limiting value of the density with respect to a sphere
C(r) of radius r with a fixed centre O. But since for a fixed value of h the volume
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of spherical shell C(r + h) − C(r) is the same order of magnitude as the volume
of C(r), the argument used in Euclidean space to prove that the limiting value is
independent of the choice of O is does not work in hyperbolic space. Therefore
the definition of packing density is crucial in hyperbolic spaces Hn as shown by
K. Böröczky [3], for nice examples also see [6, 14]. The most widely accepted no-
tion of packing density considers the local densities of balls with respect to their
Dirichlet-Voronoi cells (cf. [3] and [7]), but in our cases these cells are infinite hy-
perbolic polyhedra. The other possibility: the packing density δ can be defined
(see [15, 20, 24, 25]) as the reciprocal of the ratio of the volume of a fundamen-
tal domain for the symmetry group of a tiling to the volume of the ball pieces con-
tained in the fundamental domain (δ < 1). Similarly is defined the covering density
∆ > 1. In order to determine an upper bound for the density of congruent hyper-
ball packings in Hn we used an extended notion of such local density. Therefore, we
had to construct a decomposition of Hn into compact cells to define local density to a
given hyperball packing and these corresponding cells are (not absolutely congruent)
truncated tetrahedra (see the above algorithm and [23]).

2. From the above section it follows that, to each saturated hyperball packing Bh of
hyperballsHhi there is a decomposition of H3 into truncated tetrahedra. Therefore, in
order to get a density upper bound for hyperball packings, it is sufficient to determine
the density upper bound of hyperball packings in truncated simplices. We observed
in [23] that some extremal properties of hyperball packings naturally belong to the
regular truncated tetrahedron (or simplex, in general, see Lemma 3.2 and Lemma 3.3
in [23]). Therefore, we studied hyperball packings in regular truncated tetrahedra,
and prove that if the truncated tetrahedron is regular, then the density of the densest
packing is ≈ 0.86338 (see Theorem 5.1 in [23]). However, these hyperball packing
configurations are only locally optimal, and cannot be extended to the whole space
H3. Moreover, we showed that the densest known hyperball packing, dually related
to the regular prism tilings, introduced in [15], can be realized by a regular truncated
tetrahedron tiling with density ≈ 0.82251.

3. In [22] we discussed the problem of congruent and non-congruent hyperball (hyper-
sphere) packings to each truncated regular tetrahedron tiling. These are derived from
the Coxeter simplex tilings {p, 3, 3} and {5, 3, 3, 3, 3} in the 3- and 5-dimensional
hyperbolic space. We determined the densest hyperball packing arrangement and its
density with congruent hyperballs in H5 (≈ 0.50514) and determined the smallest
density upper bounds of non-congruent hyperball packings generated by the above
tilings: in H3 (≈ 0.82251); in H5 (≈ 0.50514).

The question of finding the densest hyperball packings and horoball packings with
horoballs of different types in the n-dimensional hyperbolic spaces n ≥ 3 has not been
settled yet either (see e.g. [8, 9, 13, 23]).

Optimal sphere packings in other homogeneous Thurston geometries represent another
huge class of open mathematical problems. For these non-Euclidean geometries only very
few results are known (e.g. [17, 18]). Detailed studies are the objective of ongoing research.
The applications of the above projective method seem to be interesting in (non-Euclidean)
crystallography as well, a topic of much current interest.
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