
*Corr. Author’s Address: Singapore University of Technology and Design, Engineering Product Development Pillar, 487372 Singapore, neuqinyan@163.com 385

Strojniški vestnik - Journal of Mechanical Engineering 66(2020)6, 385-394 Received for review: 2020-01-05
© 2020 Journal of Mechanical Engineering. All rights reserved.  Received revised form: 2020-04-28
DOI:10.5545/sv-jme.2020.6546 Original Scientific Paper Accepted for publication: 2020-05-18

A Transient Feature Learning-Based Intelligent Fault Diagnosis 
Method for Planetary Gearboxes

Bo Qin, B. – Li, Z.X. –Qin, Y.
Bo Qin1 – Zixian Li1 –Yan Qin2,*

1 Inner Mongolia University of Science & Technology, School of Mechanical Engineering, China 
2 Singapore University of Technology and Design, Engineering Product Development Pillar, Singapore

Sensitive and accurate fault features from the vibration signals of planetary gearboxes are essential for fault diagnosis, in which extreme 
learning machine (ELM) techniques have been widely adopted. To increase the sensitivity of extracted features fed in ELM, a novel feature 
extraction method is put forward, which takes advantage of the transient dynamics and the reconstructed high-dimensional data from the 
original vibration signal. First, based on fast kurtosis analysis, the range of transient dynamics of a vibration signal is located. Next, with the 
extracted kurtosis information, with variational mode decomposition, a series of intrinsic mode functions are decomposed; the ones that 
fall into the obtained ranges are selected as transient features, corresponding to maximum kurtosis value. Fed by the transient features, a 
hierarchical ELM model is well-trained for fault classification. Furthermore, a denoising auto-encoder is used to optimize input weight and 
threshold of implicit learning node of ELM, satisfying orthogonal condition to realize the layering of its hidden layers. Finally, a numerical 
case and an experiment are conducted to verify the performance of the proposed method. In comparison with its counterparts, the proposed 
method has a better classification accuracy in the aiding of transient features.
Keywords: transient features, kurtosis information, extreme learning machine, variational mode decomposition, fault diagnosis for 
planetary gearbox

Highlights
•	 VMD decomposition is employed to decompose signal into components.
•	 Kurtosis information is used to identify transient features in decomposed components.
•	 A high-dimensional feature vector is constructed using multiscale permutation entropy.
•	 A traditional extreme learning machine is optimized by introduction of a denoising auto-encoder.
•	 Comprehensive comparisons are given to show the efficacy of the proposed method, including both a numerical case and a 

practical planetary gearbox platform.

0  INTRODUCTION

With the advantages of compact structure, high 
transmission efficiency, and strong carrying capacity, 
the planetary gearbox has been widely adopted 
in transmission system powered devices, such as 
crawler vehicles, ships, and wind-driven generators 
[1]. Practically, the transmission system always 
works in adverse environments but suffers from 
continuously varying load. As a crucial component 
in a transmission system, the planetary gear is more 
prone to failure in poor working conditions. If faults 
in the planetary gear cannot be timely detected, it is 
possible that the whole transmission system may be 
disturbed and degenerated, leading to major safety 
threats. Therefore, providing prompt and reliable fault 
diagnosis ability for planetary gearboxes has received 
extensive attention and been an active research field.

With ever-increasing developments in sensor and 
data storage technologies in industrial fields [2] and 
[3], massive amounts of data have become available 
and affordable. For the planetary gearbox, vibration 
sensors have been widely installed, and the collected 

data contain important features to indicate their health 
state. Data-driven methods show their superiorities in 
fault diagnosis in comparison with mechanism model-
based methods, in which a priori process knowledge 
is necessary but difficult to obtain. Commonly, it 
includes two sequential steps to develop data-driven 
fault diagnosis model: fault feature extraction and 
development of diagnosis model. Correspondingly, a 
series of related research studies are reviewed from 
these two aspects.

With respect to feature extraction, wavelet 
transformation [4] has been used in early stages; 
however, it faces the difficulty of selection proper basis 
functions. Also, once a basis function is determined, it 
cannot be adjusted in sequential analysis, leading to 
a non-optimal solution. After that, empirical mode 
decomposition (EMD) [5] and [6] was proposed; it 
decomposed the original measurements into several 
orthogonal components called intrinsic mode function 
(IMF). Each IMF corresponds to a specific frequency 
and is independent with each other. To overcome the 
problem of mode confusion, ensemble EMD (EEMD) 
[7] was proposed by adding Gaussian white noise into 
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the decomposed signal to improve the distribution 
of extreme value. For instance, Zhang et al. [8] used 
EEMD to decompose transmission error signal into 
several IMFs to extract high-quality fault features 
with less noise. The experimental results showed 
that spallation fault and crack fault of gears could be 
identified. Lv et al. [9] used EEMD decomposition and 
reconstructed the signal according to the calculated 
correlation coefficient and kurtosis to achieve the 
purpose of extracting weak features of early faults in 
rotating machinery. Pang et al. [10] used EEMD to a 
certain extent to suppress the interference of signal 
noise, and it has been experimentally proven that 
the EEMD denoising method fully retains the fault 
feature information and effectively improves the fault 
detection rate of the compound gear train gearbox. 

Furthermore, variants of EEMD have been 
reported, such as complementary EEMD [11], 
complete EEMD [12]. However, tuneable parameters, 
including the amplitude of added noise, the number 
of screening, exert unneglectable influences on 
the performance of EEMD. These parameters are 
manually given in current research studies, resulting 
in inaccurate results of EEMD. 

To solve the above-mentioned problems, 
variational mode decomposition (VMD) [13] was 
proposed. Specifically, each IMF component of centre 
frequency and bandwidth are continuously updated 
iteratively to search for the optimal solution of the 
constrained variational model, achieving adaptive 
subdivision of signal frequency band.

Followed with feature extraction, development of 
reliable and accurate fault diagnosis model occurred. 
Taking advantages of the abundance of data, artificial 
intelligence (AI) technology has been developed and 
widely applied to improve fault identification ability. 
Among various AI methods, deep belief network 
(DBN) [14], convolution neural network (CNN) [15], 
and automation encoder (AE) [16] have been widely 
studied. Although DBN gets rid of the dependence 
on tedious signal pre-processing techniques, the 
application of DBN in fault diagnosis is seldom 
since it may fail to capture useful features. For CNN, 
its input data need to meet the requirement of two-
dimensional structural features. As a result, it is not 
suitable for the feature recognition of vibration signals 
[17]. Compared with DBN and CNN, AE was more 
suitable for feature classification since it only requires 
a small number of samples for training. Furthermore, 
with proper feature extraction, high fault diagnosis 
accuracy can be achieved for AE, demonstrating 
its strong feature extraction ability and robustness. 
Generally, the vibration signal of a planetary gearbox 

is complex and shows strong non-stationarity and 
modulation characteristics, resulting in the increase 
of difficulties for feature extraction. In fact, transient 
features in variation signal are sensitive to fault 
information. Correspondingly, if transient features in 
the vibration signal of the planetary gear box can be 
properly captured, it is possible to further improve 
fault diagnosis accuracy with advanced AI methods.

To achieve more accurate fault diagnosis 
performance, an intelligent fault diagnosis method is 
proposed for a planetary gearbox in this paper, which 
integrates advantages of fast spectral kurtosis, VMD, 
improved multiscale permutation entropy (MPE), and 
denoised AE (DAE) optimization. First, the vibration 
signal of planet gearbox is decomposed using fast 
kurtosis mapping and VMD decomposition. In this 
way, the centre frequency corresponding to several 
IMFs is captured to sensitive transient impact. Next, 
an extreme learning machine (ELM) method is used 
to construct an initial fault diagnosis model with 
extracted kurtosis features. After that, DAE is used to 
optimize the input weights and thresholds of the ELM 
hidden layer node to satisfy orthogonal conditions 
to realize the hierarchical hidden layer. In this way, 
the number of input and output samples is equal, 
improving the classification accuracy of the planetary 
gearbox fault diagnosis model with DAE-ELM. 
Experiments on real data show that the proposed 
method has higher diagnosis accuracy.

The rest of the paper is organized as follows. 
The preliminaries are briefly reviewed in Section 
1. Section 2 introduces the proposed method. The 
experimental results and discussions are given in 
Section 3. Conclusions are drawn in Section 4.

1  PRELIMINARY

1.1  Fast Spectral Kurtosis

Kurtosis information is sensitive to transient shock, 
which can be used to present the transient frequency 
of a signal in a planetary gearbox. Antoni et. al [18] 
proposed a fast-spectral kurtosis algorithm based on 
FIR bandpass filter, in which one third of the range 
of a full-band was used with a binary tree structure. 
Signal X(k) is decomposed into the pre-defined 
number of layers. After obtaining the filtering result of 
each layer, kurtosis values of all frequency segments 
are calculated below,
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where f is the frequency of the signal; c tm
i ( )  is the 

filtering result obtained by the ith filter of the mth layer; 
���  denotes modulus value; | |⋅  stands for expected 
value.

The defined K( f  ) is a measure of the peak value 
of the signal probability density function at a certain 
frequency. The interval between the centre frequency 
fc and the bandwidth Bw corresponding to the 
maximum kurtosis value Kmax of X(k) is calculated.

1.2  VMD Decomposition

To overcome modal aliasing and other drawbacks 
in both EMD and EEMD, VMD was proposed by 
Dragomiretskiy and Zosso [13]. It decomposes signal 
in a variational framework and uses iteration to find 
the optimal solution of the constrained variational 
model. A customized component f is constructed to 
derive IMF, and the corresponding constraint variation 
model is given below,
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where f is the original signal, uk(t) is the kth IMF 
component, ωk is the centre frequency of the kth 
component, δ(t) is the Dirac function, and t is time 
index.

By solving Eq. (2) iteratively with the alternating 
direction multiplier method, it is transformed into an 
unconstrained problem. Through the above process, K 
IMF components u = [u1, u2, …, uK] and corresponding 
frequency centre ω = [w1, w2, …, wK] are obtained.

2  METHODOLOGY

In this section, an intelligent method is proposed to 
perform fault feature extraction and online diagnosis 
for a planetary gearbox. The basic structure and 
framework of the proposed method are given in Fig. 1, 
which includes three parts. First, in the data acquisition 
stage, through the sensor and acquisition device, 
the state monitoring system is used to collect the 
historical data and online data of planetary gearbox. 
Then, during the feature extraction stage, historical 
data are used to obtain fault feature components and 
their corresponding feature vectors through VMD, 
fast spectral kurtosis analysis, and an improved 
feature enhancement method based on a multiscale 
permutation entropy is used to filtrate feature vector 

sets. After that, based on DAE-optimized ELM 
algorithm, an intelligent state identification model 
is constructed by learning the historical data feature 
vector sets. Similarly, high quality eigenvector sets 
are obtained from online data through VMD and 
fast spectral kurtosis analysis and improved MPE 
methods. The high-quality feature vector set of online 
data is further used to train the state identification 
model of DAE-ELM based on historical data, so as to 
improve the fault classification accuracy of this mode 
and achieve the purpose of online diagnosis.

Fig. 1.  Framework for the proposed method

2.1  Construction of Feature Set

2.1.1  Extraction of IMFs

Fig. 2 shows the details about the construction of 
the feature set. First, the vibration signal X(k) is 
decomposed by VMD to obtain n IMF components, 
and the centre frequency fi of each component is 
calculated. The vibration signal X(k) is analysed 
to obtain the centre frequency fc and bandwidth 
Bw corresponding to the maximum kurtosis value 
using FSK. Then, according to whether the centre 
frequency fi of the ith IMF component is within the 
frequency range [ fc – Bw /2,   fc + Bw /2], a part of the 
IMFs is selected from the total IMFs as the fault 



Strojniški vestnik - Journal of Mechanical Engineering 66(2020)6, 385-394

388 Bo Qin, B. – Li, Z.X. –Qin, Y.

feature components, which is defined as a set Q. 
The remaining IMF components will be discarded 
since they cover little fault information components. 
Finally, the IMF components in the set Q are added 
and reconstructed into a new time-domain waveform, 
and the IMPE value of each IMF component is 
calculated to construct the fault feature set T, which 
will be specified in the following subsections.

Fig. 2.  Signal decomposition and its feature vector construction

2.1.2  Improved Multiscale Permutation Entropy-based 
Feature Enhancement

Multiscale permutation entropy (MPE) algorithm 
[19] was designed to capture fine-grinded dynamics 
in various signals, including ECG signal, vibration 
and speech, etc. However, it still has the problem of 
learning the details of mutations. That is, first, the 
sample during coarse granulation is asymmetric. 
Second, for a specific time series X(i), as the scale 
s increases, the number of samples contained 
in the coarse-grained time series ys(j) decreases 
exponentially, resulting in large fluctuations in the 
calculation of entropy value. To solve the above-
mentioned problems, Azami and Escudero [20] used 
different scale factors s as independent variables 
to refine X(i) and calculate the average of the 

corresponding entropy values. The specific steps are 
as follows:
(1) Coarse granulation under multiscale conditions. 

X(i) is coarsely granulated into ys(j) and the result 
is given below,
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(2) ys(j) is further transformed into s different coarse-
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where X(i) is time series with the length N; s is 
time scale factor; and ys(j) presents the coarse-
grained sequence at different s, j=1, 2, …, [N/s].

(3) With independent variable s, calculate the 
arranged entropy of each coarse-grained sequence 
ys(j) and its average below,
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 where PE(•) is the function to calculate 
permutation entropy.

2.2  Intelligent Diagnosis Model Construction

ELM has the advantages of fast operation speed and is 
a global optimal solution. However, the input weight 
and threshold of hidden layer nodes are randomly 
generated, resulting in the low accuracy and poor 
robustness of ELM. To solve this problem, DAE is 
employed to train ELM by adding local impairment 
noise to obtain a more robust network. The number 
of input and output samples is given the same value 
to achieve unsupervised learning. Also, weights A 
and B of the randomly generated hidden layer nodes 
satisfy the orthogonal condition, and the weight and 
threshold of the hidden layer of ELM are optimized to 
improve classification accuracy. 

The orthogonal hidden layer parameters A and B 
are generated in DAE-ELM, the input sample set is 
mapped to the high dimensional space by Eq. (6) as 
follows,

 H A B A A B B� �� � � �g x T Ts.t. 1 1, ,  (6)

where a is the orthogonal weights that connect the 
input layer and the hidden layer node; A = [a1, a2,..., aN] 
and B = [b1, b2, ..., bN] are an orthogonal threshold, 
in which a and b are nodes in the hidden layer; H is 
output matrix of the hidden layer.
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The output weight β is the learning conversion of 
the feature space to the input data calculated by Eq. 
(7) below,

 � � ��
�
�

�
�
�
�I

C
H H HT T x

1

,  (7)

where C is regularization coefficient.
The specific process of the algorithm is shown in 

Fig. 3.

Fig. 3.  Flowchart of DAE optimized ELM

3  RESULTS

In this section, the performance of the proposed 
method is illustrated with two cases: a numerical 
case and an industrial one. Specifically, the first 
case verifies the decomposition result of signals, 
in comparison with that of EEMD. The second case 
focuses on analysing fault diagnosis performance with 
the proposed transient fault features.

3.1  Numerical Simulation

A simulation digital signal X(k) is constructed from 
three independent components X1(k), X2(k), and 
X3(k), which are given in Eq. (8) as below,
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where X1(k) is a periodic exponential decay shock 
signal with the frequency of 2500 Hz; X2(k) is a 

periodic frequency modulation signal; X3(k) is a cosine 
signal with the frequency of 200 Hz. 

In Fig. 4, X(k) and its components following Eq. 
(4) are plotted with the length of 1000 samplings. 
X(k) is decomposed based on a five-layer fast kurtosis 
diagram, and the corresponding results are shown in 
Fig. 5. It is observed that the colour in the frequency 
range [2500 Hz, 5000 Hz] is the deepest, which can 
be used to infer the centre frequency and bandwidth. 
According to Eq. (1), the centre frequency fc is 
determined as 3750 Hz, and the bandwidth Bw is 2500 
Hz.

Fig. 4.  The time domain waveform of X(k) and its components

Fig. 5.  Result of fast kurtosis diagram of simulated signal

Next, the decomposition results of X(k) based 
on VMD are shown in Fig. 6, in which three IMFs 
are extracted, i.e. IMFVMD1, IMFVMD2, and IMFVMD3. 
By comparing Fig. 6 with Fig. 4, it is observed that 
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the extracted signals are similar to real components. 
IMFVMD3 is similar to X1(k); IMFVMD2 is similar to 
X2(k); and IMFVMD1 is similar to X3(k). Therefore, 
the efficacy of VMD in signal decomposition is well 
illustrated, which provides a foundation for following 
the construction of a feature set. Further, EEMD is 
employed for comparison. Five IMFs are retained 
for EEMD, and the corresponding results are shown 
in Fig. 7. It is observed that the second component 

Fig. 9.  Examples for typical fault and corresponding signal in typical fault states of planetary gearbox for  
a) broken tooth b) crack c) missing tooth, and d) wear of tooth surface

Fig. 6.  VMD decomposition results of X(k)
Fig. 7.  EEMD decomposition results of X(k)

Fig. 8.  The constructed platform for fault diagnosis  
of planetary gearbox
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IMFEEMD2 and the third component IMFEEMD3 are 
mixed with each other. Besides, IMFEEMD2 is mixed 
with the high-frequency component of IMFEEMD1, 
and the residual component cannot be decomposed. 
Therefore, it is concluded that the proposed method 
provides a more powerful feature extraction in 
comparison with competitive methods.

3.2  Experiments on Planetary Gearbox

In order to verify the effectiveness of the above 
algorithm, a practical testing condition shown in 
Fig. 8 is established. It contains a multi-channel data 
acquisition instrument branded SIEMENS-LMS and a 
DDS power transmission based comprehensive fault 
simulation platform produced by Spectra Quest.

For testing, four kinds of faults, (broken teeth 
fault, missing teeth fault, wear fault, and crack 
fault) occurring during the operation of the first-
stage planetary wheel of the planetary gearbox are 
employed for analysis. During signal acquisition, 
the PCB356A16 accelerometer is used to collect the 
vibration signals of the vertical radial, horizontal 
radial and axial directions of the measuring point, the 
sampling frequency is 15,360 Hz, the motor speed is 
2100 r/min, and 60 sets of data are collected in each 
status. Each group of data collection time is 1 second, 
that is, the number of sampling points corresponding 
to each group of data is 15,360. Intuitively, typical 
examples of these faults are given in Fig. 9, associated 
with a set of signals corresponding to each status.

3.2.1  Extraction of Sensitive Fault Features and 
Construction of Feature Set

Taking the broken tooth signal as an example, first, 
the fast kurtosis algorithm is used to obtain the centre 
frequency corresponding to the maximum kurtosis 
value of broken tooth signal and the results can be 
derived, as shown in Fig. 10. 

Fig. 10.  Result of fast kurtosis diagram of broken tooth signal

The centre frequency is identified as fc = 2400 
Hz, and the associate frequency band ranges from 
2240 Hz to 2560 Hz. Then, the obtained signal is 
further decomposed by VMD, and the first six IMFs 

Table. 1.  The results of entropy values for each status in planetary gearbox

Status No.
Eigenvector

Enhance multiscale entropy
PE1 PE2 PE3 ··· PE10 PE11 PE12

Missing tooth 
failure

1 3.1822 4.3058 4.4948 ··· 5.5471 5.7055 4.8742
··· ··· ··· ··· ··· ··· ··· ···
60 3.1703 4.2487 4.5769 ··· 5.5075 5.7462 4.9564

Normal
1 3.0615 4.0058 4.4398 ··· 5.8262 5.7132 5.6157
··· ··· ··· ··· ··· ··· ··· ···
60 3.0403 3.9515 4.4486 ··· 5.7056 5.8031 5.6923

Broken
 tooth failure

1 3.5286 4.8606 4.8038 ··· 5.2683 5.6255 6.1774
··· ··· ··· ··· ··· ··· ··· ···
60 3.5388 4.8242 4.8155 ··· 5.2321 5.6212 6.1801

Crack 
failure

1 3.9995 4.8846 5.2658 ··· 5.9002 5.2612 6.1351
··· ··· ··· ··· ··· ··· ··· ···
60 3.9950 4.8680 5.2514 ··· 5.9345 5.2756 6.1354

Wear 
failure

1 4.3728 5.3764 5.4617 ··· 6.2277 5.1601 6.2675
··· ··· ··· ··· ··· ··· ··· ···
60 4.2759 5.3332 5.4744 ··· 6.2652 5.0579 6.2135
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are selected as candidate features, as shown in Fig. 
11. Finally, IMF3 is selected as the sensitive fault 
information since it locates in the frequency band that 
ranges from 2240 Hz to 2560 Hz.

Similarly, the same procedure is conducted on the 
other three fault signals and the normal signal. In the 
experiment, the sampling length is one second, and 60 
sets of signals under each status are collected. Next, 
the improved MPE algorithm is used to calculate the 
entropy values of the above sixty groups of selected 
IMFs with twelve scales to construct feature vector 
set T. On the basis of this, Table 1 summarizes partial 
entropy values of all fault signals and normal signal 
since the limitation of page.

Table. 2.  Accuracy comparison between the proposed method and 
its counterpart under each status

Method

Type
Average  

[%]
Missing 

tooth [%]
Normal 

[%]
Broken 

tooth [%]
Crack 
[%]

Wear 
[%]

DAE-ELM 99 100 100 100 100 99
KELM 95 100 100 95 90 96
SVM 95 95 100 100 85 95

3.2.2  Diagnosis of Planetary Gearbox Faults

For each status in Table 1, 40 sets of eigenvectors 
are randomly selected as training samples, and the 
remaining twenty sets of data are used as testing 
data. The DAE-ELM intelligent diagnosis model for 
planetary gear is developed through the given steps in 
methodology.

In Fig. 12, the X-axis indicates the assignment 
of testing samples in each status. Y-axis indicates 

the type of fault, in which 1 is the missing tooth, 2 
stands for normal status, 3 means a broken tooth, 4 
is a crack, and 5 is wear. It is easy to see that there is 
only one missing sample in the crack fault. As a result, 
the classification accuracy of DAE-ELM intelligent 
diagnosis model reached 99 %.

Fig. 12.  Fault classification results of planetary gearbox  
using DAE-ELM

For comparison, the feature vector set T extracted 
in Subsection 3.2.1 is fed into KELM [21] and SVM 
[22] based diagnosis model, respectively. The results 
of these two methods are shown in Figs. 13 and 14, 
respectively. It is observed that two samples of wear 
fault in Fig. 13 is misclassified into the crack fault, 
and one sample of crack fault is misclassified in the 
wear fault. Also, one sample in missing tooth fault is 
misclassified in other faults. As a result, the accuracy 
of KELM based algorithm is 96 %. In Fig. 14, two 

Fig. 11.  Result of VMD on broken tooth signals
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samples of wear fault are misclassified into crack 
fault, four samples of crack fault are misclassified, 
resulting in the average diagnosis accuracy is 95 
%. Therefore, the proposed DAE-ELM algorithm 
achieves the best performance by optimizing hidden 
layer of ELM using DAE.

Fig. 13.  Fault classification results of planetary gearbox  
using KELM

Fig. 14.  Fault classification results of planetary gearbox  
using SVM

4  CONCLUSIONS

This paper constructs a sensitive feature set and 
DAE-ELM intelligent diagnosis model for planetary 
gearboxes. Through the comparative analysis 
of simulated signal and experimental signal, the 
efficacy of the proposed feature set construction and 
the superiority of the DAE-ELM-based intelligent 
diagnosis model are verified. In comparison with 
the diagnosis method based on KELM and SVM, 
the results show that the proposed EMPE and DAE-
ELM methods not only effectively extract sensitive 

transient characteristics of planetary gearbox vibration 
signals, but also the classification accuracy of the state 
identification model is increased by 3 % and 4 %, 
respectively.

5  ACKNOWLEDGEMENTS

This research was supported in part by National 
Natural Science Foundation of China (No. 61903327), 
and by Natural Science Fund of Inner Mongolia 
(No. 2017MS0509), Inner Mongolia Scientific 
Research Projects of Colleges and Universities (No. 
NJZY19298).

6  REFERENCES

[1] Teng, W., Wang, F., Zhang, K.L., Liu Y.B., Ding, X. (2014) Pitting 
fault detection of a wind turbine gearbox using empirical mode 
decomposition. Strojniški vestnik - Journal of Mechanical 
Engineering, vol. 60, no. 1, p. 12-20, DOI:10.5545/sv-
jme.2013.1295.

[2] Qiao, Z., Lei, Y., Li, N. (2019) Applications of stochastic 
resonance to machinery fault detection: A review and tutorial. 
Mechanical Systems and Signal Processing, vol. 122, p. 502-
536, DOI:10.1016/j.ymssp.2018.12.032.

[3] Yin, A., Lu, J., Dai, Z., Li, J., Ouyang, Q. (2016). Isomap and deep 
belief network-based machine health combined assessment 
model. Strojniški vestnik - Journal of Mechanical Engineering, 
vol. 62, no. 12, p. 740-750, DOI:10.5545/sv-jme.2016.3694.

[4] Saxean, A., Wu, B., Vachtsevanos, G. (2005). A methodology 
for analyzing vibration data from planetary gear systems using 
complex Morlet wavelets. Proceedings of the American Control 
Conference, p. 4730-4735, DOI:10.1109/ACC.2005.1470743.

[5] Feng, Z., Zuo, M.J. (2013). Fault diagnosis of planetary 
gearboxes via torsional vibration signal analysis. Mechanical 
Systems and Signal Processing, vol. 36, no. 2, p. 401-421, 
DOI:10.1016/j.ymssp.2012.11.004.

[6] Feng, Z., Lin, X., Zuo, M.J. (2016). Joint amplitude and 
frequency demodulation analysis based on intrinsic time-
scale decomposition for planetary gearbox fault diagnosis. 
Mechanical Systems and Signal Processing, vol. 72-73, p. 
223-240, DOI:10.1016/j.ymssp.2015.11.024.

[7] Wu, Z., Huang, N.E. (2009) Ensemble empirical mode 
decomposition: A noise assisted data analysis method. 
Advances in Adaptive Data Analysis, vol. 1, no. 1, p. 1-41, 
DOI:10.1142/S1793536909000047.

[8] Zhang, W.B., Pu, Y.S., Zhu, J.X., Su, Y.P. (2013). Gear fault 
diagnosis method using EEMD sample entropy and grey 
incidence. Advanced Materials Research, vol. 694-697, p. 
1151–1154, DOI:10.4028/www.scientific.net/AMR.694-
697.1151.

[9] Lv, Z.-L., Tang, B.-P., Zhou, Y., Zhou, C.-D. (2015). A novel fault 
diagnosis method for rotating machinery based on EEMD and 
MCKD. International Journal of Simulation Modelling, vol. 14, 
no. 3, p. 438-449, DOI:10.2507/IJSIMM14(3)6.298.

[10] Pang, X., Cheng, B., Yang, Z., Li, F. (2019). A fault feature 
extraction method for a gearbox with a composite gear train 

https://doi.org/10.5545/sv-jme.2013.1295
https://doi.org/10.5545/sv-jme.2013.1295
https://doi.org/10.1016/j.ymssp.2018.12.032
https://doi.org/10.5545/sv-jme.2016.3694
https://doi.org/10.1109/acc.2005.1470743
https://doi.org/10.1016/j.ymssp.2012.11.004
https://doi.org/10.1016/j.ymssp.2015.11.024
https://doi.org/10.1142/s1793536909000047
https://doi.org/10.4028/www.scientific.net/amr.694-697.1151
https://doi.org/10.4028/www.scientific.net/amr.694-697.1151
https://doi.org/10.2507/ijsimm14%283%296.298


Strojniški vestnik - Journal of Mechanical Engineering 66(2020)6, 385-394

394 Bo Qin, B. – Li, Z.X. –Qin, Y.

based on EEMD and translation-invariant multiwavelet 
neighboring coefficients. Strojniški vestnik - Journal of 
Mechanical Engineering, vol. 65, no. 1, p. 3-11, DOI:10.5545/
sv-jme.2018.5441.

[11] Chen, X.H., Cheng, G., Li, H.Y., Li, Y. (2019). Research of 
planetary gear fault diagnosis based on multiscale fractal 
box dimension of CEEMD and ELM. Strojniški vestnik - 
Journal of Mechanical Engineering, vol. 63, no. 1, p. 45-55, 
DOI:10.5545/sv-jme.2016.3811.

[12] Wang, L.M, Shao, Y.M, (2020). Fault feature extraction of 
rotating machinery using a reweighted complete ensemble 
empirical mode decomposition with adaptive noise and 
demodulation analysis. Mechanical Systems and Signal 
Processing, vol. 138, DOI:10.1016/j.ymssp.2019.106545.

[13] Dragomiretskiy, K., Zosso, D. (2014). Variational mode 
decomposition. IEEE Transactions on Signal Processing, vol. 
62, no. 3, p. 531-544, DOI:10.1109/TSP.2013.2288675.

[14] Tao, J., Liu, Y., Yang, D. (2016). Bearing fault diagnosis based on 
deep belief network and multisensor information fusion. Shock 
and Vibration, vol. 2016, p. 1-9, DOI:10.1155/2016/9306205.

[15] Lu, C., Wang, Z., Zhou, B. (2017). Intelligent fault diagnosis of 
rolling bearing using hierarchical convolutional network based 
health state classification. Advanced Engineering Informatics, 
vol. 32, p. 139-151, DOI:10.1016/j.aei.2017.02.005.

[16] Zhang, Q., Yang, L.T., Chen, Z. (2016). Deep computation 
model for unsupervised feature learning on big data. IEEE 

Transactions on Services Computing, vol. 9, no. 1, p. 161-171, 
DOI:10.1109/TSC.2015.2497705.

[17] Ren, H., Qu, J.F., Chai, Y., Tang, Q., Ye, X. (2017). Research 
status and challenges of deep learning in the field of fault 
diagnosis. Control and Decision, vol. 32, no. 8, p. 1345-1358, 
DOI:10.13195/j.kzyjc.2016.1625.

[18] Antoni, J., Randall, R.B. (2006). The spectral kurtosis: 
application to the vibratory surveillance and diagnostics 
of rotating machines. Mechanical Systems and Signal 
Processing, vol. 20, no. 2, p. 308-331, DOI:10.1016/j.
ymssp.2004.09.002.

[19] Aziz, W., Arif, M. (2005). Multiscale permutation entropy 
of physiological time series. Pakistan Section Multitopic 
Conference, p. 1-6, DOI:10.1109/INMIC.2005.334494.

[20] Azami, H., Escudero, J. (2016). Improved multiscale 
permutation entropy for biomedical signal analysis: 
Interpretation and application to electroencephalogram 
recordings. Biomedical Signal Processing and Control, vol. 23, 
p. 28-41, DOI:10.1016/j.bspc.2015.08.004.

[21] Li, K., Su, L., Wu, J., Wang, H., Chen, P. (2007). A rolling 
bearing fault diagnosis method based on variational mode 
decomposition and an improved kernel extreme learning 
machine. Applied Sciences, vol. 7, no. 10, 1004, DOI:10.3390/
app7101004.

[22] Cortes, C., Vapnik, V. (1995). Support vector networks. 
Machine Learning, vol. 20, no. 3, p. 273-297, DOI:10.1007/
BF00994018.

https://doi.org/10.5545/sv-jme.2018.5441
https://doi.org/10.5545/sv-jme.2018.5441
https://doi.org/10.5545/sv-jme.2016.3811
https://doi.org/10.1016/j.ymssp.2019.106545
https://doi.org/10.1109/tsp.2013.2288675
https://doi.org/10.1155/2016/9306205
https://doi.org/10.1016/j.aei.2017.02.005
https://doi.org/10.1109/tsc.2015.2497705
https://doi.org/10.1016/j.ymssp.2004.09.002
https://doi.org/10.1016/j.ymssp.2004.09.002
https://doi.org/10.1109/inmic.2005.334494
https://doi.org/10.1016/j.bspc.2015.08.004
https://doi.org/10.3390/app7101004
https://doi.org/10.3390/app7101004
https://doi.org/10.3390/app7101004
https://doi.org/10.3390/app7101004

