

Sprejeto (accepted): 24. 07. 2009

First report of cyanobacterial bloom of *Microcystis viridis* (A. Braun) Lemmermann in Slovenia

Prvi opis cvetenja cianobakterije *Microcystis viridis* (A. Braun) Lemmermann v Sloveniji

Tina ELERŠEK National Institute of Biology, Večna pot 111, 10001 Ljubljana, Slovenia

> Fax number: +3861 2412980 E-mail address: tina.elersek@nib.si

Abstract. The presence of the cyanobacterial bloom of Microcystis viridis (A. Braun) Lemmermann is reported for the first time in Slovenia. After field sampling, and detailed microscopic observations, species analysis, chlorophyll content analysis, and cyanobacterial cyclic peptides were determined, the latter by high performance liquid chromatography (HPLC). Cells were found in colonies with limited amounts of more or less refractive mucilage. The average diameter of a cell was 4-7 µm. Three microcystins, two anabaenopeptins and planktopeptin BL 1125, were identified. The content of cyclic peptides in the bloom was in the range of 2.3-6.6mg g⁻¹ of cellular dry weight. M. viridis was dominant in the cyanobacterial bloom, other species being Micorcystis wesenbergii, Microcystis aeruginosa, Anabaena flos-aque, Anabaena spiralis, Aulacoseira granulata, Closterium sp., Euglena sp., Pediastrum duplex, Scenedesmus quadricauda, Staurastrum gracile, Trachelomonas volvocina, Trachelomonas hispida and Tetraedron *limneticum.* In keeping with previous studies the content of cyclic peptides in the cyanobacterial bloom was high enough to cause bloom lysis. This fact was also confirmed by field observation; not only bloom composition change, but after 8 days there was no visible cyanobacterial bloom on the Boreci reservoir surface, although no heavy rain or wind was observed during this period. The discovery of M. viridis bloom in Slovenia is very important, since toxic bloom constitutes a threat all over the World.

Key words. cyanobacteria, cyanobacterial bloom, *Microcystis viridis*, microcystin, cyclic peptides

Izvleček. V Sloveniji prvič poročamo o prisotnosti cianobakterijskega cveta *Microcystis* viridis (A. Braun) Lemmermann. Po vzorčenju, temeljitem mikroskopskem pregledu, analizi vrstnega sestava in analizi vsebnosti klorofila smo določili prisotnost cianobakterijskih cikličnih peptidov s pomočjo tekočinske kromatografije visoke ločljivostji (HPLC). Celice so v kolonijah obdane z sluzjo, ki lomi svetlobne žarke. Povprečni premer celic je bil 4–7 μm. Identificirali smo tri mikrocistine, dva anabaenopeptina in planktopeptin BL 1125. Vsebnost cikličnih peptidov v cvetu je bila 2.3–6.6 mg g⁻¹ suhe celične mase. V cianobakterijskem cvetu je prevladovala vrsta *M. viridis*, ostale vrste pa so bile *Micorcystis wesenbergii, Microcystis aeruginosa, Anabaena flos-aque, Anabaena spiralis, Aulacoseira granulata, Closterium sp., Euglena sp., Pediastrum duplex, Scenedesmus quadricauda, Staurastrum gracile, Trachelomonas volvocina, Trachelomonas hispida in Tetraedron limneticum*. Na podlagi rezultatov prejšnjih raziskav lahko zaključimo, da je vsebnost cikličnih peptidov dovolj visoka, da lahko povzroči lizo cveta. To dejstvo je bilo potrjeno tudi z opazovanji v naravnem okolju v okviru te raziskave. Ni prišlo samo do spremembe

vrstne sestave cveta, temveč do izginotja cianobakterijskega cveta na površini jezera Boreci po osmih dneh, čeprav v tem obdobju ni bilo močnega deževja, niti vetra. Odkritje pojavljanja cvetenja *M. viridis* v Sloveniji je izrednega pomena, saj strupen cianobakterijski cvet predstavlja grožnjo po celem svetu.

Ključne besede. cianobakterije, cianobakterijski cvet, Microcystis viridis, mikrocistin, ciklični peptidi

Introduction

About 60 % of cyanobacterial samples investigated worldwide contain toxins (GUIDELINES 2003). The toxicity of a single bloom can, however, change in both time and space. Demonstration of toxicity of the cyanobacterial population in a given lake or reservoir does not necessarily imply an environmental or human hazard as long as the cells remain thinly dispersed. Mass developments and, especially, surface scums pose the major risk.

Microcystis has been known to be the major genus among the cyanobacteria to cause blooms in fresh waters worldwide (CARMICHAEL 1992; GUIDELINES 2003). *Microcystis* blooms frequently occur in the eutrophic waters. In many northeastern Slovenian lakes and reservoirs, nutrient loading, coupled with year-round warm weather, favours the growth of cyanobacteria, several of which can produce cyanotoxins, especially the potent genotoxins (ŽEGURA & al. 2003) and liver toxins called microcystins (MC). The toxins are of interest due to their threat to humans and animals (CARMICHAEL 1994; FALCONER & al. 1994, 1999).

M. viridis has been found in Finnish fresh and coastal waters (e.g. SIVONEN & al. 1990), a Swedish lake (CRONBERG & al. 1999), a Brazilian reservoir (FIGUEREDO & GIANI 2001), China (SONG & al. 1998) and Japan (KAMEYAMA & al. 2004). Based on 16S rRNA analyses of *M. viridis* (LEPRE & al. 2000) and DNA-DNA homology analysis (KONDO & al. 2000), some authors (OTSUKA & al. 2001), under the rules of the bacteriological code, propose the unification of five species of

Table 1: Isolated peptides from cyanobacteria *Microcystis viridis*.

Microcystis viridis strain	isolated peptides	reference
M. viridis	cyanoviridin-RR	Kusumi et al., 1987
M. viridis NIES-102	cyanoviridin-RR	Ooi et al., 1989
M. viridis	microcystin-RR, -YR, -LR	Watanabe et al., 1989
M. viridis NIES-102	mikroviridin	Ishitsuka et al., 1990
M. viridis - axenic	microcystin-RR, -YR, -LR, -LA	Kaya & Watanabe, 1990
M. viridis – from bloom	microcystin-RR, -LR	Kaya & Watanabe, 1990
M. viridis NIES-102	hepatotoxic polypeptides	Yusamo & Sugaya, 1991
M. viridis NIES-102	aeruginosin 102-A, 102-B	Matsuda et al., 1996
M. viridis NIES-103	micropeptin 103	Murakami et al., 1997
M. viridis NIES-103	aeruginosin 103-A	Kodani et al., 1998
M. viridis- from bloom	microcystin-RR	Song et al., 1998
M. viridis NIES-102	polypeptide MVL	Yamaguchi et al., 1999
M. viridis NIES-102	microcystin-RR, -YR, -LR	Kameyama et al., 2002, 2004
M. viridis FACHB	cyclic peptides with <i>mcyB</i> gene	Pan et al., 2002

cyanobacterial genus *Microcystis: M. aeruginosa, M. ichthyoblabe, M novacekii, M. viridis* and *M. wesenbergii.* It has been recommended that attention should be paid to the occurrence and possibility of toxic blooms of *M. viridis* from the standpoint of water management and public health (WATANABE & al. 1986).

Peptides from *M. viridis* do not differ completely from other peptides from genus *Microcystis* (Table 1). Some *M. viridis* peptides are known to be active as essential intracellular nitrogen compounds in toxic cyanobacteria, substances active against grazing zooplankton (YASUNO & SUGAYA 1991), a chymotrypsin inhibitor (MURAKAMI & al. 1997) and as a mannanbinding lectin important for haemagglutination (YAMAGUCHI & al. 1999). Nevertheless, not much more is known about peptides from *M. viridis* and there is no report to date of *M. viridis* bloom occurrence in Slovenia.

Material and methods

Field sampling

Three sampling points were located in the north-eastern part of Slovenia. Gauss Krüger coordinates for reservoir Boreci (Križevci village) are y = 588239.7; x = 158373,3; z = 182m. For reservoir Podgrad (Podgrad village) y = 574341.4; x = 171416; z = 208m. For reservoir Hotinja vas (Hotinja village) y = 552400.4; x = 147283.2; z = 262m. The majority of results presented in this article are from reservoir Boreci, since the most extensive analyses were performed there. Samples were collected with the planktonic net, separately from the whole water column and surface scum.

Cyanobacterial and algal species

Species were identified using an inverted microscope according to KOMAREK (1991, 1999–2000), STARMACH (1966) and HINDAK (1978). The abundance on August the 9th was estimated with several dilutions of original sample and counting with haemocytometer. Samples from other dates did not show dominance of one, but four species, and the abundance with counting could not be estimated precisely enough (symbol + in Table 2). Samples were analysed for composition

of plankton species and taxonomic determination under an inverted microscope (Nikon Eclipse TE300). Cells were measured with Lucia (System for Image Processing and Analysis LUCIA 4.6, Laboratory Imaging Ltd.).

Chlorophyll content analysis

Chlorophyll *a* was measured by methanol extraction according to Vollenweider (1969) with a spectrophotometer UV-2101 PC (Shimadzu). The procedure was modified to filtration of 10 ml samples in triplicate.

Cyanobacterial cyclic peptide analysis

The lyophilised bloom material was processed according to HARADA & al. (1988) with minor modifications. Dried cvanobacteria (1000 mg) were extracted three times with 5% aqueous acetic acid (3 x 20 ml) for 30 min with stirring. The extracts were centrifuged at 4000 rpm for 10 min. The combined supernatants were applied to preconditioned 500 mg reversed-phase disposable columns (LiChrolut RP-18, Merck). The columns containing the extract were washed with 20 ml of 10 % methanol and the cyclic peptides eluted with 2 ml methanol (LiChrosolv, Merck), evaporated to dryness under nitrogen stream and the residues dissolved in 0.05 M phosphate buffer, pH 3. Samples were analysed by HPLC, using isocratic elution with methanol: phosphate buffer 48:52 (v/v). The HPLC/PDA equipment consisted of a Waters 600 Controller, Waters 616 pump and Waters PDA Detector. Millenium³² software (Ver. 3.0, Waters) was used to run the hardware and to process the data.

Identification and visualization of cyclic peptides with a photodiode array detector

The chromatogram was monitored at four wavelength maxima – 238, 225, 220 and 215 nm – in order to locate and distinguish MC from other bioactive cyclic peptides of interest. The wavelengths are characteristic of individual cyclic peptides; MCs have a characteristic absorption at 238 nm, while other isolated cyclic peptides have absorption maxima at lower wavelengths. The depsipeptide planktopeptin BL1125 was detected at 225 nm and anabaenopeptins B and F

 Table 2:
 Bloom sample structure and dominant species (*present in footnote*) on two days in August 2006 from Boreci reservoir.

Bloom sample structure 9. 8. 2006	Bloom sample structure 17. 8. 2006
+ Microcystis viridis 94 %	+ Microcystis viridis
Microcystis wesenbergii 4%	+ Microcystis wesenbergii
Microcystis aeruginosa	+ Microcystis aeruginosa
Anabaena flos-aque	+ Anabaena spiroides
Anabaena spiralis	Aphanizomenon flos-aque
Aulacoseira granulata	Aulacoseira granulata
Closterium sp.	Anabaena solitaria
Euglena sp.	Woronichinia naegeliana
Pediastrum duplex	Dictyosphaerium pulchellum
Scenedesmus quadricauda	Euglena sp.
Staurastum gracile	Pediastrum duplex
Trachelomonas volvocina	Staurastum gracile
Trachelomonas hispida	Trachelomonas volvocina
Tetraedron limneticum	Trachelomonas hispida

+ = dominating species

at 215 nm. Both types of non-toxic cyclic peptide have additional characteristic absorption maxima at 278–279 nm that were used to confirm the preliminary identification (GRACH-POGREBINSKY & al. 2003). The amounts of the cyclic peptides were calculated from the individual peaks by compari-

Fig. 1: Cyanobacterial bloom in Boreci reservoir, located in Križevci village, 9. 8. 2006, photo: Tina Eleršek.

son of the integrated peak areas with the values from calibration curves standardized by previously isolated cyclic peptides in pure form.

Results and discussion

This is the first report of cyanobacterial bloom of *Microcystis viridis* (A. Braun) Lemmermann in Slovenia. Microscopic examination of the phytoplankton samples showed the dominance

Fig. 2: Colonies of *Microcystis viridis* (right side of figure) and *Microcystis wesenbergii* (indicated by arrows) under (A) light and (B) phase contrast microscope, 200 x magnified, from Locality Boreci reservoir, 9.8.2006, photo: Tina Eleršek.

Fig. 3: Colonies of *Microcystis viridis* (right) and *Anabaena spiralis* (left) under phase contrast microscope, 400 x magnified, from Locality Boreci reservoir, 9.8.2006, photo: Tina Eleršek.

Fig. 4: Colonies of *Microcystis viridis* under phase contrast microscope, 600 x magnified, from Locality Boreci reservoir, 9.8.2006, photo: Tina Eleršek.

Fig. 5: HPLC chromatogram of *Microcystis viridis bloom* extract run from a preparative column using isocratic elution with methanol: phosphate buffer 50:50 (v/v). The diagrams show the elution pattern monitored at three different wavelengths: 215, 225 and 238 nm. MC is clearly visible at the characteristic λ_{max} of 238 nm, while the other three cyclic peptides are seen only as minor peaks (vertical arrows in the lowest panel). PP BL, AnP B and AnP F are better detected at lower wavelengths (upper two panels). AnP B = anabaenopeptin B; AnP F = anabaenopeptin F; PP = planktopeptin BL 1125, MC = unidentified microcystin

Fig. 6: The typical absorption spectra of five cyclic peptides from *Microcystis viridis bloom* at their characteristic retention time, marked in the upper part. AnP = anabaenopeptin; PP = planktopeptin BL 1125, MC = unidentified microcystin.

of M. viridis in the bloom in the first half of the August in reservoir Boreci (Fig. 1). After 8 days, M. viridis was found in two neighbouring reservoirs also, Hotinja vas and Podgrad. Changes in bloom sample structure were very fast; in just 8 days we observed different bloom composition (Table 2, Figs. 2 and 3). Cells were found in colonies (Fig. 4) with limited, more or less refractive mucilage, best seen under phase contrast microscopy (e.g. Fig. 2). The average diameter of cells was 4-7 µm. The contents of chlorophyll a of cyanobacterial bloom from Boreci reservoir were similar, 320 µg/l (9.8.2006) and 340 µg/l (17.8.2006). HPLC analysis showed that M. viridis bloom (from 9.8.2006) contains three MC and three non-toxic cyclic peptides, two anabaenopeptins and plaktopeptin BL1125 (Fig. 5), which have important roles in bloom lysis (SEDMAK & ELERŠEK, 2005, 2006). All the cyclic peptides have characteristic absorption spectra (Fig. 6). Their content varied in the range of 2.3-6.6 mg g⁻¹ of cellular dry weight. As found in previous studies (SEDMAK & KOSI, 1997; SEDMAK & ELERŠEK, 2005, 2006; SEDMAK & al., 2007), the content of cyclic peptides was high enough to cause bloom lysis. Interestingly, this fact was confirmed by field observation; bloom composition not only changed, but, after 8 days, there was no visible cyanobacterial bloom on the reservoir surface, although no heavy rain or wind was detected during this period. The discovery of *M. viridis* bloom in Slovenia is very important, since toxic bloom constitutes a threat all over the World.

Conclusion

The presence of the cyanobacterial bloom of *Microcystis viridis* (A. Braun) Lemmermann is reported for the first time in Slovenia. Cells were found in colonies with refractive mucilage. The content of cyclic peptides (three microcystins, two anabaenopeptins and planktopeptin BL 1125) in the cyanobacterial bloom was high enough to cause bloom lysis. This fact was also confirmed by field observation. The discovery of *M. viridis* bloom in Slovenia is very important, since toxic bloom constitutes a threat all over the World.

Acknowledgements

Special acknowledgements go to Dr. Bojan Sedmak for HPLC analyses and determination of cyclic peptides, to Dr. Gorzd Kosi for determination of the bloom sample structure, to Karmen Stanič for excellent technical assistance and to Prof. Roger Pain for critical reading of the manuscript.

Literature

- CARMICHAEL W.W. 1992: Cyanobacteria secondary metabolites the cyanotoxins. Journal of Applied Bacteriology **72**: 445–459.
- CARMICHAEL W.W. 1994: The toxins of cyanobacteria, Scientific American, 270: 78-86.
- CRONBERG G., H. ANNADOTTER & L.A. LAWTON 1999: The occurrence of toxic blue-green alge in Lake Ringesjön, southern Sweden, despite nutrient reduction and fish biomanipulation. Hydrobiologia 404 (0): 123–129.
- FALCONER I.R. 1994: Toxicity of the blue-green algae (cyanobacterium) *Microcystis aeruginosa* in drinking water to growing pigs, as an animal model for human injury and risk assessment. Environmental Toxicology and Water Quality 9: 131–139.
- FALCONER I.R. 1999: An overview of problems caused by toxic blue-green algae (cyanobacteria) in drinking and recreational water. Environmental Toxicology 14, 1: 5–12.
- FIGUEREDO C.C. & A. GIANI 2001: Seasonal variation in the diversity and species richness of phytoplankton in a tropical eutrophic reservoir. Hydrobiologia **445** (1–3): 165–174.
- GRACH-POGREBINSKY O., B. SEDMAK & S. CARMELI 2003: Protease inhibitors from a Slovenian Lake Bled toxic waterbloom of the cyanobacterium *Planktothrix rubescens*. Tetrahedron 59: 8329–8336.
- Guidelines for safe recreational water environments, Volume 1, World Health Organization (WHO), 2003.
- HARADA K.I., K. MATSUURA, M. SUZUKI, H. OKA, M.F. WATANABE, S. OISHI, A. DAHLEM, V.R. BEASELY & W.W. CARMICHAEL 1988: Chemical analyses of toxic peptides produced by cyanobacteria. Journal of Chromatography 448: 275–283.
- HINDAK F., P. MARVAN, J. KOMAREK, K. ROSA, J. POPOVSKY & O. LHOTSKY 1978: Sladkovodne riasy. Slovenske pedagogicke nakladatelstvo, Bratislava, 724 pp.
- ISHITSUKA M.O., T. KUSUMI & H. KAKISAWA 1990: Microviridin: a novel tricyclic depsipeptide from toxic cyanobacteruim *Microcystis viridis*. Journal of American chemical society **112**: 8180–8182.
- KAMEYAMA K., N. SUGIURA, Y. INAMORI & T. MAEKAWA 2004: Characteristics of microcystin production in the cell cycle of *Microcystis viridis*. Environmental toxicology 19 (1): 20–25.
- KAMEYAMA K., N. SUGIURA, H. ISODA, Y. INAMORI & T. MAEKAWA 2002: Effect of nitrate and phosphate concentration on production of microcystins by *Microcystis viridis* NIES-102. Aquatic ecosystem health & management 5 (4): 443–449.
- KAYA K. & M.M. WATANABE 1990: Microcystin composition of an axenic clonal strain M. viridis and M. viridis – containing waterbloom in Japanese freshwaters. Journal of Applied Phycology 2 (2): 37–43.
- KODANI S.,K. ISHIDA & M. MURAKAMI 1998: Aeruginosin 103-A, a thrombin inhibitor from cyanobacterium *Microcystis viridis*. Journal of Natural Products 61: 1046–1048.
- KOMAREK J. 1991: A review of water-bloom forming Mycrocystis species with regard to population from Japan. Algological studies **64**: 115–127.
- KOMAREK J. & K. ANAGNOSTIDIS K 1999–2000: Cyanoprokaryota (19). In: Ettl H., Gärtner G., Heynig H., Mollenhauer D. (Eds.). Süsswasserflora von Mitteleuropa. Spektrum Akademischer Verlag GmbH, Heidelberg, Berlin.
- KONDO R., T. YOSHIDA, Y. YUKI & S. HIROISHI 2000: DNA-DNA reassociation among a bloom-forming cyanobacterial genus, *Microcystis*. International journal of systematic and evolutionary microbiology 50: 767–770.
- KUSUMI T., T. OOI, M.M. WATANABE & H. TAKAHASHI 1987: Cyanoviridin RR, a toxin from the cyanobacterium (blue-green alga) *Microcystis viridis*. Tetrahedron letters.
- LEPRE C., A. WILMOTTE & B. MEYER 2000: Molecular divertisity of *Microcystis* strains (Cyanophyceae, Chroococcales). Systematic and geography of plants **70**: 275–283.
- MATSUDA H., T. OKINO, M. MURAKAMI & K. YAMAGUCHI 1996: Aeruginosin 102-A and B, new thrombin inhibitors from the cyanobacterium Microcystis viridis (NIES-102). Tetrahedron 52 (46): 14501–14506.

- MURAKAMI M., S. KODANI, K. ISHIDA, H. MATSUDA & K. YAMAGUCHI 1997: Micropeptin 103, a chymotrypsin inhibitor from cyanobacterium *Microcystis viridis* (NIES-103). Tetrahedron letters 38 (17): 3035–3038.
- OOI T., T. KUSUMI, H. KAKISAWA & M.M. WATANABE 1989: Structure of cyanoviridin RR, a toxin from the blue-green alga *Microcystis viridis*. Journal of Applied Phycology **1** (1): 31–38.
- OTSUKA S., S. SUDA, S. SHIBATA, H. OYAIZU, S. MATSUMOTO & M.M. WATANABE 2001: A proposal for the unification of five species of the cyanobacterial genus *Microcystis* Kützig *ex* Lemmermann 1907 under the Rules of the bacterial code. International Journal of Systematic and Evolutionary Microbiology **51**: 873–879.
- PAN H., L. SONG,Y. LIU & T. BÖRNER 2002: Detection of hepatotoxic *Microcystis* strains by PCR with intact cells from both culture and environmental samples. Archives of Microbiology 178: 421–427.
- SEDMAK B., S. CARMELI & T. ELERŠEK 2008: »Non-toxic« cyclic peptides induce lysis of cyanobacteria – an effective cell population density control mechanism in cyanobacterial blooms. Microbial Ecology 2 (56): 201–209.
- SEDMAK B. & T. ELERŠEK 2005: Microcystins induce morphological and physiological changes in selected representative phytoplanktons. Microbial Ecology 50: 298–305.
- SEDMAK B. & T. ELERŠEK 2006: Microcystins induce morphological and physiological changes in selected representative phytoplanktons. Microbial Ecology **51**: 508–515.
- SEDMAK B. & G. KOSI 1997: Microcystins in Slovene freshwaters (Central Europe) first report. Natural toxins 5: 64–73.
- SEDMAK B. & G. Kosi 1998: The role of microcystins in heavy cyanobacterial bloom formation. Journal of Plankton Research 20, 4: 691–708.
- SEDMAK B. & G. KOSI 1998: Erratum. The role of microcystins in heavy cyanobacterial bloom formation. Journal of Plankton Research 20, 4: 1421.
- SEDMAK B. & G. Kosi 2002: Harmful cyanobacterial blooms in Slovenia Bloom types and microcystin producers. Acta Biologica Slovenica 45: 17–30.
- SEDMAK B., KOSI G. & B. KOLAR 1994: Cyanobacteria and their relevance. Periodicum Biologorum 96, 4: 428–430.
- SEDMAK B. & D. ŠUPUT 2002: Co-operative effects in tumorigenicity. The microcystin example. Radiology and Oncology 36, 2: 162–164.
- SIVONEN K., S.I. NIEMELÄ, R.M. NIEMI, L. LEPISTÖ, T.H. LUOMA & L.A. RÄSÄNEN 1990: Toxic cyanobacteria (blue-green algae) in Finnish fresh and coastal waters. Hydrobiologia 190 (3): 267–275.
- SONG L., T. SANO, R. LI, M.M. WATANABE, Y. LIU, & K. KAYA 1998: Microcystin production of *Microcystis viridis* (cyanobacteria) under different culture conditions. Phycological research 46 (2): 19–23.
- STARMACH K. 1966: Cyanophita-Sinice Glaucophyta-Glaukofity. Flora slodkowodna Polski, Tom 2, Warszawa, 807 pp.
- VOLLENWEIDER R.A. 1969: Primary production in aquatic environments. Internal biology handbook 12. Oxford, Blackwell Scientific Publications: 225 pp.
- WATANABE M.F., K.I. HARADA, K. MATSUURA, M. WATANABE, & M. SUZUKI 1989: Heptapeptide toxin production during batch culture of two *Microcystis* species (Cyanobacrteria). Journal of Applied Phycology 1 (2): 161–165.
- WATANABE M.F., S. OISHI, Y. WATANABE & M. WATANABE 1986: Strong probability of lethal toxicity in the blue-green alga *Microcystis viridis* Lemmermann. Journal of Phycology JPYLAJ 22 (4): 552–556.
- YAMAGUCHI M., T. OGAWA, K. MURAMOTO, Y. KAMIO, M. JIMBO & H. KAMIYA 1999: Isolation and characterization of a mannan-binding lectin from freshwater cyanobacterium (blue-green algae) *Microcystis viridis*. Biochemical and biophysical research communications 265 (3): 703–708.

- YASUNO M. & Y. SUGAYA 1991: Toxicities of *Microcystis viridis* and the isolated hepatotoxic polypeptides of Cladocerans. Internationale vereinigung fuer theoretishe und engewandte limnologie verhandlungen IVTLAP **24** (4): 2622–2626.
- YASUNO M., Y. SUGAYA, K. KAYA & M.M. WATANABE 1998: Variations in the toxicity of Microcystis sopecies to *Moina macrocopa*. Phycological research, **46** suppl.: 31–36.
- ŽEGURA B., B. SEDMAK & M. FILIPIČ 2003: Microcystin-LR induces oxidative DNA damage in human hepatoma cell line HepG2. Toxicon 41: 41–48.