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Abstract

We investigate the distribution of the number of vertices of a randomly chosen subtree
of a tree. Specifically, it is proven that this distribution is close to a Gaussian distribution in
an explicitly quantifiable way if the tree has sufficiently many leaves and no long branch-
less paths. We also show that the conditions are satisfied asymptotically almost surely
for random trees. If the conditions are violated, however, we exhibit by means of explicit
counterexamples that many other (non-Gaussian) distributions can occur in the limit. These
examples also show that our conditions are essentially best possible.
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1 Introduction
By a subtree of a tree, we mean any nonempty connected subgraph; obviously, such a
subgraph is again a tree. The distribution of the number of vertices of a randomly chosen
subtree of a tree was first studied by Jamison in two papers [5, 6], in which he investigates
the average subtree order of a tree, i.e. the mean number of vertices of a subtree. Among
his main results is the fact that the average order of subtrees of an n-vertex tree is at least
(n+2)/3, with equality only for the path. The problems that Jamison proposed in his papers
received considerable attention recently [4,14,16], as did other aspects of subtrees in trees,
specifically extremal problems, whose study was initiated by Székely and Wang [12, 13].
Jamison’s question whether the average order is always at least n/2 for homeomorphically
irreducible trees, i.e. trees without vertices of degree 2, was only answered (affirmatively)
very recently by Vince and Wang [14], who also showed that the average subtree order of
such a tree is less than 3n/4.
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Many other of Jamison’s questions remain open to date. A question of his that was also
discussed in the 2011 edition of the Combinatorics REGS [7] reads as follows:

Question 1.1. Given a tree T of order n, let sk(T ) denote the number of subtrees of order k.
When is it true that the numbers s2(T ), . . . , sn(T ) form a unimodal list (weakly increasing
at first, then weakly decreasing)? In particular, is it unimodal when T has no vertices of
degree 2?

It should be noted here that s1(T ) = n and s2(T ) = n− 1 for every tree T of order n,
so s1(T ) cannot be included if a unimodal list is to be obtained. The question seems to be
fairly hard, and we will not actually answer it in this paper. However, we provide a related
result: if a tree has sufficiently many leaves and no long branchless paths (this will be
made more precise later), then the distribution of the subtree orders is close to a Gaussian
distribution in an explicitly quantifiable way. In particular, this is the case for trees without
vertices of degree 2. Moreover, the conditions we impose are usually satisfied: for random
trees, they are valid asymptotically almost surely.

Asymptotic normality of the distribution does of course not imply unimodality, nor the
other way around, but the two are clearly connected, so our result provides evidence that
the answer to Question 1.1 might be affirmative. It should also be pointed out that our main
result parallels a classic theorem of Godsil [3] on matchings: if G1, G2, . . . is a sequence
of graphs, then the distribution of the size of matchings in Gn (suitably renormalised)
converges to a Gaussian distribution, provided that the variance tends to infinity. See [8]
for a recent extension.

Godsil’s theorem is based on properties of the matching polynomial, in particular the
fact that all its zeros are real. Indeed, it is well known that a polynomial with positive coeffi-
cients and only real zeros has log-concave (and thus unimodal) coefficients, so Question 1.1
could be answered affirmatively if all zeros of the polynomial

n∑
k=2

sk(T )uk

were real for every T . This “subtree polynomial” was already considered by Jamison
himself in [5]. More recently, Yan and Yeh [18] studied a weighted version, and Martin et
al. [9] considered a bivariate generalisation involving the number of leaves.

Unfortunately, the subtree polynomial does not have real roots only as the matching
polynomial does, so the situation for subtrees of trees turns out to be more intricate than
for matchings of graphs. As a simple concrete counterexample, consider the star S4 with
four vertices: we have

4∑
k=1

sk(S4)uk = 4u+ 3u2 + 3u3 + u4,

a polynomial with two non-real roots. Even if the first coefficient is removed, we get

4∑
k=2

sk(S4)uk = 3u2 + 3u3 + u4,

which still has two non-real roots.
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However, we obtain a central limit theorem for the distribution of subtree orders anal-
ogous to Godsil’s theorem under some technical conditions. Our approach is of a rather
different nature, and we hope that it might also prove useful to deal with other problems,
such as a conjecture of Alavi, Malde, Schwenk and Erdős [1] concerning the independence
polynomial of trees that parallels Question 1.1. Our main theorem can be stated as follows:

Theorem 1.2. Let T1, T2, . . . be a sequence of trees such that |Tn|, i.e. the number of
vertices of Tn, goes to infinity, the proportion of leaves among all vertices is bounded
below by a positive constant, and the length of the longest branchless path in Tn is at most
|Tn|1/2−ε for some fixed ε (and sufficiently large n). Then the order distribution of the
subtrees of Tn (suitably renormalised) converges weakly to a Gaussian distribution.

It is easy to find both examples and counterexamples for the normal distribution: for
instance, if Tn is an n-vertex star, then the distribution of the subtree orders is essentially
a binomial distribution, which converges to a Gaussian law. On the other hand, if one
considers the sequence of n-vertex paths, then the limit distribution is quite different. This
and other examples and counterexamples will be discussed in Section 2, where we also
show that the technical conditions of Theorem 1.2 are indeed important and also essentially
best possible.

The main part of the paper is organised as follows: we first obtain some auxiliary
results and prove two versions of our main theorem (a central and a local limit theorem, see
Theorem 4.8 and Theorem 4.10 respectively) for rooted trees in Section 4 before passing
on to unrooted trees in Section 5. Rooted trees are more accessible because one can use a
recursive approach, and we will see that an appropriate root can always be chosen in such
a way that most subtrees contain the root. In Section 6, we will see that in the “generic”
case of random trees, the conditions of our main theorem are satisfied, so that the Gaussian
distribution is indeed the typical limit distribution of subtree orders.

Notation. Throughout this paper, we make frequent use of the Vinogradov symbol �
interchangeably with the O-notation: f(T ) � g(T ) or f(T ) = O(g(T )) means that
f(T ) ≤ Kg(T ) for a suitable positive constant K and all (sufficiently large) trees T . If
further variables are included in anO-term, the constant K is always independent of those,
unless mentioned otherwise.

2 Examples and counterexamples
For a tree T , we let S(T ) denote the set of all subtrees of T , i.e. all connected induced sub-
graphs of T . The polynomial associated with this set, which we call the subtree polynomial
of T , is denoted by S(T, u):

S(T, u) =
∑

τ∈S(T )

u|τ |.

The total number of subtrees is clearly S(T, 1), for which we will simply write S(T ). Our
goal will be to prove central and local limit theorems for the coefficients of this polynomial.
Note also that Su(T, 1) = ∂

∂uS(T, u)
∣∣
u=1

is the total number of vertices in T ’s subtrees,
so Su(T, 1)/S(T ) is the mean subtree order. Likewise, the variance is given by

Suu(T, 1) + Su(T, 1)

S(T )
−
(
Su(T, 1)

S(T )

)2

. (2.1)
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Before we get to the proof of the main theorem, let us briefly discuss some examples
and counterexamples to illustrate its statement.

2.1 The star

If T = Sn is a star of order n, then every subtree either consists of the centre and an
arbitrary set of leaves, or it is a single leaf. Thus we have

S(T, u) = nu+

n∑
k=2

(
n− 1

k − 1

)
uk

and in particular S(T ) = 2n−1 + n − 1. We see that the distribution of subtree orders is
essentially a binomial distribution, which gives us a Gaussian distribution in the limit.

2.2 The path

The distribution of subtree orders of a path Pn turns out to be quite different: every subtree
is again a path and uniquely characterised by its endpoints. We obtain

S(Pn, u) =

n∑
k=1

(n− k + 1)uk.

If we divide the subtree orders by n and take the limit, we obtain a distribution whose
density is given by f(t) = 2(1− t) on the interval [0, 1].

The examples that we consider in the following are all constructed by suitably combin-
ing paths and stars. Depending on how this is done, a variety of different limit distributions
can be obtained. Of course, there does not even have to be a limit distribution at all: this is
not the case, for example, if we consider a sequence of trees of increasing orders, alternat-
ing between paths and stars.

2.3 The broom

The simplest possible combination of a star and a path is the broom, consisting of a path
of k vertices and ` leaves attached to one of its ends (the “centre” of the broom, denoted v
in Figure 1). Here, the limit as k + ` → ∞ depends very much on the relative sizes of k
and `. If k is fixed, then there is very little difference to a star, and we obtain a Gaussian
limit distribution. On the other hand, if ` is fixed, then we have essentially the same order
distribution as for a path (and exactly the same in the limit). As soon as ` grows faster
than log2 k, almost all subtrees contain the broom’s centre v (i.e., the proportion of such
subtrees tends to 1). This is because there are k2` subtrees containing it, as opposed to
O(k2 + `) not containing it.

Subtrees containing the centre v have a distribution that is a convolution of a binomial
distribution (stemming from the leaves attached to v) and a discrete uniform distribution
(stemming from the path). In the limit, the distribution with greater variance dominates.
Since the variances are of order k2 and ` respectively, we have three phases:

(i) k2/` → 0: the leaves dominate, and a suitably renormalised version of the order
distribution converges to a normal distribution.

(ii) k2/` → a > 0: the limit distribution is a convolution of a (continuous) uniform
distribution and a Gaussian distribution.
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(iii) k2/` → ∞ (but k/2` → 0): the long path dominates, and the renormalised order
distribution converges to a uniform distribution.

v

k vertices

` leaves

Figure 1: The broom.

2.4 The extended star

Figure 2 shows an extended star, obtained by attaching d (≥ 3) paths of length k to a
common vertex v. For fixed d, we obtain (by the same argument as in the previous example)
a convolution of d uniform distributions in the limit as k →∞. As soon as d also tends to
infinity, however, the limit is Gaussian again (showing that the conditions of Theorem 1.2
are important, but not strictly necessary).

v

d paths of lengh k

Figure 2: The extended star.

2.5 A discontinuous limit distribution

By suitably choosing the parameters of a double-star (see Figure 3), we can even obtain
a discontinuous limit distribution. Such a tree consists of a path of length k and leaves
attached to the two endpoints v1 and v2 (` and r leaves, respectively). We set ` = 3n,
r = n+ c for some constant c, and k = 2n. The same argument that we used for the broom
shows that almost all subtrees contain v1 in this case. The probability that v2 is contained
as well is easily found to be 2c/(1 + 2c) in the limit. In this case, the subtree order is
2n +O(n). Otherwise, it essentially follows a discrete uniform distribution on the interval
[1, 2n] (the leaves attached to v1 only playing a minor role). So if we divide the subtree
orders by 2n, we obtain a limit distribution that is a mix of the uniform distribution on [0, 1]
and a point measure at 1, which means that its distribution function has a discontinuity at 1.

We remark that another choice of parameters is interesting as well: if we set ` = r = 3n
and k = 2n, then almost all subtrees contain both v1 and v2 (and the probability that this
is not the case is as low as O(4−n)). Thus the subtree order distribution is essentially
a convolution of two binomial distributions, and the variance is O(n). This shows that
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v1 v2

length k

r leaves` leaves

Figure 3: The double-star.

the variance of the subtree order distribution can be as low (in order of magnitude) as the
logarithm of the order of the underlying tree, and we conjecture that it cannot be less, i.e.
that (2.1) is bounded below by K log |T | for some positive constant K. On the other hand,
the order of magnitude of the variance can be as high as |T |2, as the example of the path
shows.

2.6 Short branchless paths are insufficient

The two conditions of Theorem 1.2 (short branchless paths, many leaves) ensure that the
trees Tn are not too “path-like”. However, as we exhibit now, neither of the two conditions
suffices on its own to ensure a Gaussian limit distribution. The broom is a simple example
showing that even a proportion of leaves tending to 1 may not be enough: if we choose k
and ` such that ` = ak2 for some fixed constant a, then we obtain a convolution Gaussian-
Uniform in the limit rather than a pure normal distribution. This example also explains why√
|Tn| is the threshold for the length of branchless paths.
Finding a counterexample that satisfies the condition on paths, but does not have suf-

ficiently many leaves, is a little bit more complicated. It can be constructed as follows
(see Figure 4): fix positive constants α, β, γ such that β < α < 1

2 , α + γ = 1 and
2α > β + γ. Start with a central vertex v, which is connected to ` + 1 = bnγc vertices
w0, w1, w2, . . . , w` by paths of length bnαc. To each of these vertices except w0, we attach
bnβc leaves. Note that the order of the resulting tree Tn is |Tn| ∼ nα ·nγ = n, so that there
are no branchless paths of length |Tn|1/2−ε if ε < 1

2 − α and n is sufficiently large. On
the other hand, the number of leaves is L(Tn) ∼ nβ · nγ = o(n) (note, however, that the
exponent β + γ can be made arbitrarily close to 1 with an appropriate choice of α, β, γ).

The limit distribution is not Gaussian in this case: the same argument that we used in
previous examples shows that v, w1, w2, . . . , w` and thus also the paths connecting them
are part of almost all subtrees. The remaining “random” part is the same as for a broom
consisting of a path of length (approximately) nα and (approximately) nβ+γ leaves. Since
2α > β + γ by our choice, we are in the situation where the limit distribution as n → ∞
is uniform.

3 Preliminary results
Before we start with the actual proof of our main result, let us fix some notation and prove
some auxiliary inequalities.

3.1 Definitions and notation

Most of the time, we will be working with rooted trees, since they allow for a recursive
approach. Thus we first define an analogue of the polynomial S(T, u) for rooted trees.
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w0 v

w1

w2

w`−1

w`

length bnαc

bnβc leaves

Figure 4: The final counterexample.

Consider a tree T with root v0, and let S•(T ) be the set of all subtrees of T containing v0.
The generating polynomial for subtrees containing the root is denoted by S•(T, u):

S•(T, u) =
∑

τ∈S•(T )

u|τ |.

The main reason for considering this polynomial is the fact that it can be computed recur-
sively from the root branches. For a vertex v of T , we let T (v) be the branch of T rooted
at v (consisting of v and all its descendants). Suppose that v1, v2, . . . , vd are the root’s
children. It is not hard to see that S•(T, u) satisfies the following recursive formula:

S•(T, u) = S•(T (v0), u) = u

d∏
j=1

(1 + S•(T (vj), u)) . (3.1)

This follows from the fact that a subtree of T that contains the root v0 induces either the
empty tree or a subtree that contains vj in the branch T (vj) for each vj .

Notation. For the convenience of the reader we list some further notation that is used
throughout this paper:

(i) L(T ) and L(T ) are the set and the number of leaves, respectively.

(ii) I(T ) and I(T ) are the set and the number of interior vertices, respectively.

(iii) By a branchless path or 2-path, we mean a path in which all vertices, except for the
endpoints, have degree 2. We let P (T ) denote the maximum length of a 2-path of T .

Moreover, we use c0, c1, c2, . . . to denote absolute constants (that do not depend on the
specific tree or any of its parameters).

3.2 Two inequalities

We begin with the following simple but useful lemma, which provides two inequalities that
will be used repeatedly in the following section.
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Lemma 3.1. If T is a rooted tree with |T | ≥ 2, then

S•(T ) ≥ 2L(T ) and L(T ) ≥ |T |
2P (T )

.

Proof. Every subset A of L(T ) gives rise to a subtree obtained as the union of all paths
connecting the leaves in A to the root. If A is empty, we take the subtree consisting only of
the root as the corresponding subtree. This proves the first inequality.

For the proof of the second inequality, we let V2(T ) be the number of non-root vertices
of degree 2 and V≥3(T ) the number of non-root vertices of degree at least 3. Consider
all maximal 2-paths (not containing the root as an inner vertex in case that the root has
degree 2). To each such path, we can uniquely associate its endpoint that is further away
from the root, which is either a leaf or a (non-root) vertex of degree at least 3. Thus there
are L(T ) + V≥3(T ) such paths. Since the total number of edges, which is |T | − 1, is at
most P (T ) times the number of maximal 2-paths, we obtain

(L(T ) + V≥3(T ))P (T ) ≥ |T | − 1.

On the other hand, the handshake lemma gives us

2(L(T ) + V2(T ) + V≥3(T )) = 2(|T | − 1) ≥ L(T ) + 2V2(T ) + 3V≥3(T ) + 1,

the final 1 being the trivial lower bound for the root degree. Thus L(T ) ≥ V≥3(T )+1, and
consequently

2L(T )P (T ) ≥ (L(T ) + V≥3(T ) + 1)P (T ) ≥ (L(T ) + V≥3(T ))P (T ) + 1 ≥ |T |,

which is equivalent to the second inequality in the statement of the lemma.

4 Rooted trees
4.1 The moment generating function

In order to prove the central limit theorem for the order distribution of subtrees, we study
the associated moment generating function, first only for rooted trees. Note that

S•(T, u)

S•(T, 1)
=
S•(T, u)

S•(T )
=

1

S•(T )

∑
τ∈S•

u|τ |

is the probability generating function for the order of a randomly chosen subtree of T that
contains the root. Likewise,

S•(T, et)

S•(T )

is the moment generating function. For our purposes, it turns out to be useful to consider
an auxiliary function, denoted F (T, t). We define it recursively by F (T, t) = log(1 + et)
if |T | = 1 and

F (T, t) =
∑
j

F (T (vj), t) + f(T, t), (4.1)

where

f(T, t) = t+ log

(
1 +

1

S•(T, et)

)
. (4.2)
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Here and in the following, log will always denote the principal branch of the logarithm. In
view of (3.1), we have

1 + S•(T, et) = eF (T,t), (4.3)

as can be seen by a simple induction. As a first step, we show that S•(T, et) is bounded
away from 0 if t is sufficiently small, so that we can actually take the logarithm in (4.2).

Lemma 4.1. There exist absolute constants δ > 0 and c0 > 0 with the following property:
if T is a tree such that the lengths of the 2-paths of T are all bounded above by some
positive integer P (which can be a function of T ), then we have

|1 + S•(T, et)| ≥ ec0L(T ) (4.4)

whenever |t| ≤ δ
P . Moreover, the function f(T, t) as defined in (4.2) is analytic in the disk

defined by the inequality |t| ≤ δ
P .

Remark 4.2. It is important to bear in mind that t is complex in this context. If we
were to consider only real values of t, it would e.g. be trivial that |1 + S•(T, et)| =
1 + S•(T, et) > 1.

Proof. We will show that the statements of the lemma hold for the following explicit con-
stants:

δ = 0.001 and c0 = 0.012.

So we assume throughout this proof that δ is as defined above. We show first that the
inequality (4.4) implies analyticity of the function f(T, t) in (4.2). Note that

1 +
1

S•(T, et)
=

(
1− 1

1 + S•(T, et)

)−1

.

If |1 + S•(T, et)| ≥ ec0L(T ) ≥ ec0 , then 1 − 1
1+S•(T,et) lies inside the disk with centre 1

and radius e−c0 . Thus the reciprocal
(
1 − 1

1+S•(T,et)

)−1
lies inside the disk with centre

1
1−e−2c0

and radius e−c0

1−e−2c0
. The principal branch of the logarithm is an analytic function

inside this disk, so f(T, t) is analytic.
Now we prove (4.4). Let P be an arbitrary positive integer, and let T be a tree such that

no 2-path of T has length greater than P . The lemma is satisfied for |T | = 1: in this case,
we have S•(T, et) = et, and it is easily verified that

|1 + S•(T, et)| = |1 + et| ≥ 1 + e−δ > ec0

holds for |t| ≤ δ.
If 2 ≤ |T | ≤ 12P , then for every subtree τ of T we have |t||τ | ≤ 12δ. It follows that

Re(et|τ |) ≥ e−12δ cos(12δ). Therefore,∣∣∣1 +
∑

τ∈S•(T )

et|τ |
∣∣∣ ≥ 1 +

∑
τ∈S•(T )

Re
(
et|τ |

)
≥ e−12δ cos(12δ)

(
1 + S•(T )

)
. (4.5)
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Applying Lemma 3.1 to estimate the right side of (4.5), we have

|1 + S•(T, et)| =
∣∣∣1 +

∑
τ∈S•(T )

et|τ |
∣∣∣ ≥ e−12δ cos(12δ)2L(T )

≥ ec02L(T )−1 ≥ ec0ec0(L(T )−1) = ec0L(T ).

So the proof is complete in this case, and we assume from now on that |T | > 12P .
For each vertex v of T , we define

m(v, t) = |1 + S•(T (v), et)|.

Let v1, v2, . . . be v’s children. Using (3.1), we find that for |t| ≤ δ
P ,

m(v, t) ≥ e−δ/P
∏
j

m(vj , t)− 1. (4.6)

Let A be the set of vertices in “small branches”, defined formally as the set of all vertices
w of T for which |T (w)| ≤ 12P . Thus for every w ∈ A, the bound in (4.5) applies to the
branch T (w), and we have

m(w, t) =
∣∣∣1 +

∑
τ∈S•(T (w))

et|τ |
∣∣∣ ≥ e−12δ cos(12δ)

(
1 + S•(T (w))

)
. (4.7)

We define m0 = 2e−12δ cos(12δ) ≈ 1.976, so we can deduce from (4.7) that for every
w ∈ A

m(w, t) ≥ m0. (4.8)

The rest of the proof is divided into two parts: in the first part, we prove thatm(v, t) cannot
be too small when v is outside of A. In the second part, we use recursion (4.6) to complete
the proof of (4.4).

Part 1: We claim that m(v, t) ≥ 3P for all v ∈ T \A.
Assume that the claim is not true, and let w ∈ T \ A be a counterexample (i.e.,

m(w, t) < 3P ) with maximum distance from the root. In addition, let w0 = w,w1, . . . , wr
be the longest sequence of vertices (possibly, r = 0) such that none of these vertices lies
in A, wj+1 is wj’s only child for 0 ≤ j < r, and wr has either more than one child or a
single child that lies in A. Now consider two different cases:

(i) Suppose that all of wr’s children, which we denote by x1, x2, . . . , xd, lie in A. Since
wr 6∈ A, we have |T (wr)| > 12P , so at least one of these children is the root of a
branch of order at least 12P/d. Without loss of generality, |T (x1)| ≥ 12P/d. We
have

m(x1, t) ≥
m0

2

(
1 + S•(T (x1))

)
≥ m0

2
(1 + |T (x1)|) ≥ m0

2
· 12P

d

by (4.5); the inequality S•(T (x1)) ≥ |T (x1)| simply follows from the fact that
we can associate the path from the root, which is also a subtree, to each vertex.
Moreover, we know that m(x2, t), . . . ,m(xd, t) ≥ m0 by (4.8). Now (4.6) gives us

m(wr, t) ≥ e−δ/P ·
m0

2
· 12P

d
·md−1

0 − 1 = 6e−δ/P · m
d
0

d
· P − 1.
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Using the numerical values of δ andm0, one easily verifies thatmd
0 ≥ d for all d ≥ 1

and 6e−δ/P ≥ 6e−δ ≥ 11
2 . Hence,

m(wr, t) ≥
11P

2
− 1 ≥ 9P

2
.

(ii) Otherwise, wr has at least 2 children x1, x2, . . . , xd, at least one of which (without
loss of generality, x1) does not lie in A. By our choice of w as a counterexample to
our claim with maximum distance from the root, we havem(x1, t) ≥ 3P . Moreover,
m(xj , t) ≥ min(3P,m0) = m0 for all other children (the lower bound 3P applies
if xj 6∈ A, the lower bound m0 otherwise). It follows that

m(wr, t) ≥ e−δ/P · 3P ·md−1
0 − 1 ≥ 3m0e

−δ/P · P − 1 ≥ 11

2
P − 1.

Again, we obtain

m(wr, t) ≥
9P

2
.

Now note that w0, w1, . . . , wr is a branchless path, so that r ≤ P by definition. We
apply (4.6) repeatedly to wr−1, wr−2, . . . , w0 = w to obtain

m(w0, t) ≥
(
e−δ/P

)r
m(wr, t)−

r−1∑
k=0

e−δk/P ≥ e−δm(wr, t)− P ≥
(

9e−δ

2
− 1

)
P.

The last expression is greater than 3P by our choice of δ, and we reach a contradiction. So
the claim is proven.

Part 2: Now we complete the proof of (4.4). Taking the logarithm of inequality (4.6), we
obtain

logm(v, t) + log

(
1 +

1

m(v, t)

)
≥
∑
j

logm(vj , t)−
δ

P
. (4.9)

Note that the set A can be written as a disjoint union of the vertex sets of certain trees
T (y1), T (y2), . . . rooted at y1, y2, . . .. Iterating (4.9) from the root v0 to the vertices
y1, y2, . . . and applying (4.7) and Lemma 3.1 yields

logm(v0, t) ≥
∑
j

logm(yj , t)−
∑

v∈T\A

log

(
1 +

1

m(v, t)

)
− δ|T \A|

P

≥
∑
j

log
(m0

2
S•(T (yj))

)
−
∑

v∈T\A

log

(
1 +

1

m(v, t)

)
− δ|T \A|

P

≥
∑
j

log
(m0

2
2L(T (yj))

)
−
∑

v∈T\A

log

(
1 +

1

m(v, t)

)
− δ|T \A|

P
.

Furthermore, since m0 < 2 and the trees T (y1), T (y2), . . . contain all leaves of T , we have∑
j

log
(m0

2
2L(T (yj))

)
≥
∑
j

log
(
m
L(T (yj))
0

)
= log(m0)

∑
j

L(T (yj)) = log(m0)L(T ).
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Now recall that m(v, t) ≥ 3P for all v 6∈ A, which gives us∑
v∈T\A

log

(
1 +

1

m(v, t)

)
+
δ|T \A|

P
≤
(

log

(
1 +

1

3P

)
+
δ

P

)
|T \A|

≤
(1

3
+ δ
) |T |
P
.

Putting these bounds together, we obtain

logm(v0, t) ≥ log(m0)L(T )−
(

1

3
+ δ

)
|T |
P
.

From Lemma 3.1, we know that

L(T ) ≥ |T |
2P

.

Hence, we finally have

log |1 + S•(T, t)| = logm(v0, t) ≥
(

log(m0)− 2

3
− 2δ

)
L(T ).

The proof of (4.4) is completed by applying the exponential function on both sides of the
latter inequality and by noting that the constant log(m0)− 2

3−2δ is greater than c0 = 0.012
(defined at the beginning of the proof).

We have shown that f(T, t) and consequently F (T, t) can be regarded as complex
analytic functions in a disk around zero, so F (T, t) admits a Taylor expansion near zero,
which we are now going to investigate further. By (4.3), we have

µ(T ) =
d

dt
F (T, t)

∣∣∣
t=0

=
S•u(T )

1 + S•(T )

and

σ2(T ) =
d2

dt2
F (T, t)

∣∣∣
t=0

=
S•uu(T )

1 + S•(T )
+ µ(T )− µ2(T ),

where we use S•u(T ) as a shorthand for S•u(T, 1) = d
duS

•(T, u)
∣∣
u=1

in the same way as
S•(T ), and S•uu(T ) is defined analogously for the second derivative. The intuition behind
the notation µ(T ) and σ2(T ) is that these two quantities are essentially the average order of
subtrees in S•(T ) and the variance respectively, if we include an additional dummy subtree
of order 0 in the count (compare also the considerations at the beginning of Section 2). This
is asymptotically irrelevant and simplifies the following calculations.

For the rest of this section, we let γ be a fixed positive real number, let P be a positive
integer that represents an upper bound on the length of all 2-paths in T , and set

∆ =
δ

2P 1+γ
,

where δ = 0.001 is as defined in the proof of Lemma 4.1. It also follows from Lemma 4.1
that for every vertex v in T , the function F (T (v), t) is analytic in the disk centred at zero
with radius 2∆. So we can define the quantity

r(T ) = sup
0<|t|≤∆

∣∣∣∣∣F (T, t)− F (T, 0)− µ(T )t− σ2(T ) t
2

2

t3

∣∣∣∣∣ ,
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which represents the error in the second-order Taylor approximation of F (T, t). Then by
definition, for |t| ≤ ∆ we have

F (T, t) = F (T, 0) + µ(T )t+ σ2(T )
t2

2
+O

(
r(T )|t|3

)
. (4.10)

Next, we estimate the quantities σ2(T ) and r(T ). Note first that σ2(T ) satisfies the follow-
ing additive relation that one can easily deduce from its definition and (4.1):

σ2(T ) =
S•(T )

1 + S•(T )

∑
j

σ2(T (vj)) +
µ(T )2

S•(T )
. (4.11)

Moreover, the recursion (4.1) also yields

F (T, t)− F (T, 0)− µ(T )t− σ2(T )
t2

2
=

=
∑
j

(
F (T (vj), t)− F (T (vj), 0)− µ(T (vj))t− σ2(T (vj))

t2

2

)
+ f(T, t)− f(T, 0)− f ′(T, t)t− f ′′(T, t) t

2

2
,

so by the triangle inequality

r(T ) ≤
∑
j

r(T (vj)) + sup
0<|t|≤∆

∣∣∣∣∣f(T, t)− f(T, 0)− f ′(T, 0)t− f ′′(T, 0) t
2

2

t3

∣∣∣∣∣ ,
and since

f(T, t)− f(T, 0)− f ′(T, 0)t− f ′′(T, 0) t
2

2 =

∫ t

0

∫ u

0

∫ v

0

f ′′′(T,w) dw dv du,

we have
r(T ) ≤

∑
j

r(T (vj)) +
1

6
sup
|t|≤∆

|f ′′′(T, t)|. (4.12)

As in the proof of Lemma 4.1, we will now iterate (4.11) and (4.12) along the tree to obtain
a lower estimate for σ2(T ) and an upper estimate for r(T ). To this end, we introduce a
(now slightly different) notion of “small branches” again: we let B be the set of all vertices
w for which |T (w)| ≤ P 1+γ . Our first lemma gives an upper estimate for r(T ).

Lemma 4.3. We have

r(T )� |T |+
∑

v∈I(T )∩B

|T (v)|3

S•(T (v))
. (4.13)

Proof. Iterating (4.12), we have

r(T )� L(T ) +
∑

v∈I(T )\B

sup
|t|≤∆

|f ′′′(T (v), t)|+
∑

v∈I(T )∩B

sup
|t|≤∆

|f ′′′(T (v), t)|.

The term L(T ) on the right side bounds the contribution from the leaves. We now consider
two cases each estimating one of the sums above:
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(i) We first look at the case that v /∈ B. Cauchy’s integral formula yields, for |t| ≤ ∆,

f ′′′(T (v), t) =
3!

2πi

∮
C(t,∆)

f(T (v), z)− z
(z − t)4

dz,

where C(t,∆) is the circle centred at t with radius ∆. The integral representation of
f ′′′(T (v), t) gives us the bound

|f ′′′(T (v), t)| ≤ 6∆−3 sup
z∈C(t,∆)

|f(T (v), z)− z|

= 6∆−3 sup
z∈C(t,∆)

∣∣∣∣log

(
1 +

1

S•(T (v), ez)

)∣∣∣∣ .
Hence,

sup
|t|≤∆

|f ′′′(T (v), t)| ≤ 6∆−3 sup
|z|≤2∆

∣∣∣∣log

(
1 +

1

S•(T (v), ez)

)∣∣∣∣
≤ 6∆−3 sup

|z|≤ δ
P

∣∣∣∣log

(
1 +

1

S•(T (v), ez)

)∣∣∣∣ .
Now we can apply Lemma 4.1 to estimate |S•(T (v), ez)| for |z| ≤ δ

P (recall that
|S•(T (v), ez)| is bounded below by a constant greater than 1 in this case). We obtain

sup
|t|≤∆

|f ′′′(T (v), t)| � ∆−3e−c0L(T (v)).

The assumption v /∈ B implies |T (v)| > P 1+γ . In addition, we know that the lengths
of all branchless paths in T (v) are bounded above by P since T (v) is a branch of T ,
so by Lemma 3.1 we have

L(T (v)) ≥ |T (v)|
2P

>
1

2
P γ .

Therefore,

sup
|t|≤∆

|f ′′′(T (v), t)| � ∆−3e−
c0
2 P

γ

� P 3(1+γ)e−
c0
2 P

γ

,

which is bounded above by a constant (that depends on our choice of γ, but is inde-
pendent of P ). Thus ∑

v∈I(T )\B

sup
|t|≤∆

|f ′′′(T (v), t)| � |T |. (4.14)

(ii) If v ∈ I(T ) ∩ B, then the function f(T (v), z) is analytic in the closed disk centred
at zero with a slightly larger radius δ

|T (v)| (this is greater than ∆ since v ∈ B, i.e.
|T (v)| ≤ P 1+γ by definition). To see this, we can use the same argument that gave
us (4.5): for |z| ≤ δ

|T (v)| , we have

|S•(T (v), ez)| ≥ e−δ cos(δ)S•(T (v)), (4.15)
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which in turn is strictly greater than 1 by the choice we have made for δ and by the
fact that S•(T (v)) ≥ 2 since v ∈ I(T ). Now for any t such that |t| ≤ ∆, let C(t, R)
be the circle centred at t with radius R = δ

2|T (v)| . Note that C(t, R) lies in the region
of analyticity of the function f(T (v), z), since if z ∈ C(t, R), we have

|z| ≤ |t|+ |z − t| ≤ δ

2P 1+γ
+

δ

2|T (v)|
≤ δ

|T (v)|
.

Thus, by Cauchy’s integral formula, we have

f ′′′(T (v), t) =
3!

2πi

∮
C(t,R)

f(T (v), z)− z
(z − t)4

dz,

from which we deduce the bound

|f ′′′(T (v), t)| ≤ 48 δ−3|T (v)|3 sup
z∈C(t,R)

|f(T (v), z)− z|.

The right side can be estimated using (4.15):

sup
z∈C(t,R)

|f(T (v), z)− z| = sup
z∈C(t,R)

∣∣∣∣log

(
1 +

1

S•(T (v), ez)

)∣∣∣∣� 1

S•(T (v))

uniformly for |t| ≤ ∆. Therefore, we obtain

sup
|t|≤∆

|f ′′′(T (v), t)| � |T (v)|3

S•(T (v))
(4.16)

for v ∈ I(T ) ∩B.

The lemma follows by combining (4.14) and (4.16).

Let P(v) denote the set of all vertices on the path in T from v to the root v0 (excluding
v, but including v0). We define

η(v) =

{
1 if v = v0,∏
w∈P(v)

S•(T (w))
1+S•(T (w)) otherwise.

Lemma 4.4. Suppose that L(T ) ≥ λ|T | for some fixed constant λ > 0. We have

σ2(T )� |T |+
∑

v∈I(T )∩B

η(v)
|T (v)|2

S•(T (v))
. (4.17)

The implied constant only depends on λ.

Proof. Iterating (4.11) (and noting that σ2(T ) = 1
4 > 0 if |T | = 1), we obtain

σ2(T )�
∑

v∈L(T )

η(v) +
∑

v∈I(T )

η(v)
µ(T (v))2

S•(T (v))

≥
∑

v∈L(T )

η(v) +
∑

v∈I(T )∩B

η(v)
µ(T (v))2

S•(T (v))
.
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It was shown by Jamison in [5] that the average cardinality of a subtree containing the root
of a rooted tree of order n is at least (n+ 1)/2, so

S•u(T (v))

S•(T (v))
≥ |T (v)|+ 1

2
,

which implies that

µ(T (v)) =
S•u(T (v))

S•(T (v))
· 1

1 + S•(T (v))−1
≥ |T (v)|+ 1

2
· 1

1 + |T (v)|−1
=
|T (v)|

2
.

So it remains to show that ∑
v∈L(T )

η(v)� |T |. (4.18)

To this end, we define a set of “exceptional branches” in such a way that η(v) is bounded
below by an explicit constant unless v lies in one of these branches. Choose two constants
β ∈ (0, 1) and K > (λ/2)−1/β , and let z1, z2, . . . , zM be the vertices that satisfy

L(T (zj)) ≤ |T (zj)|1−β and |T (zj)| ≥ K

and are closest to the root with this property (in the sense that no vertex on the path from
the root to zj satisfies both inequalities). We set Ej = T (zj) and let E be the union of all
Ej . Now take any leaf v that does not lie in E, and let v′ be its ancestor closest to the root
that satisfies |T (v′)| < K (possibly, v′ = v). Now we split the product that defines η(v) as
follows:

η(v) =
∏

w∈P(v)

1

1 + S•(T (w))−1

=
∏

w∈P(v)\P(v′)

1

1 + S•(T (w))−1

∏
w∈P(v′)

1

1 + S•(T (w))−1
.

There are at most K vertices in P(v) \ P(v′) since the set P(v) \ P(v′) lies entirely in
T (v′). In addition, for every w we have the trivial bound 1 +S•(T (w))−1 ≤ 2. Therefore,∏

w∈P(v)\P(v′)

1

1 + S•(T (w))−1
≥ 2−K .

Furthermore, for every vertex w on the path from the root to v′, we must have |T (w)| ≥ K
by the choice of v′, and L(T (w)) > |T (w)|1−β since v does not lie in E. Recall from
Lemma 3.1 that S•(T (w)) ≥ 2L(T (w)). Hence we have

η(v) ≥ 2−K
∏

w∈P(v′)

(
1 + 2−L(T (w))

)−1

≥ 2−K
∏

w∈P(v′)

(
1 + 2−|T (w)|1−β

)−1

≥ 2−K
∏
j≥K

(
1 + 2−j

1−β
)−1

.
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Note that the infinite product converges. So we can deduce that η(v) is bounded below by
a constant that only depends on β and K unless v ∈ E. Consequently,∑

v∈L(T )

η(v)� |L(T ) \ E|. (4.19)

We will see that E cannot contain more than half of the leaves. We may assume that E is
non-empty, for otherwise this statement is trivial. So let us assume that

M∑
j=1

L(Ej) >
L(T )

2
≥ λ

2
|T |.

By the definition of the branches E1, E2, . . . , EM , this gives us

M∑
j=1

|Ej |1−β ≥
λ

2
|T |.

On the other hand, since E1, E2, . . . , EM are pairwise disjoint, we also have

M∑
j=1

|Ej | ≤ |T |.

Since we are assuming that E is non-empty, we have M 6= 0. Hence, by Jensen’s inequal-
ity,

λ

2
|T | ≤

M∑
j=1

|Ej |1−β ≤M

(∑M
j=1 |Ej |
M

)1−β

≤M
(
|T |
M

)1−β

.

It follows that
M ≥ (λ/2)1/β |T |.

On the other hand, each Ej contains at least K vertices, so we have

|T | ≥
M∑
j=1

|Ej | ≥MK.

Combining the last two inequalities, we obtain

K ≤ (λ/2)−1/β , (4.20)

which contradicts the choice of K. This means that |E| ≤ L(T )/2, so (4.19) finally yields∑
v∈L(T )

η(v)� L(T )� |T |,

which completes the proof. Note that the implied constant does indeed only depend on λ
(and our choice of β and K, which was arbitrary).

To make use of the previous lemma, we also need to bound η(v) from below for
v ∈ I(T ) ∩B, which is achieved by the following lemma:
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Lemma 4.5. For every vertex v ∈ T and every vertex v′ ∈ P(v), we have

η(v) ≥ η(v′)
|T (v)|

2|T (v′)|
.

Proof. The statement is void if v is the root v0, so we assume from now on that v is not
the root. Let v′ = w0, w1, w2, . . . , wk = v be the vertices of the path connecting v′ and v
(which form part of the path connecting v0 and v). By definition, we have

η(v)

η(v′)
=

k−1∏
j=0

S•(T (wj))

1 + S•(T (wj))
.

Clearly, S•(T (wj)) ≥ 1 + S•(T (wj+1)) for j = 0, 1, . . . , k − 1; iterating further, we
obtain

S•(T (wj)) ≥ k − j + S•(T (v)).

So we have, for j = 0, 1, . . . , k − 1,

S•(T (wj))

1 + S•(T (wj))
≥ k − j + S•(T (v))

1 + k − j + S•(T (v))
,

and it follows that

η(v)

η(v′)
≥
k−1∏
j=0

k − j + S•(T (v))

1 + k − j + S•(T (v))
=

1 + S•(T (v))

1 + k + S•(T (v))
≥ S•(T (v))

k + S•(T (v))
.

Now we consider two cases:

(i) First, if S•(T (v)) ≥ k then

η(v)

η(v′)
≥ S•(T (v))

k + S•(T (v))
≥ 1

2
≥ |T (v)|

2|T (v′)|
.

(ii) Otherwise, if S•(T (v)) < k, then

η(v)

η(v′)
≥ S•(T (v))

2k
≥ |T (v)|

2|T (v′)|
.

The last inequality holds because S•(T (v)) ≥ |T (v)| and |T (v′)| > k (the latter
since T (v′) contains the k + 1 vertices w0, w1, . . . , wk).

Hence, the lemma follows.

The bound on η(v) is now used to bound r(T ) in terms of σ2(T ).

Lemma 4.6. Suppose that L(T ) ≥ λ|T | for a fixed constant λ > 0. We have

r(T )� P 1+γσ2(T ).

The constant implied in this estimate depends on λ and γ, but nothing else, in particular
not on P .
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Proof. Recall that B consists of all vertices w for which T (w) ≤ P 1+γ . We write B as
the disjoint union of branches T (y1), T (y2), . . .. If v lies on the path connecting the root
v0 and one of the yj , then by definition we have

|T (v)| > P 1+γ .

By Lemma 3.1, this implies

L(T (v)) ≥ |T (v)|
2P

≥ |T (v)|
2|T (v)|1/(1+γ)

=
1

2
|T (v)|γ/(1+γ).

Using this inequality, we can argue as in the proof of (4.19) that η(yj) is bounded below
by an absolute constant for every j. Applying Lemma 4.5, we deduce that for v ∈ T (yj),

η(v)� |T (v)|
|T (yj)|

≥ |T (v)|
P 1+γ

.

Therefore,

∑
v∈I(T )∩B

η(v)
|T (v)|2

S•(T (v))
=
∑
j

∑
v∈I(T (yj))

η(v)
|T (v)|2

S•(T (v))

� P−1−γ
∑

v∈I(T )∩B

|T (v)|3

S•(T (v))
.

The desired statement now follows from Lemma 4.3 and Lemma 4.4.

As a consequence of Lemma 4.6, we now obtain the required information on the Taylor
expansion of F (T, t).

Proposition 4.7. Let δ = 0.001 be as previously defined, and let λ, γ > 0 be fixed con-
stants. If L(T ) ≥ λ|T |, then we have

F (T, t) = F (T, 0) + µ(T )t+ σ2(T )
t2

2
+O

(
P (T )1+γσ2(T )|t|3

)
(4.21)

for |t| ≤ δ
2P (T )1+γ , where the constant implied in the O-term only depends on λ and γ.

Proof. This statement follows directly from Lemma 4.6 and (4.10).

4.2 Central limit theorem

We are now ready to prove the central limit theorem for the order distribution of subtrees.

Theorem 4.8. Let T1, T2, . . . be a sequence of rooted trees such that |Tn| → ∞ as n→∞
and the following two conditions are satisfied for all sufficiently large n:

(i) P (Tn) ≤ |Tn|
1
2−ε for some constant ε > 0,

(ii) L(Tn) ≥ λ|Tn| for some constant λ > 0.
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Then the distribution of the random variableX•n, defined as the order of a randomly chosen
subtree of Tn containing the root, is asymptotically Gaussian. More precisely, if Φ•n(x)
denotes the distribution function of the renormalised random variable

Y •n =
X•n − µ(Tn)

σ(Tn)
,

then we have the following estimate for the speed of convergence:

sup
x∈R

∣∣∣∣Φ•n(x)− 1√
2π

∫ x

−∞
e−t

2/2dt

∣∣∣∣ = O
(
|Tn|−α

)
(4.22)

for every positive constant α < ε/3. The constant implied in the O-term only depends on
α and λ.

Proof. For ease of notation, we drop the dependence on n. Recall that the moment gener-
ating function of X• = X•n is

E
(
etX

•
)

=
S•(T, et)

S•(T )
.

Instead of working directly with X•, we use the modified random variable X∗ = X∗n that
also includes an empty dummy subtree. The moment generating function of this random
variable is given by

E
(
etX

∗
)

=
1 + S•(T, et)

1 + S•(T )
,

and if Y ∗ = Y ∗n = (X∗n − µ(Tn))/σ(Tn) is the associated renormalised random variable,
it is easy to see that the distribution functions Φ• of Y • and Φ∗ of Y ∗ differ only by very
little:

|Φ•(x)− Φ∗(x)| ≤ 1

1 + S•(T )
(4.23)

for all x ∈ R, so it is sufficient to prove the estimate for Φ∗ instead of Φ•. The condition
L(T ) ≥ λ|T | implies

σ2(T )� |T |

by Lemma 4.4, in particular σ(T )→∞ as |T | → ∞. The moment generating function of
the renormalised random variable Y ∗ is

E
(
etY

∗
)

= e−µ(T )t/σ(T )E
(
etX

∗/σ(T )
)

= exp

(
−µ(T )t

σ(T )
+ F

(
T,

t

σ(T )

)
− F (T, 0)

)
.

The expansion in Proposition 4.7 gives us

F

(
T,

t

σ(T )

)
= F (T, 0) +

µ(T )

σ(T )
t+

t2

2
+O

(
P (T )1+γ√
|T |

|t|3
)

and thus

E
(
etY

∗
)

= exp

(
t2

2
+O

(
P (T )1+γ√
|T |

|t|3
))

(4.24)
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if |t| ≤ δσ(T )
2P (T )1+γ . Note that we can choose γ freely here (the choice affects theO-constant,

though). The condition P (T ) ≤ |T | 12−ε allows us to choose γ in such a way that

P (T )1+γ√
|T |

→ 0.

Therefore,

E
(
etY

∗
)
−→ et

2/2

for any fixed t as n→∞, which would already prove a central limit theorem. For the pre-
cise error estimate, we use the following Berry-Esseen type inequality [10, Theorem 5.1]:

sup
x∈R

∣∣∣∣Φ∗(x)− 1√
2π

∫ x

−∞
e−t

2/2dt

∣∣∣∣ ≤ c1 ∫ M

−M

∣∣∣∣∣ϕT (t)− e−t2/2

t

∣∣∣∣∣ dt+
c2
M

for certain absolute constants c1, c2, where

ϕT (t) =

∫ ∞
−∞

eitydΦ∗(y) = E
(
eitY

∗
)
.

In view of (4.24), we have

∣∣∣ϕT (t)− e−t
2/2
∣∣∣� |t|3e−t2/2P (T )1+γ√

|T |

if |t|3 = O
(√
|T |/P (T )1+γ

)
. Therefore,

sup
x∈R

∣∣∣∣Φ∗(x)− 1√
2π

∫ x

−∞
e−t

2/2dt

∣∣∣∣ = O

(
P (T )1+γ√
|T |

+
1

M

)

for any M satisfying M3 = O
(√
|T |/P (T )1+γ

)
. We choose

M =

( √
|T |

P (T )1+γ

)1/3

and γ in such a way that

1

M
=

(
P (T )1+γ√
|T |

)1/3

≤

(
|T |(1+γ)(1/2−ε)√

|T |

)1/3

= |T |γ(1−2ε)/6−ε/3 ≤ |T |−α.

Note finally that the difference between Φ•(x) and Φ∗(x) is uniformly bounded above by
S•(T )−1 in view of (4.23). Since S•(T ) ≥ |T | ≥ |T |α, this completes the proof.



150 Ars Math. Contemp. 14 (2018) 129–156

4.3 Local limit theorem

Now that we have established a central limit theorem, it is natural to ask whether a local
limit theorem for single coefficients of S•(T, u) also holds. To be precise, given a sequence
of rooted trees T1, T2, . . . satisfying both properties of Theorem 4.8, can we give an esti-
mate for the number of subtrees of order k, for values of k around the mean µ(Tn)? In this
section, we show that it is indeed possible to obtain such a result. Before we come to the
proof, an estimate for |S•(T, u)| when u lies on the unit circle is required. This is precisely
what we state in the next lemma.

Lemma 4.9. Let λ, γ > 0 be fixed constants, and suppose that L(T ) ≥ λ|T |. There exist
constants δ1, c3, c4 depending on λ, γ such that, with

∆1 =
δ1

2P (T )1+γ
,

we have
|1 + S•(T, eit)|

1 + S•(T )
≤

{
e−c3t

2σ(T )2 if t ∈ [−∆1,∆1],

e−c4t
2|T | for all t ∈ [−π, π].

Proof. The bound corresponding to |t| ≤ ∆1 follows easily from Proposition 4.7 for suffi-
ciently small δ1 ≤ δ (= 0.001). Thus it suffices to prove the second bound.

Recall that we have

S•(T, eit) =

d∏
j=1

(1 + S•(T (vj), e
it))

if v1, v2, . . . , vd are the root’s children, and consequently

∣∣1 + S•(T, eit)
∣∣ ≤ 1 +

d∏
j=1

∣∣1 + S•(T (vj), e
it)
∣∣. (4.25)

This motivates the definition of a polynomial R(T, x) (for positive real x) that is similar to
S•(T, u): it is given by R(T, x) = x for |T | = 1 and the recursion

R(T (v), x) = 1 +

d∏
j=1

R(T (vj), x). (4.26)

In view of (4.25), we have ∣∣1 + S•(T, eit)
∣∣ ≤ R(T, |1 + eit|) (4.27)

and 1 + S•(T, 1) = 1 + S•(T ) = R(T, 2). Note that R(T, x) is a polynomial of degree
L(T ) with positive coefficients. Therefore, it is a strictly increasing function of x, and it
admits the trivial lower bound

R(T, x) ≥ xL(T ) (4.28)

for all positive x. We also define the function G(T, x) = log(R(T, x)), which satisfies the
recurrence

G(T, x) =

d∑
j=1

G(T (vj), x)− log

(
1− 1

R(T, x)

)
, (4.29)
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where G(T, x) = log x (and thus G′(T, x) = x−1) if T only has one vertex. In order to
estimate S•(T, eit) by means of (4.27), we establish a bound for the difference G(T, 2)−
G(T, x) for x in the interval [

√
2, 2]. By the mean value theorem, there exists some

y ∈ [x, 2] such that
G(T, 2)−G(T, x) = (2− x)G′(T, y).

It is not hard to see from (4.26) that the derivative G′(T, y) satisfies

G′(T, y) =
R(T, y)− 1

R(T, y)

d∑
j=1

G′(T (vj), y). (4.30)

We essentially use the same argument as in the proof of Lemma 4.4 to bound G′(T, y)
from below. Iterating (4.30) starting from the root of T down to the leaves, we obtain, with

ξ(v, y) =

{
1 if v is the root of T,∏
w∈P(v)

R(T (w),y)−1
R(T (w),y) otherwise,

that
G′(T, y) = y−1

∑
v∈L(T )

ξ(v, y).

Recall that we are assuming x ∈ [
√

2, 2] and thus also y ∈ [
√

2, 2]. Since R(T (v), y) ≥
yL(T (v)) ≥ 2L(T (v))/2, the same argument that gave us (4.18) now yields

G′(T, y) ≥ 1

2

∑
v∈L(T )

ξ(v, y)�
∑

v∈L(T )

ξ(v, y)� |T |.

This implies that there exists a positive constant c5 such that

G(T, x)−G(T, 2) ≤ c5(x− 2)|T |.

Equivalently, if
√

2 ≤ x ≤ 2, then

R(T, x)

R(T, 2)
≤ ec5(x−2)|T |. (4.31)

To complete the proof, recall that (by (4.27)) |1 + S•(T, eit)| is bounded above by
R(T, |1 + eit|) while R(T, 2) = 1 + S•(T ). For |t| ≤ π/2, we have |1 + eit| ≥

√
2

and
|1 + eit| − 2 = 2(cos t2 − 1) ≤ − 2

π2
t2,

thus
|1 + S•(T, eit)|

1 + S•(T )
≤ R(T, |1 + eit|)

R(T, 2)
≤ e−(2c5/π

2)t2|T | ≤ e−c4t
2|T |

if we choose c4 ≤ 2c5/π
2. For the case that |t| ≥ π/2, we simply note that R(T, x) is an

increasing function of x, so that

|1 + S•(T, eit)|
1 + S•(T )

≤ R(T, |1 + eit|)
R(T, 2)

≤ R(T,
√

2)

R(T, 2)
≤ e−c5(2−

√
2)|T | ≤ e−c4t

2|T |

if we choose c4 ≤ (2−
√

2)c5/π
2. This completes the proof.
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Now we have all required ingredients for a local limit theorem. In the following, we let
s•k(T ) denote the number of subtrees of order k in T that contain the root, so that

S•(T, u) =

|T |∑
k=1

s•k(T )uk.

Theorem 4.10. Suppose that the sequence T1, T2, . . . of rooted trees satisfies the conditions
of Theorem 4.8. If k = µ(Tn) + xσ(Tn), then we have

s•k(Tn)

S•(Tn)
∼ e−x

2/2

√
2πσ(Tn)

,

uniformly for x in any fixed compact interval as n→∞.

Proof. Once again, we drop the index n for convenience. By Cauchy’s integral formula,
the number s•k(T ) can be expressed as

s•k(T ) =
1

2πi

∮
C(0,1)

(
1 + S•(T, z)

) dz

zk+1
,

where C(0, 1) is the unit circle. If we set z = eit, then we obtain

s•k(T ) =
1

2π

∫ π

−π

(
1 + S•(T, eit)

)
e−ikt dt.

Choose γ > 0 and κ > 0 in such a way that γ/2 + 3κ < ε, and set M = |T |κ/σ(T ). We
split the integral into two parts: the central part

1

2π

∫ M

−M

(
1 + S•(T, eit)

)
e−iktdt,

and the rest. Recall that we are assuming P (T ) ≤ |T |1/2−ε and that we have already
established σ(T )2 � |T |. Since

∆1

M
=

δ1σ(T )

2P (T )1+γ |T |κ
� |T |1/2−κ−(1/2−ε)(1+γ) � |T |ε−γ/2−κ

is greater than 1 for sufficiently large |T |, we have M ≤ ∆1 = δ1
2P (T )1+γ , so we can apply

Proposition 4.7, which gives us, for |t| ≤M ,

1 + S•(T, eit) = exp(F (T, it))

= exp
(
F (T, 0) + iµ(T )t− σ2(T )

t2

2
+O

(
|T |3κ+(1/2−ε)(1+γ)−1/2

))
= exp

(
F (T, 0) + iµ(T )t− σ2(T )

t2

2

)(
1 +O

(
|T |−(ε−γ/2−3κ)

))
.

We plug in k = µ(T ) + xσ(T ) and obtain

1

2π

∫ M

−M

(
1 + S•(T, eit)

)
e−iktdt =

1

2π

∫ M

−M
eF (T,0)−ixσ(T )t−σ2(T )t2/2 dt

+O

(
|T |−(ε−γ/2−3κ)

∫ M

−M
eF (T,0)−σ2(T )t2/2 dt

)
.
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Since we have∫ M

−M
eF (T,0)−ixσ(T )t−σ2(T )t2/2 dt =

√
2π

σ(T )e
F (T,0)−x2/2 +O

(∫ ∞
M

eF (T,0)−σ2(T )t2/2 dt
)

=
√

2π
σ(T )e

F (T,0)−x2/2 +O
(
eF (T,0)−σ2(T )M2/2

)
=
√

2π
σ(T )e

F (T,0)−x2/2 +O
(
eF (T,0)−|T |2κ/2

)
,

and eF (T,0) = 1 + S•(T ), we end up with

1

2π

∫ M

−M

(
1 + S•(T, eit)

)
e−iktdt = S•(T )

e−x
2/2

√
2πσ(T )

(
1 +O

(
|T |−(ε−γ/2−3κ)

))
.

For the remaining integrals, where |t| ≥ M , we use the estimates from Lemma 4.9. For
|t| ≤ ∆1 = δ1

2P (T )1+γ , they give us

|1 + S•(T, eit)|
1 + S•(T )

≤ e−c3M
2σ(T )2 = e−c3|T |

2κ

,

and for |t| ≥ ∆1, we get

|1 + S•(T, eit)|
1 + S•(T )

≤ e−c4∆2
1|T | ≤ e−δ

2
1c4|T |

1−(1−2ε)(1+γ)/4 ≤ e−δ
2
1c4|T |

2ε−γ/4.

Since these decay faster than any power of T , the parts of the integral for which |t| ≥ M
will only contribute to the error term. In summary, we have

s•k(T )

S•(T )
=

e−x
2/2

√
2πσ(Tn)

(
1 +O

(
|T |−(ε−γ/2−3κ)

))
,

which completes the proof.

Remark 4.11. Theorem 4.10 provides a positive answer to Question 1.1 in an asymptotic
sense for large rooted trees (and as we will see in the following section, also unrooted
trees) without vertices of degree 2, since both technical conditions are trivially satisfied in
this case.

5 Unrooted trees
Now that we have established both a central and a local limit theorem for the number of
subtrees containing the root of a rooted tree, we would like to carry the results over to un-
rooted trees as well. This is achieved by means of the following lemma, which guarantees
the existence of a vertex that is contained in most subtrees:

Lemma 5.1. For every tree T , there exists a vertex v of T such that the proportion of
subtrees of T that do not contain v is at most |T |2−L(T )/2.

Proof. Let v be a vertex that minimises the sum of the distances to all leaves, i.e. the
expression

∑
w∈L(T ) d(v, w) attains its minimum (this is called a “leaf centroid” in [17],
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in analogy to the centroid). Let T1, T2, . . . , Tk be the branches of T , rooted at v, and
v1, v2, . . . , vk the corresponding neighbours of v. The important observation about v is
that none of the branches can contain more than half of the leaves: if Tj contains more than
L(T )/2 leaves, then we have∑

w∈L(T )

d(v, w) >
∑

w∈L(T )

d(vj , w),

since d(vj , w) = d(v, w) − 1 if w is in Tj , and d(vj , w) = d(v, w) + 1 otherwise. This
would contradict the choice of v.

Let τ be a subtree of T that does not contain v. It must then be completely con-
tained in some branch Tj . It has a unique vertex closest to v, which we denote by w. We
can associate 2|L(T )∩(T\Tj)| ≥ 2L(T )/2 subtrees to τ that contain v, obtained by adding
the path from w to v as well as all non-leaves not contained in Tj and any subset of the
|L(T ) ∩ (T \ Tj)| leaves that do not lie in Tj . Finally, we root the resulting subtrees at w.

Let the total number of subtrees of T be denoted by S(T ) and the number of those
subtrees not containing v by S◦(T ). The construction above yields at least 2L(T )/2 rooted
subtrees of T associated with every subtree τ that does not contain v. The original tree τ
can be recovered uniquely from such a tree σ: it consists of the root w of σ and all vertices
for which the unique path from v passes through w. Thus our construction is an injection
to the set of rooted subtrees of T (whose cardinality is clearly at most |T |S(T )), and we
obtain the inequality

S◦(T ) · 2L(T )/2 ≤ |T | · S(T ),

from which the statement of the lemma follows.

Our main theorem now follows immediately both in the central and local version:

Theorem 5.2. Let T1, T2, . . . be a sequence of trees such that |Tn| → ∞ as n → ∞ and
the following two conditions are satisfied:

(i) P (Tn) ≤ |Tn|
1
2−ε for some constant ε > 0,

(ii) L(Tn) ≥ λ|Tn| for some constant λ > 0.

Then the distribution of the random variableXn, defined as the order of a randomly chosen
subtree of Tn, is asymptotically Gaussian. More precisely, if Φn(x) denotes the distribution
function of the renormalised random variable

Yn =
Xn − E(Xn)√

V(Xn)
,

then we have the following estimate for the speed of convergence:

sup
x∈R

∣∣∣∣Φn(x)− 1√
2π

∫ x

−∞
e−t

2/2dt

∣∣∣∣ = O
(
|Tn|−α

)
, (5.1)

for any positive constant α < ε/3. The constant implied in the O-term only depends on α
and λ. Moreover, if k = E(Xn) + x

√
V(Xn) ∈ N, then we have the local limit theorem

P(Xn = k) ∼ e−x
2/2√

2πV(Xn)
,

uniformly for x in any fixed compact interval.
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Proof. As in the proofs of Theorem 4.8 and Theorem 4.10, we suppress the dependence
on n for ease of notation. Choose v as in Lemma 5.1, and let X(v) be the random variable
defined as the order of a randomly selected subtree of T containing v. By Lemma 5.1, the
total variation distance between the two random variables X = Xn and X(v), which is
defined as

sup
A

∣∣P(X(v) ∈ A)− P(X ∈ A)
∣∣,

is O(|T |/2L(T )/2). In view of our assumption on the number of leaves, this goes to 0
even at an exponential rate. Letting µ(T ) and σ2(T ) be defined as before for the tree T
rooted at v, it is also easy to see by the same argument that E(X) = µ(T ) + O(1) and
V(X) = σ2(T ) + O(1) (in fact, both error terms can be made exponentially small). The
two statements now follow directly from Theorem 4.8 and Theorem 4.10.

6 Random trees
The technical conditions of Theorems 4.8, 4.10 and 5.2 are not satisfied for all possible
sequences of trees, but they do hold for “generic” (randomly chosen) trees. In fact, it was
shown in [11] that the length of the longest branchless path of a random labelled tree of
order n is concentrated around log n for large n (with a limit distribution of double expo-
nential type), and the number of leaves of a random labelled tree of order n is concentrated
around n/e (with a Gaussian limit distribution, see e.g. [2, Section 3.2.1]). Analogous
statements (with different constants) hold for other families of random trees (e.g. random
plane trees, random binary trees).

If Tn denotes a random labelled tree of order n for n = 1, 2, . . ., then a simple applica-
tion of the Borel-Cantelli Lemma shows that the conditions of Theorem 5.2 with arbitrary
ε < 1

2 and λ < 1
e are satisfied for all but finitely many Tj almost surely (for both condi-

tions, it is not difficult to obtain bounds for the probability that they are not satisfied that
go to 0 faster than any power of n). Thus we obtain the following theorem:

Theorem 6.1. Let T1, T2, . . . be a sequence of uniformly random labelled trees, where the
order of Tn is n, let Xn denote the order of a randomly chosen subtree of Tn, and let Φn
be the distribution function of the renormalised random variable

Xn − E(Xn)√
V(Xn)

.

We have

sup
x∈R

∣∣∣∣Φn(x)− 1√
2π

∫ x

−∞
e−t

2/2dt

∣∣∣∣→ 0

as n→∞ almost surely.

Informally, this means that the distribution of subtree orders is close to a Gaussian
distribution for almost all trees. We remark that the average subtree order of a random
labelled tree Tn of order nwas shown to follow a Gaussian limit distribution itself (see [15]
for details).
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[13] L. A. Székely and H. Wang, Binary trees with the largest number of subtrees, Discrete Appl.
Math. 155 (2007), 374–385, doi:10.1016/j.dam.2006.05.008.

[14] A. Vince and H. Wang, The average order of a subtree of a tree, J. Combin. Theory Ser. B 100
(2010), 161–170, doi:10.1016/j.jctb.2009.05.006.

[15] S. Wagner, Additive tree functionals with small toll functions and subtrees of random trees, in:
N. Broutin and L. Devroye (eds.), 23rd International Meeting on Probabilistic, Combinatorial,
and Asymptotic Methods for the Analysis of Algorithms (AofA’12), volume AQ of DMTCS
Proc., pp. 67–80, 2012, https://hal.inria.fr/hal-01197234/.

[16] S. Wagner and H. Wang, On the local and global means of subtree orders, J. Graph Theory 81
(2016), 154–166, doi:10.1002/jgt.21869.

[17] H. Wang, Centroid, leaf-centroid, and internal-centroid, Graphs Combin. 31 (2015), 783–793,
doi:10.1007/s00373-013-1401-1.

[18] W. Yan and Y.-N. Yeh, Enumeration of subtrees of trees, Theor. Comput. Sci. 369 (2006), 256–
268, doi:10.1016/j.tcs.2006.09.002.


