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Abstract

In the present study, principal component analysis (PCA) followed by principal component regression (PCR) and par-
tial least squares (PLS) method was applied in order to identify the most important in silico molecular descriptors and
quantify their influence on antifungal activity (expressed as minimal inhibitory concentration) of selected benzoxazole
and oxazolo[4,5-b]pyridine derivatives against Candida albicans. PLS regression showed the best statistical performan-
ce, according to the lowest value of the standard error (root mean square errors of calibration of 0.02526 and cross-vali-
dation of 0.04533), while PCR model was characterized by root mean square errors of calibration of 0.03176 and cross-
validation of 0.05661. The most important descriptors in both PLS and PCR model are solubility in water, expressed as
AClogS and ABlog$, and lipophilicity, expressed as XlogP2 and ABlogP. Very good predictive ability of the established
models, confirmed by corresponding statistical parameters, allows us to estimate antifungal activity of structurally simi-
lar compounds.

Keywords: QSAR analysis; Principal component regression; Partial least squares; Candida albicans; Heterocyclic

compounds.

1. Introduction

Candida albicans is one of the most common fungal
opportunistic pathogen of humans that can cause local,
systemic and superficial mucosal infections (especially
gastrointestinal, oral, respiratory and genital infections) in
immunocompromised individuals, such as patients suffe-
ring from AIDS, leukemia or diabetes. Candidiasis, an in-
fection caused by Candida species, is usually treated with
antifungal drugs: amphotericin B, fluconazole, ketocona-
zole and nystatin.' Because of the increasing incidence of
both fungal infections and antifungal drug resistance,
synthesis and analysis of some novel antifungal com-
pounds are welcome.

Benzoxazoles and oxazolo[4,5-b]pyridines, as ana-
logues of benzimidazole, are well known to the chemists,
mainly due to their wide spectrum of antimicrobial pro-
perties.”® It is also determined that these molecules are
present in a variety of herbicidal, antihelmintic, antioxi-

dant and antitumoral agents.””'" Antimicrobial activity of
studied compounds is expressed as minimal inhibitory
concentration (MIC) defined as the lowest concentration
of the compound at which no growth of the strain is obser-
ved in time and under specified experimental conditions.
Prediction of antimicrobial activity of compounds,
based on their structural characteristics, is a very impor-
tant and fundamental issue of pharmaceutical chemistry.
Quantitative structure-activity relationships (QSAR)
analysis allows us to estimate the biological activity of no-
vel molecules prior to their synthesis, according to statisti-
cally significant mathematical models based on a large
number of already synthesized molecules.'"'? QSAR stu-
dies are widely applied in quantitative description of rela-
tionships between the chemical structure of a drug mole-
cule and its biological activity, aiming at defining optimal
values for some physicochemical properties of the mole-
cule and providing the fundamentals for design of new
substances as drug candidates, according to current
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needs.'*!* Beside importance of QSAR modelling in drug
design, in silico methods are important contributors to
drug discovery processes."

In the present paper, antifungal activity of eighteen
benzoxazole derivatives and six oxazolo[4,5-b]pyridine
derivatives was estimated according to their in silico mo-
lecular descriptors using principal component analysis
(PCA), followed by principal component regression
(PCR) and partial least squares (PLS) chemometric met-
hodologies. In our previous work'!, we have already stu-
died the influence of some molecular descriptors of ben-
zoxazoles on their in vitro antifungal activity against Can-
dida albicans using multiple linear regression (MLR),
therefore the novelty of the present study is the extended
series of the studied compounds and the application of
PCR and PLS for the same purpose.

2. Materials and Methods

The QSAR analysis was performed in the following
several steps: molecular structure optimization by compu-
ter software, structural descriptors computation, structural
descriptors selection, structure-activity model generation
using PCR and PLS methods, and statistical validation.

2. 1. Studied Compounds

The structures of benzoxazoles and oxazolo[4,5-b]
pyridines investigated in this paper are presented in Table 1.
The results of their in vitro antifungal activity against Can-
dida albicans (MTCC 183) are presented in literature.'®
The logarithm of molar MIC (log(1/c,,)) was used for
further calculations (Supporting information, Table S1).

2. 2. Molecular Modelling and Molecular
Descriptors

In silico modeling of examined molecules was per-
formed by using following software: CS ChemBioDraw
Ultra 12.0 for drawing 2D structures of molecules, and CS
ChemBio3D Ultra 12.0 for 3D molecular modelling run-
ning on AMD Sempron Processor 3000+.'” The construc-
ted 3D models were subjected to energy minimization us-
ing molecular mechanics force field method (MM2). The
cutoff for structure optimization was set at a gradient of
0.1 kcal/Amol. The Austin Model 1 (AM1) was used for
full geometry optimization of all structures until the root
mean square (RMS) gradient reached a value smaller than
0.0001 kcal/Amol using Molecular Orbital Package
(MOPAC) program.'®

Table 1. The IUPAC names and chemical structures of the compounds studied.

/fj
P
X

O

R3
Comp. IUPAC name X R, R,
1 2-phenyl-1,3-benzoxazole CH H H
2 2-(4-tert-butylphenyl)-1,3-benzoxazole CH C(CH,), H
3 4-(1,3-benzoxazol-2-yl)aniline CH NH, H
4 4-(1,3-benzoxazol-2-yl)-N-methylaniline CH NHCH, H
5%  5-chloro-2-(4-ethylphenyl)-1,3-benzoxazole CH C,H; Cl
6 N-[4-(5-chloro-1,3-benzoxazol-2-yl)phenyl]acetamide CH NHCOCH, Cl
7 4-(5-chloro-1,3-benzoxazol-2-yl)-N-methylaniline CH NHCH, Cl
8 5-chloro-2-(4-chlorophenyl)-1,3-benzoxazole CH Cl Cl
9%  5-chloro-2-(4-nitrophenyl)-1,3-benzoxazole CH NO, Cl
10 2-(4-ethylphenyl)-1,3-benzoxazol-5-amine CH C,H; NH,
11*  2-(4-fluorophenyl)-1,3-benzoxazol-5-amine CH F NH,
12 5-methyl-2-(4-methylphenyl)-1,3-benzoxazole CH CH, CH,
13 2-(4-ethylphenyl)-5-methyl-1,3-benzoxazole CH C,H; CH,
14 2-(4-methoxyphenyl)-5-methyl-1,3-benzoxazole CH OCH, CH,
15 2-(4-fluorophenyl)-5-methyl-1,3-benzoxazole CH F CH,
16 N-[4-(5-methyl-1,3-benzoxazol-2-yl)phenyl]acetamide CH NHCOCH, CH,
17*  N-methyl-4-(5-methyl-1,3-benzoxazol-2-yl)aniline CH NHCH, CH,
18 N,N-dimethyl-4-(5-methyl-1,3-benzoxazol-2-yl)aniline CH N(CH,), CH,
19 2-(4-methylphenyl)-[1,3]Joxazolo[4,5-b]pyridine N CH, H
20 2-(4-ethylphenyl)-[1,3]oxazolo[4,5-b]pyridine N C,H; H
21 2-(4-methoxyphenyl)-[1,3]oxazolo[4,5-b]pyridine N OCH, H
22 2-(4-ethoxyphenyl)-[1,3]oxazolo[4,5-b]pyridine N OC,H;, H
23*  4-{[1,3]oxazolo[4,5-b]pyridin-2-yl}aniline N NH, H
24*  2-(4-nitrophenyl)-[1,3]oxazolo[4,5-b]pyridine N NO, H

*External test set
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The values of molecular descriptors for each com-
pound in the data set were calculated using the software
CS ChemBio3D Ultra 12.0 and ALOGPS 2.1."7" These
data are presented in Table S2 (Supporting information).
Determined descriptors of the examined molecules were
physicochemical descriptors (relative molecular mass —
Mr, boiling point — BP [K], melting point — MP [K], criti-
cal temperature — CT [K], critical pressure — CP [bar], cri-
tical volume — CV [cm*/mol], partition coefficients for n-
octanol/water bi-phase system — AlogPs, ACDlogP,
ABlogP, milogP, AlogP, MlogP, XlogP2 and XlogP3,
solubility in water — ABlog$S and AClog$) and molecular
bulkiness descriptors (molar refractivity - MR [cm®/mol],
van der Waals surface area — vdWSA [A?]). Other types of
molecular descriptors of benzoxazoles and oxazolo[4,5-
b]pyridines (electrostatic and topological descriptors) we-
re applied as predictors of their antifungal activity in our
other study that includes application of artificial neural
networks as chemometric method (not published).

2. 3. Multivariate Statistical Methods:
PCA, PCR and PLS

The main objective of PCA is to substitute the repre-
sentation of the objects, from the initial representation in
the form of the n original intercorrelated variables, into
the new principal component coordinate space.? Therefo-
re, PCA can be defined as a statistical technique for redu-
cing the amount of data when there is a correlation pre-
sent. It is worth stressing that it is not a useful technique if
the variables are uncorrelated.?' In PCA, objects or analy-
tes are represented in a multidimensional space, where the
variables define the axes, and are projected into a few
principal components (PCs) which are linear combination
of the original variables and describe the maximum varia-
tion within the data. Each PC is characterized by scores,
which actually are the new coordinates of the projected
objects, and by loadings which reflect the direction with
respect to the original variables.?” In addition, PCA is a
very useful tool in providing data overview and determi-
nation of the outliers among the analytes (data lying outsi-
de the Hotelling T ellipse).

The aim of PCR is to reduce the number of predictor
variables by using first few PCs rather than the original va-
riables. This statistical method works well when there is a
considerable degree of correlation between the predictor va-
riables.”! That can cause mathematical problems with MLR,
resulting in unreliable predictions. PCR usually implies
three main steps: (1) running the PCA on the table of the ex-
planatory variables, (2) running an ordinary least squares re-
gression (linear regression) on the selected components: the
factors that are most correlated with the dependent variable
will be chosen, and (3) computation of the parameters of the
model for the selected explanatory variables.*’

Like PCR, PLS regression uses linear combinations
of the predictor variables rather than the original variab-

les. In PCR the PCs are chosen so that they describe as
much of the variation in the predictor variables as possib-
le, irrespective of the strength of the relationships between
the predictor and the response variables. However, in PLS
variables that show a high correlation with the response
variables are given extra weight because they will be more
effective at prediction.?! As a consequence, PLS finds
components that both show high variation and are highly
correlated with dependent variable. Therefore, PCR and
PLS enable analysis of strongly collinear data, reducing
the high-dimensional data matrix to a much smaller and
interpretable set of latent variables (LVs).

The optimal complexity and predictivity of the mo-
dels are usually determined by cross-validation. In the ca-
se of both PCR and PLS regressions, statistical and pre-
dictive quality of the models are evaluated by cumulative
sum of squares of the Ys explained by all extracted com-
ponents (RzYcum), root mean square error of calibration
(RMSEC), root mean square error of prediction (RMSEP),
root mean square error of cross-validation (RMSECV), de-
termination coefficient of calibration (chal), determina-
tion coefficient of prediction (R? precl) and determination
coefficient of cross-validation (R*,)).

The complete PCA, PCR and PLS calculation pro-
cedures were conducted by using a demo version of PLS
Toolbox statistical package for MATLAB version
7.12.0.635 R2011a.? The data were separated in two sub-
sets: calibration set with 18 molecules, and external test
set with 6 randomly selected molecules (Table 1).

3. Results and Discussion
3.1.PCA

PCA was carried out in order to determine the pre-
sence of outliers among the analytes with 0.95 confidence
level for T? Hotelling limit for outliers and to overview the
examined compounds for similarities and dissimilarities.
PCA resulted in a three-component model explaining
92.56% of the data variation. The cumulative variance ex-
plained by the first two PCs is 87.39% (PC1 comprises
60.45% and PC2 comprises 26.94% of the total data varia-
bility). The addition of more PCs did not significantly
change the distribution of the molecules on the score plot.
Figure 1 shows score values and the mutual projections of
the loading vectors for the first two PCs. It is obvious that
all the compounds are lying inside the Hotelling 7° ellip-
se, suggesting that there are no outliers among the analy-
tes. Unfortunately, score plot did not reveal any classifica-
tion of the compounds, except significant distance of
compound 1, 6 and 16 from the other compounds going
along the PC2 direction. It could be assumed that this se-
paration of mentioned compounds is caused by their
structural characteristics: compound 1 is unsubstituted,
and compounds 6 and 16 are the only acetamides in the
series with significantly different values of certain mole-
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cular descriptors. Loading plot shows that partition coeffi-
cients have the highest positive influence going along the
PC1 axis, while water solubility descriptors and CP ex-
press the highest negative influence. The highest positive
influence on the PC2 score values have MP, BP and CT.

3.2. PCR

Simple methods for selection of a good set of PCA
scores for PCR are (1) selection of the first PCA scores
that cover a certain percentage of the total variance of X
(i.e. 95%) and (2) selection of the PCA scores with maxi-
mum correlation to ¥.2* In this paper, we applied first ap-
proach and selected the first six PCA scores which cover
98.62% of the total variance of X. The obtained PCR mo-
del shows R2YCum =92.99%, RMSEC =0.03176, RMSECV
=0.05661, R2Cal =0.9299, chv = 0.8105. Cross-validation

log{1/Crmic) Experimental

Figure 2. The plot of the experimentally measured versus predicted
log(1/cyyc) values obtained from (a) the PCR and (b) PLS model.

Low scattering of the points around the linear rela-
tionship curve, low values of errors and high determina-
tion coefficients indicate a very good concurrence bet-
ween experimental and predicted log(1/c;) values, as
well as a very good predictive power of the model. This
statement is also confirmed by the residual versus predic-
ted log(1/cy;c) values plot, which is presented in Figure
3a. This plot is very informative regarding model fitting to
a data set. If the residual values are randomly distributed
(low correlation), then it implies that the model fits the da-
ta well.” Therefore, Figure 3a indicates that PCR model
fits adequately to all the data.
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Figure 3. The residual versus predicted log(1/cy;,.) values plot for
(a) the PCR and (b) PLS model.

The PLS model calibration was carried out on the
entire calibration data set. The obtained model was eva-
luated using random subsets (three splits and one itera-
tion) cross-validation method. The number of the LVs was
chosen on the basis of the minimum RMSECYV value,
which was obtained for five LVs model. Five LVs capture
92.89% of the variance in the descriptor variables space,
indicating that the information contained in the descrip-
tors are effectively used in the calibration model. The ob-
tained PLS model is also characterized by R*, = 0.9557
and R*_ = 0.8606. The explained calibration variance
R2YCum for the dependent variable log(1/c,,,) was 94.16%
and RMSEC was 0.02526 units of log(1/cy;). The error
of validation, expressed as RMSECV, was 0.04533 units
of log(1/cyyc). After calibration, established model was te-
sted by external test set. The obtained RMSEP was
0.04068 and R2pred was 0.9328. Comparison of the experi-
mentally obtained log(1l/cy,) values and predicted
log(1/cy;c) values is showed in Figure 2b. It shows low
scattering of the points around the linear relationship cur-

ve indicating very good concurrence between predicted
and measured data. Residual versus predicted log(1/cyc)
values plot for PLS model is presented in Figure 3b. Ran-
domly distributed residual values imply excellent fitting
of the data.

Depicted results indicate a very good predictive po-
wer of the established PLS model, which is better than
PCR model. The reason why the PLS model has better
statistical measures and predictive power than PCR model
lies in the fact that PLS technique uses both criteria: the
direction of the highest variance in the data set and the
best correlation with the dependent variable scores in its
search for the latent variables in the X-variable and Y-va-
riable domain. However, both methods PCR and PLS are
very important in chemometrics because of ability to mo-
del a large number of highly intercorrelated variables. The
appearance of outliers in PCR and PLS models could be
explained with significant differences in molecular struc-
ture as well as with prediction error of the model.

3. 4. Contribution of the Molecular
Descriptors to the MIC of Studied
Compounds

The assessment of the contribution of variables (mo-
lecular descriptors) on Y (log(1/cy;)) in both the PCR and
PLS models, was done based on variable importance in
the projection (VIP) scores. The descriptors with a VIP
score higher than 1 were considered as relevant for explai-
ning Y, and those significantly lower than 1 (arbitrarily,
the value lower than 0.5 was taken) had little or almost no
influence. The descriptors characterized by VIP > 1.5 we-
re considered as the most significant. The variables versus
VIP scores for Y plot is presented in Figure 4.

3
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Figure 4. Plot of the variables versus VIP scores for log(1/cy;)

The plots of the regression coefficients of descrip-
tors in PCR and PLS models are showed in Figure 5,
where the descriptors with VIP > 1.5 are denoted by as-
terisks.
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Figure 5. Plot of the coefficients of molecular descriptors in (a) the
PCR and (b) PLS model.

Hence, the most significant descriptors influencing
the log(1/cy ) values of studied benzoxazoles and oxazo-
lo[4,5-b]pyridines are: solubility in water (AClogS, AB-
logS) and partition coefficients (ABlogP, XlogP2). It is
evident that the same descriptors are included in both
PCR and PLS models. These descriptors are characterized
by the highest regression coefficients and VIP values.

Solubility in water and lipophilicity of molecules
are very important factors of biological activity,”® in this
case antifungal activity. Therefore, on the basis of mentio-
ned descriptors, antifungal activity of studied compounds
could be successfully predicted by using appropriate mat-
hematical model.

4. Conclusions

The present paper focuses on identifying the most
significant molecular descriptors that have the highest inf-
luence on antifungal activity of some benzoxazole and
oxazolo[4,5-b]pyridine derivatives against Candida albi-
cans. For this purpose, PCA followed by PCR and PLS re-
gression chemometric methodologies was applied. Unfor-

tunately, PCA did not reveal any significant classification
of studied compounds according to calculated molecular
descriptors. However, PCR and PLS methods showed that
antifungal activity of benzoxazoles and oxazolo[4,5-
b]pyridines is mostly influenced by their lipophilicity, ex-
pressed as ABlogP and XlogP2, as well as solubility in
water, expressed as AClog$ and ABlogS. In both PCR and
PLS models, mentioned descriptors are the most impor-
tant, based on VIP factors and regression coefficients. Ta-
king into account the statistical parameters that represent
the quality and predictivity of the model, it can be conclu-
ded that PLS regression resulted as better than PCR. The
present study allows us to estimate antifungal activity for
similar compounds and to understand their biological be-
haviour.
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QSAR metoda je bila uporabljena v seriji benzoksazolskih in oksazolo[4,5-b]piridinskih derivatov razli¢nih struktur s
ciljem ugotavljanja njihovih inhibitorskih aktivnosti na glivo Candida albicans. Analiza glavnih komponent (Principal
Component Analysis — PCA), regresija glavnih komponent (Principal Component Regression — PCR) in metod delnih
najmanjSih kvadratov (Partial Least Squares — PLS) so bili uporabljeni za identifikacijo najustreznejSe deskriptorjev in
za modeliranje odnosa med razli¢nimi fizikalno-kemi¢nimi molekularnimi deskriptorji in antifungalne aktivnosti preiz-
kusenih derivatov. Ugotovljeno je da imajo na inhibitorsko aktivnost derivatov benzoksazola in oksazolo[4,5-b]piridina
na C. albicans najvecji vpliv deskriptorji lipofilnosti (ABlogP in XlogP2) in topnost v vodi (AClogS in ABlogS). PLS
regresija je pokazala statisti¢no najbolj$o u€inkovitost (RMSEC = 0.02526 in RMSECV = 0.04533) od PCR (RMSEC =

0.03176 in RMSECV = 0.05661).
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Comp. IUPAC name log(1/cyy0)
1 2-phenyl-1,3-benzoxazole 3.892
2 2-(4-tert-butylphenyl)-1,3-benzoxazole 4.001
3 4-(1,3-benzoxazol-2-yl)aniline 3.924
4 4-(1,3-benzoxazol-2-yl)-N-methylaniline 3.952
5% 5-chloro-2-(4-ethylphenyl)-1,3-benzoxazole 4.013
6 N-[4-(5-chloro-1,3-benzoxazol-2-yl)phenyl]acetamide 4.059
7 4-(5-chloro-1,3-benzoxazol-2-yl)-N-methylaniline 4.015
8 5-chloro-2-(4-chlorophenyl)-1,3-benzoxazole 4.024
9* 5-chloro-2-(4-nitrophenyl)-1,3-benzoxazole 4.040

10 2-(4-ethylphenyl)-1,3-benzoxazol-5-amine 3.979

11* 2-(4-fluorophenyl)-1,3-benzoxazol-5-amine 3.960

12 5-methyl-2-(4-methylphenyl)-1,3-benzoxazole 4.005

13 2-(4-ethylphenyl)-5-methyl-1,3-benzoxazole 3.950

14 2-(4-methoxyphenyl)-5-methyl-1,3-benzoxazole 3.977

15 2-(4-fluorophenyl)-5-methyl-1,3-benzoxazole 3.980

16 N-[4-(5-methyl-1,3-benzoxazol-2-yl)phenyl]acetamide 3.958

17* N-methyl-4-(5-methyl-1,3-benzoxazol-2-yl)aniline 4.027

18 N,N-dimethyl-4-(5-methyl-1,3-benzoxazol-2-yl)aniline 3.979

19 2-(4-methylphenyl)-[1,3]oxazolo[4,5-b]pyridine 4.225

20 2-(4-ethylphenyl)-[1,3]Joxazolo[4,5-b]pyridine 4.253

21 2-(4-methoxyphenyl)-[1,3]oxazolo[4,5-b]pyridine 4.257

22 2-(4-ethoxyphenyl)-[1,3]oxazolo[4,5-b]pyridine 4.283

23%* 4-{[1,3]oxazolo[4,5-b]pyridin-2-yl }aniline 4.227

24%* 2-(4-nitrophenyl)-[1,3]oxazolo[4,5-b]pyridine 4.285
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