
https://doi.org/10.31449/inf.v46i4.4412 Informatica 46 (2022) 575–582 575

Dynamic Terrain Data Exchange in a Collaborative Terrain Editor

Jos Timanta Tarigan1*, Opim Salim Sitompul1, Muhammad Zarlis2, and Erna Budhiarti Nababan1

E-mail: jostarigan@usu.ac.id, opim@usu.ac.id, muhammad.zarlis@binus.edu, ernabrn@usu.ac.id
1 Faculty of Computer Science and Information Technology, Universitas Sumatera Utara Medan, Indonesia
2 Information Systems Management Department, BINUS Graduate Program - Master of Information Systems

Management, Bina Nusantara University, Jakarta, Indonesia

Keywords: Dynamic terrain streaming; multimedia communication, communication protocol; computer supported

cooperative work

Received: September 21, 2022

In a computer supported cooperative work (CSCW), data consistency between collaborating users is a

crucial issue. Based on the type of the application, ensuring data consistency can be a lengthy process

that takes time and affects the system’s performance. In most 3D application, terrain data are massive

due to its size. Exchanging this data may be expensive and may cause significant delay. In a real-time

collaborative terrain editor, this issue becomes more significant due to terrain data exchange is

consistently occurred between collaborating users. We present a solution to perform a conflict-free

dynamic terrain data exchange in a real-time collaborative terrain editor. Our objective is to develop a

method that able to ensure data consistency amongst collaborating peers in real-time manner. The main

idea of our method is to split the terrain into smaller patches and synchronize the changes efficiently by

only exchanging the modified patches. We applied our solution to a collaborative terrain editor

application to test its performance in a real-time collaborative editing session. The tests were done in

multiple scenarios, using different patch model, brush size (in the terrain editor), and connection setup

between server and collaborating clients. The result shows that our protocol is capable to maintain data

consistency between collaborating clients in a real-time terrain edition session. The delay is varied and

highly depends on the data size and client-server environment setup. The overall test shows that it is

possible to perform a collaborative terrain editing with an acceptable response time delay. In this paper,

we present our proposed method, the implementation, and the result data from the test.

Povzetek: V prispevku je opisana metoda za sprotno izmenjavo podatkov pri opisu dinamičnega terena.

1 Introduction

In modern industry, the use of information technology to

support collaborative works has become a vital component

to increase productivity [1], [2]. The concept of

Collaborative Virtual Environment as a computer-based

system where users are allowed to collaborate within

computer-based context has been used extensively since

the early 90s with the introductory of internet to the public

[3]. However, the use of Computer Supported

Collaborative Work (CSCW) may face several issues such

as data consistency amongst collaborators [4].
In a Cloud-Based Collaborative Design [5], [6] data

exchange can be a significant issue due to complexity of

the data. Based on the application, there are various

aspects that needs to be considered when performing data

exchange amongst collaborators. In real-time

collaboration scenario, data exchange requires additional

time and may significantly affect the interactivity of the

system. In 3-dimension (3D) design application,

interactivity is a major issue since it may affect user’s

performance. Delay between user’s input and system’s

response must be minimized to avoid noticeable delay.

Hence, it is necessary to minimize this issue by using an

optimal protocol optimally designed for this task.

In our previous research, we developed an application

that allows multiple users to perform 3D terrain editing in

real-time called Collaborative Terrain Editor [7], [8]. The

application architecture requires terrain data transfer

amongst collaborating users. We noticed an issue during

the development that performing massive data exchange

cause delay in response time and might raise an

interactivity issue. Moreover, ensuring data validity

amongst clients might also raise additional issue. In this

paper, we propose a model to this issue by developing a

method to exchange terrain data in a collaborative terrain

editing application. Our model is specifically designed for

a real-time collaborative application and is optimized for

a specific type of 3D content, dynamic terrain. We

implemented our solution in CTE to test its validity and

performance.

We proposed a network protocol that can efficiently

transfer dynamic terrain data while ensuring data

synchronization amongst collaborating users. Our solution

is implemented as a communication protocol. To test the

performance of the proposed solution, we implemented

our protocol in a collaborative 3D terrain editor. The paper

is structured as follows: we first describe the outline of the

Collaborative Terrain Editor, the data representation and

mailto:jostarigan@usu.ac.id
mailto:opim@usu.ac.id
mailto:muhammad.zarlis@binus.edu

576 Informatica 46 (2022) 575–582 J. T. Tarigan et al.

communication, and the synchronization mechanism

between users. The second part of this paper will describe

the problem that occur during the synchronization process

and propose a solution to tackle the problem. Finally, we

will describe the method proposed in this paper and show

how our method can decrease the problem.

2 Related works

2.1 Collaborative 3D modeling

There are numerous works that has been conducted to

study the concept collaborative 3D modeling. Ha et al.

introduced Lets3D, a 3D editing tool that allows multiple

users to collaborate in real-time [9]. Imae and Hayashibara

developed ChainVoxel, a collaborative editing of voxel-

based 3D models [10]. Other works also provides a

solution to perform a collaborative 3D modeling in a

specific case and/or environment such as interior design

[11], avatar (gesture and emotion) [12], virtual

reality/spaces [13, p.], [14], [15], co-located collaborators

using a tabletop system [16], and to support

multidisciplinary 3D product CAD modeling [17].

In manufacturing industry, Cloud-Based

Collaborative Design has been explored and commonly

implemented in modern industry. This paradigm allows

users to collaborate on a cloud-based system. One of the

most common media to exchange the design data is to use

Feature-Based Data Exchange (FBDE). The idea of FBDE

is to share information regarding the modeling procedure

such as history, constraints, parameters, and features [18]

instead of the model. In a Cloud-Based Design and

Manufacturing (CBDM) environment, the use of FBDE is

common to allow multiple peers sharing Computer Aided

Design (CAD) data [19], [20]. There are also various

researches focus on extending the capability of FBDE

such as security [21], collaboration [22], undo mechanism

[23]. AR/VR/MR [24], and common 3D-information such

as Buidling Information Modeling (BIM) technology [25],

[26].

2.2 Terrain representation and streaming

Most 3D applications contain massive and detailed 3D

terrain. Hence, storing terrain data as a common 3D object

with vertices in 3-dimensional space could be expensive.

There are numerous methods invented to store 3D terrain

efficiently. One of the most common method to represent

terrain is using uniform grid called heightfield or

heightmap. This method assumes terrain as a 2-

dimensional image with the position of each pixel

represents the location and its color represents its height.

While heightfield is simple and robust, it can be

extremely redundant in a flat area due to the data contains

multiple repetitive value. There are several methods to

solve this issue, either by simplification or compression.

Simplification methods focus on reducing the terrain data

while preserving it shapes. One most notable method is to

manage the Triangulated Irregular Network (TINs).

Unlike regular grid which contains points sampled at

equal distance, TINs allow the amount of data sampled in

an area to adapt based on the complexity of the terrain.

One interesting feature to consider in developing a terrain

representation model is to apply a deformable terrain. This

feature introduces a new challenge since deforming a

terrain requires data manipulation which may be

expensive in a real time system. There are various works

that proposed a solution for real-time terrain

deformation/modification [27], [28]. Additionally, there

are also various works on terrain representation that focus

on decreasing terrain data size [29] and increasing data

streaming performance [30].

A more related subject to our work is the concept of

streaming a dynamic terrain. As opposed to static terrain,

dynamic terrain allows its data to be modified based on a

certain event. Streaming a dynamic terrain may introduce

a new issue, data synchronization. When multiple users

are capable to modify the terrain data, there should be a

protocol to ensure that each user holds the same terrain

data. Elis et al. developed a multi-user 3D battle

simulation with a deformable terrain [31]. In the

simulation, users are capable to deform the terrain by

performing a certain action. In their architecture, multiple

computers are acted as servers. Clients will then connect

to a specific server based on the configuration. Each action

made by the client will be processed by the corresponding

server. The server will then collaborate with other servers

to synchronize the data. Another similar work to our

research is proposed by Mendoza et al. [32] which

proposed an architecture for collaborative terrain

sketching with mobile device. However, the solution

proposed by their work for data sharing is similar to the

one proposed by Ellis et al.; instead of distributing the

modified mesh data, the system distribute the state change

or editing operation messages.

2.3 Collaborative terrain editor

Our system is built based on Collaborative Terrain Editor

(CTE) [7], [8], a 3D terrain editor application that allows

multiple users to perform real-time collaboration. The

application is intended to allow multiple users to

collaborate a terrain in real-time manner. Fig. 1 shows the

basic interface of CTE.

The client side of the system is for the user/editor. It

lets users to perform basic terrain editing using a brush-

like tool that changes the elevation of the map in a certain

area based the size and shape of the brush. Additionally,

user also able to add noise feature that will add random

details on the terrain. The server side of the system is a

console-based application. Its role is to accept users’ input

from connected clients, perform the changes to the terrain,

and send the modified terrain data back to the client.

Collaborating users must be connected to the server. All

terrain data is kept on the server.

Dynamic Terrain Data Exchange in a Collaborative Terrain… Informatica 46 (2022) 575–582 577

Figure 1: The Interface of Collaborative Terrain Editor

The system is built with thin-client-server

architecture; the terrain deformation calculation is

performed by the server. This design is intended so the

computational cost of modifying the terrain can be done

by the server. However, this design requires server to

distribute dynamic terrain data. We have compared similar

research that propose the same idea. Ellis et al. [31] shares

a similar solution for multi-user dynamic terrain

distribution system. While the requirement is similar, the

network architecture design is different. The system by

Ellis et al. relies on clients to compute the terrain data

changes. Thus, the server only requires to distribute user’s

action instead of terrain data. Mendoza et al. [32] also

develop a multi-user terrain editing system that relies on

AR. Multiple users can interact by using mobile phones

and tablet to edit and observe the same 3D terrain. Their

protocol, however, is similar to Ellis et al. and relies on

broadcasting user’s action to collaborating users. There is

not terrain data transfer during the editing process. Several

previous works on 3D terrain streaming are also not

compatible with our system as they are dealing with static

terrain data [30], [33], [34].

3 Proposed method
We develop our solution based on the architecture of CTE

described in the previous section. The problem that we try

to solve can be summarized in this description: how to

perform data exchange that ensure the synchronization of

terrain data while maintaining the interactivity of the

system in a client-server based collaborative terrain

editing session. Our proposed solution consists of two

main parts: the representation of the terrain data that

consist of terrain segmentation and compression, and the

communication protocol.

3.1 Terrain data representation

Our terrain representation is using tiling system that is

commonly used in large terrain representation to either

optimize data in memory/storage or increase data transfer

performance in a networked system. In our case, the latter

is an important factor since data communication is crucial

in collaborative system [35].

The tiling system divides the terrain into smaller

uniform tiles (we will be using the term patch(es) instead).

Each of these patches contains an identification value that

defines the position of the patch. Additionally, we also

perform data compression to decrease the terrain data in

order to minimize the transfer delay. While we use 16-bit

heightfield to render the terrain, we truncate the data into

8-bit value during the transfer process. To minimize the

error caused by the compression, the 8-bit data is

quantized relative to the minimum and maximum value of

each patch. We argue that values in each patch tends to

have a similar or slightly varied, thus reducing it to 8-bit

will not cause a significant error.

Another issue that needs to be addressed is the data

consistency amongst clients and server. In a real-time

collaborative system, each peer must be capable to

validate data consistency and perform data

synchronization if required. These actions must be

performed with minimum time frame to maintain user

interactivity. To do this, we developed a method using a

sequence number (seqNumber) which will be discussed

in the next section.

Based on the previous description, a patch in our

model contains patchId (4 bytes integer), (4 bytes

integer), minValue and maxValue (2 bytes

integer/short each), followed by the compressed terrain

data (16 bytes, 64 bytes, and 256 bytes char for 4×4, 8×8,

and 16×16 respectively). Therefore, the total size of each

patch, including the header and terrain data, in model 4×4,

8×8, and 16×16 are 28 bytes, 76 bytes, and 268 bytes

respectively.

3.2 Protocol overview

When multiple collaborating clients involved in a session,

unsynchronized data can be an issue. Changes from one

client may overlap with changes from others. Hence, we

developed Patch Sequence Number Method to tackle this

issue. Each patch in the terrain is embedded with a single

unique integer value called sequence number

(seqNumber). When a patch is modified by the server, it

gets the maximum sequence number of the terrain

increased by one. Hence, every patch has a unique value,

and the last updated patch has the highest value. Server

keeps the highest value to track with the latest update.

Simultaneously, the client also keeps the highest value it

has received during the data transfer. Therefore, it is

guaranteed that if the values owned by client and server is

different, data synchronization is required.

Additionally, the client could use this sequence

number to detect missing data/patches. When the client

received the data from the server, it sorts the sequence

number of the incoming patches. If the data is complete,

578 Informatica 46 (2022) 575–582 J. T. Tarigan et al.

there should be no missing values between the smallest

and the highest value. However, if there is a missing data,

the client can simply find these missing values and request

the corresponding patches from the server.

The communication protocol is intended to distribute

the terrain changes between server and multiple clients. It

is built specifically for our terrain representation, relying

on the sequence number on each patch to distribute the

terrain data and, if necessary, perform data

synchronization. The collaboration session started

initialized the session. Clients then send a request to join

the session. Upon entering the session, server send the

current terrain data to the client in patches (including the

terrain metadata). If the terrain data is valid (with no

missing or invalid patches detected), the client will

generate the terrain and render it on the screen for the user

to interact. If otherwise, the client sends a resend request

to the server. When the user performs an input to alter the

terrain, the client sends the input data to the server. The

server validates the input data (by making sure that the

content received by the client is up to date), and if it is

valid, the server will perform the changes according to the

user’s input. These changes are then distributed to

connected clients. The overview of CTE communication

protocol is shown in Figure 2.

Figure 2: The flowchart of the proposed method

Based on the protocol overview and the sequence

number described earlier, we developed a communication

protocol sequences diagram as shown in Figure 3 for

unsynchronized (left) and synchronized client (right). In

this protocol, each request and response are started by a

two-digit character as keyword that defines the type of the

data received. Both sequences started with a collaborating

client sent editing data to the server. The client wraps the

editing data and add the sequence number it currently

holds. This value is the highest sequence number it holds

and defines the last update that the client has received from

the server. This data will then be transmitted with a

keyword UE (User Edit). When the server received the

packet, it will evaluate the validity of the request by

examining the sequence number it received from the

client. If the sequence sent by the client is different

(smaller) than the value owned by the server, then the

client is not synchronized. The server will then send a

message EI (Edit Invalid) followed by the correct

sequence number. Upon receiving this message, the client

waits for the synchronization process. The server will then

find all the patches with sequence number larger than the

client’s number and initiate a synchronization process by

sending a TS (Terrain Synchronization) message followed

by the list of numbers in the patches that are going to be

sent during this process. These patches are then sent to the

client by using the keyword SD (Synchronizing Data). The

last patch is sent using the keyword SF (Synchronization

Finished). During this process, the client updates the

sequence number using the highest value from the

received patch. When this synchronization process is

performed, the server applies the editing data received

earlier and modify the terrain data accordingly.

Figure 3: Network protocol diagram of the proposed

method

When both client and server are synchronized, the

server will proceed to process the update sent earlier by

the client. When the update has been implemented, the

server will send the updated patches (with the updated

sequence numbers) to the client. Prior to sending the

update data, the server will send a notification to the client

with a keyword TU (terrain update) followed by update

metadata (total patches, author’s client ID, and update

time). The client will then response with an OK

notification and the server may proceed to send the

updated patches with the keyword TD.

During transmission, there is a possibility that the

update data was not delivered successfully during the

transmission (as shown as the red line in the sequence

diagram). The client acknowledges this issue when there

Dynamic Terrain Data Exchange in a Collaborative Terrain… Informatica 46 (2022) 575–582 579

are missing patches sequence number. Updated patches

contain new sequence numbers, and these values are

sequential. Hence, when the client receives the update, it

can detect the missing patches by sorting them based on

their sequence number. If the client detects a missing

value, it can request a resend (with the keyword RR)

followed by the missing number. The server will respond

by sending the patch based on the request using the

keyword RD (Resend Data). When all the updated data is

delivered, sorted, and successfully implemented on the

client side, the client will send a keyword TV (terrain

valid) notifying the server that the data transmission has

been successfully delivered.

4 Result and discussion
To test our proposed method, we attached it as part of the

protocol in Collaborative Terrain Editor (CTE). We have

successfully implemented our method in the application

and ensure that the protocol able to support real-time

collaborative terrain editing from multiple devices (in our

tests, we use 3 clients connected to 1 server). Based on the

test result, we noticed that our method is capable to ensure

synchronized data amongst user. However, our objective

is to measure the performance of the method. Hence, we

performed various tests using our protocol. We also use a

few different settings combinations to find the optimal

settings. The first setting is the size of the terrain that

needed to be transmitted. We simulate this by assigning

inputs with various sizes, assuming that the server will

responds by sending terrain update with the same size. The

second setting is the size of each patch. In the test, we use

three different sizes of patch: 4×4, 8×8, and 16×16. The

third setting is the client-server environment. We use

different server settings to measure how the system

perform in various networking environment and how the

server configuration may affect the system’s performance.

To measure the performance of our proposed method, we

use two parameters: the system’s response time (in

milliseconds) and the size of transmitted data (in bytes).

Additionally, since the size of patch may affect the error

caused by the compression, we will also gather the error

rate of each model.

4.1 Data compression performance

Figure 4: The heightfield images used in the Test

The first test is to observe the error rate of our terrain

representation caused by the compression. We perform the

test by comparing the original 16-bit terrain (with value

ranged from 0 to 65,536) with the compressed 8-bit terrain

(with values ranged from 0 to 256). The comparison is

performed on 6 different heightmap with different

characteristics and features which can be seen in Figure 4

(top: 1. island, 2. mountain range, 3. Hill; bottom: 4. Urban

area, 5. riverbank, and 6. noise-generated terrain).

We collected 3 variables to measure the error rate of

each heightmap. We assume a heightmap with 𝑛 points

where 𝑝𝑖 is the value of point with index 𝑖 in the original

16-bit heightmap and 𝑝𝑖
′ is the value of the same point in

the compressed 8-bit patch. The first variable is the

average difference (AVGDIF). This variable represents

the average difference of all the points in the map which

can give us a thorough view on the overall error. The

average difference can be calculated as follows.

𝐴𝑉𝐺𝐷𝐼𝐹 =
∑ |𝑝𝑖

′ − 𝑝𝑖|
𝑛
𝑖=0

𝑛

The second variable is the average maximum

(AVGMAX) which represents the average maximum

difference of all patches. This variable gives a thorough

observation regarding the maximum error among all

patches caused by the compression. Given the maximum

difference between original and compressed value in patch

𝑗 is 𝑚𝑎𝑥(|𝑝′ − 𝑝|)𝑗, hence, the average maximum of an

heightfield that contains 𝑚 patches can be calculated as

follows.

𝐴𝑉𝐺𝑀𝐴𝑋 =
∑ 𝑚𝑎𝑥(|𝑝′ − 𝑝|)𝑗
𝑚
𝑗=0

𝑚

The third variable is the maximum difference

(MAXDIF) which represents the maximum difference

between the original and the compressed point in the

heightfield. The maximum difference can be calculated

using this formula.

𝑀𝐴𝑋𝐷𝐼𝐹 = 𝑚𝑎𝑥(|𝑝′ − 𝑝|)𝑖
Table 1 shows the error rate collected during the

compression test. The error-rate test result shows that error

caused by the compression is minimum. In the first 4

heightmaps, average difference is 1 to 2 units (from a

range of 0 to 65.535) when using 4×4 and 8×8 model. The

average maximum values are also relatively small

compared to the value range. In terrain 5 and 6, however,

the difference increased significantly due to the high

frequency of the map. This pattern occurred throughout

the test where the 4×4 model gives the least error values,

followed by 8×8 and 16×16, and terrain with high

frequency gives a worse result. While the value difference

is minimal, it is important to notice that in most of the test,

most of the points were changed (shown by a high

percentage difference). Nevertheless, based on direct

observation on the terrain, the pattern of the terrain persists

after the compression.

Table 1: Data compression performance result
HF Model AVGDIFF AVGMAX MAXDIF

1
4×4 1.69 1,362 16
8×8 1.93 3,857 31

16×16 4.19 7,916 45

2
4×4 1.06 2,417 14
8×8 2.53 5,234 21

16×16 4.77 9,605 30

580 Informatica 46 (2022) 575–582 J. T. Tarigan et al.

3
4×4 1.02 1,084 11
8×8 1.18 2,476 25

16×16 2.47 5,007 42

4

4×4 1.13 1,717 21

8×8 1.46 3,062 23
16×16 2.22 4,504 24

5

4×4 4.02 8,974 66

8×8 9.38 19,354 96
16×16 16.54 33,509 107

6

4×4 4.09 9,191 29

8×8 9.04 18,655 44

16×16 16.11 32,505 66

4.2 Response time

In the second test, we collected the response time data of

the system after applying our protocol. The response time

is measured from the time the first data is sent from the

client to the server until the last data is received and

validated by the client. Since the data must be valid, the

response time also includes the synchronization process

during the transmission.

The test was performed in 3 different cases based on

the connection and distance between the client and server:

local area network-based environment (LAN) and two

internet-based networks with different server location,

Singapore (SG) and United States (US). We also use a

different server specification to observe whether the

hardware affect the overall response time. Both SG2 and

US2 has twice the CPU and memory specification

compared to SG1 and US1. We also perform by using

three kind of different brush sizes: small, medium, and

large for brush with diameter of 5, 10, and 15 respectively.

Additionally, we also test 3 different patch models to find

the patch size with the best performance. We perform the

test 10 times for each scenario and collected 2 response

time data: average and maximum.

In the first test, we connect 3 collaborating users to

the server and one of the users performing terrain editing

while the other two simply receiving the data. Table 2

shows the result of our response time test of the first test.

All data is presented in millisecond.

Table 2: Response time from the first test result

 Small Medium Large

 Avg. Max Avg. Max Avg. Max

LAN
4×4 6 8 6 9 10 12

8×8 4 8 5 10 8 15
16×16 5 8 5 9 8 14

SG1
4×4 94 167 108 152 139 140

8×8 73 177 103 144 102 142
16×16 71 125 95 154 90 108

SG2
4×4 65 78 70 83 99 129

8×8 51 79 53 82 67 104
16×16 50 80 58 98 65 111

US1

4×4 362 391 372 501 426 372

8×8 320 380 334 622 380 426
16×16 293 319 356 541 382 495

US2

4×4 322 385 314 336 401 311

8×8 289 345 288 362 363 532
16×16 255 319 267 284 326 505

The result shows that server’s round-trip time is the main

contribution to the delay. Internet-based test significantly

higher than LAN-based test and the US-based server gave

the highest response time compared to the other test. The

overall result from LAN-based test produced less than 10

milliseconds response time. In result, the users did not

notice any delay during the editing and responded

positively. The first internet-based test using server

located in Singapore gave a significant delay increase up

to 130 milliseconds. While the delay is increased

significantly, the application itself is still usable and the

user were able to perform editing normally. The US-based

test however, affected the user’s capability due to the high

response time. Most of the users argue that this delay

makes the editor feels unresponsive.

In the second test, we asked 2 connected users to perform

terrain editing concurrently and continuously. This test is

aimed to observe how concurrent data input might affect

the performance. Table 3 shows the results of the second

test.

Table 3: Response time from the second test result

 Small Medium Large

 Avg. Max Avg. Max Avg. Max

LAN
4×4 8 11 8 11 11 13
8×8 8 10 9 11 10 15

16×16 9 11 9 11 10 15

SG1
4×4 102 191 120 167 164 201
8×8 89 190 142 171 175 193

16×16 100 195 123 177 145 190

SG2
4×4 85 102 82 112 132 153
8×8 78 101 79 128 126 147

16×16 91 112 81 125 132 149

US1

4×4 521 555 601 821 701 951
8×8 495 581 590 794 658 857

16×16 455 572 611 801 700 1016

US2

4×4 501 591 511 599 561 912
8×8 477 568 498 581 551 786

16×16 481 601 407 600 583 1112

As expected, there was a significant increase in

response time especially on the internet-based test when

multiple users concurrently perform terrain editing. The

increase is varied based on the behaviour of the editing

process. While the LAN-based setup still has a relatively

low delay time, the internet-based setup becomes

significantly noticeable and affected the application

interactivity. We also noticed that in some cases when the

users editing the same area continuously, the delay

reached 1 seconds and the users responds negatively to

this delay. However, the data also shows that hardware

boost were able to reduce the response time better than the

previous test. The SG2 and US2 on the second test able to

reduce the delay time up to 50% compared to SG1 and

US1.

Dynamic Terrain Data Exchange in a Collaborative Terrain… Informatica 46 (2022) 575–582 581

5 Conclusion and future works
In this paper, we proposed a solution to perform dynamic

data exchange in a client-server environment. The

protocol guarantees that the data is synchronized amongst

peers. Moreover, the protocol is optimized so the data

transfer and synchronization process can be performed

efficiently to reduce the data and time required to transfer

the terrain data.

We tested the validity and performance of our

protocol by attaching it to a real-time collaborative terrain

editing system, CTE. Based on our test, the protocol is

capable in maintaining data synchronization between

connected peers. The performance test also shows that the

proposed method able to perform terrain data distribution

efficiently based on the response time tests in multiple

scenarios depending on the amount of data and the

connection between client and server.

While our current solution works as expected, it still

opens for further optimization and expansion. Our current

focus is to increase the compression performance

considering there are numerous previous research focused

on heightfield compression. Our main issues to implement

a better compression are the complexity of dynamic

terrain data and the real time requirement of the system.

Additionally, we would also like to expand the possibility

in using the proposed method in other application that

require dynamic terrain data synchronization. We are

confident that our method, with slight modification, is

applicable to different cases that face similar issues. We

are interested in testing our protocol in other application

such as game engine, battle simulation, or GIS.

Reference
[1] Y. O. de Lima and J. M. de Souza, “The future of

work: Insights for CSCW,” 2017, pp. 42–47.

https://doi.org/10.1109/CSCWD.2017.8066668

[2] W. Reinhard, J. Schweitzer, G. Volksen, and M.

Weber, “CSCW tools: concepts and architectures,”

Computer, vol. 27, no. 5, pp. 28–36, 1994,

https://doi.org/10.1109/2.291293

[3] C. Greenhalgh, “Large Scale Collaborative Virtual

Environments,” University of Nottingham,

Nottingham, 1997. Accessed: Apr. 07, 2018.

[Online]. Available:

 https://pdfs.semanticscholar.org/e505/12849626f0

1537b6e1542ee6867b60db6595.pdf

[4] J. Grudin, “Why CSCW applications fail: problems

in the design and evaluationof organizational

interfaces,” in Proceedings of the 1988 ACM

conference on Computer-supported cooperative

work, United States, 1988, pp. 85–93.

https://doi.org/10.1145/62266.62273

[5] G. Andreadis, G. Fourtounis, and K.-D. Bouzakis,

“Collaborative design in the era of cloud

computing,” Advances in Engineering Software,

vol. 81, pp. 66–72, Mar. 2015,

https://doi.org/10.1016/j.advengsoft.2014.11.002

[6] S. Sharma, F. Segonds, N. Maranzana, D. Chasset,

and V. Frerebeau, “Towards Cloud Based

Collaborative Design – Analysis in Digital PLM

Environment,” in IFIP International Conference on

Product Lifecycle Management, 2018, pp. 261–270.

[7] M. Nasution, J. Tarigan, I. Jaya, S. Hardi, and S.

Sitorus, “Collaborative 3D terrain editing

application,” International Journal of Engineering

and Technology(UAE), vol. 7, pp. 57–60, Jan. 2018,

https://doi.org/10.14419/ijet.v7i4.40.24075

[8] J. T. Tarigan, R. W. Sembiring, M. S. Lydia, O. S.

Sitompul, M. K. M. Nasution, and M. Zarlis,

“Application Architecture for Collaborative Terrain

Editing,” in Proceedings of 2017 the 7th

International Workshop on Computer Science and

Engineering (WCSE 2017), China, 2017.

https://doi.org/10.18178/wcse.2017.06.092

[9] Y.-U. Ha, J.-H. Jin, and M.-J. Lee, “A Robust

Collaborative 3D Editing Tool Utilizing Distributed

Consensus Protocol,” in Advanced Science and

Technology Letters, 2015, vol. 117, pp. 57–60.

https://doi.org/10.14257/astl.2015.117.13

[10] K. Imae and N. Hayashibara, “ChainVoxel: A Data

Structure for Scalable Distributed Collaborative

Editing for 3D Models,” in 2016 IEEE 14th Intl

Conf on DASC/PiCom/DataCom/CyberSciTech,

Aug. 2016, pp. 344–351.

https://doi.org/10.1109/DASC-PICom-DataCom-

CyberSciTec.2016.75

[11] M. Steiakaki, K. Kontakis, and A. Malamos, “Real-

Time Collaborative Environment for Interior

Design based on Semantics, Web3D and

WebRTC,” in Proceedings of the 15th International

Symposium on Ambient Intelligence and Embedded

Systems, Greece, 2016

[12] R. Klauck, S. Lorenz, and C. Hentschel,

“Collaborative work in VR Systems: A software-

independent exchange of avatar data,” in 2016 IEEE

6th International Conference on Consumer

Electronics - Berlin (ICCE-Berlin), 2016, pp. 133–

136.

 https://doi.org/10.1109/ICCE-Berlin.2016.7684738

[13] C. Gadea, D. Hong, D. Ionescu, and B. Ionescu, “An

architecture for web-based collaborative 3D virtual

spaces using DOM synchronization,” in 2016 IEEE

International Conference on Computational

Intelligence and Virtual Environments for

Measurement Systems and Applications

(CIVEMSA), Jun. 2016, pp. 1–6.

 https://doi.org/10.1109/CIVEMSA.2016.7524313

[14] B. Lee, X. Hu, M. Cordeil, A. Prouzeau, B. Jenny,

and T. Dwyer, “Shared Surfaces and Spaces:

Collaborative Data Visualisation in a Co-located

Immersive Environment,” IEEE Trans. Visual.

Comput. Graphics, vol. 27, no. 2, pp. 1171–1181,

Feb. 2021,

 https://doi.org/10.1109/TVCG.2020.3030450

[15] D. Mechta, S. Harous, and M. Djoudi, “Tele-

Collaboration System in CVLab,” IJCAI, vol. 46,

no. 2, Jun. 2022,

 https://doi.org/10.31449/inf.v46i2.3205.

582 Informatica 46 (2022) 575–582 J. T. Tarigan et al.

[16] B. Ens et al., “Uplift: A Tangible and Immersive

Tabletop System for Casual Collaborative Visual

Analytics,” IEEE Transactions on Visualization

and Computer Graphics, vol. 27, no. 2, pp. 1193–

1203, Feb. 2021,

 https://doi.org/10.1109/TVCG.2020.3030334.

[17] Y. Bathla and S. Szenasi, “A Web Server to Store

the Modeled Behavior Data and Zone Information

of the Multidisciplinary Product Model in the CAD

Systems,” IJCAI, vol. 44, no. 2, Jun. 2020,

https://doi.org/10.31449/inf.v44i2.2660.

[18] Y. Wu, F. He, D. Zhang, and X. Li, “Feature-based

data exchange as Service for Cloud Based Design

and Manufacturing,” in Proceedings of 2015 IEEE

19th International Conference on Computer

Supported Cooperative Work in Design (CSCWD),

May 2015, pp. 594–599.

 https://doi.org/10.1109/CSCWD.2015.7231025.

[19] F. Tao, L. Zhang, V. Venkatesh, Y. Luo, and Y.

Cheng, “Cloud manufacturing: A computing and

service-oriented manufacturing model,”

Proceedings of the Institution of Mechanical

Engineers, Part B: Journal of Engineering

Manufacture, vol. 225, Nov. 2011,

 https://doi.org/10.1177/0954405411405575.

[20] X. Wu, F. Qiao, and K. Poon, “Cloud

manufacturing application in semiconductor

industry,” in Proceedings of the 2014 Winter

Simulation Conference, Savannah, Georgia, Dec.

2014, pp. 2376–2383.

[21] Yiqi Wu, Fazhi He, and Yueting Yang, “A Grid-

Based Secure Product Data Exchange for Cloud-

Based Collaborative Design,” IJCIS, vol. 29, 2020,

https://doi.org/10.1142/S0218843020400067.

[22] D. French, E. Red, A. Hepworth, C. Jensen, and B.

Stone, “Multi-User Computer-Aided Design and

Engineering Software Applications,” in Cloud-

Based Design and Manufacturing (CBDM): A

Service-Oriented Product Development Paradigm

for the 21st Century, 2014, pp. 25–62.

 https://doi.org/10.1007/978-3-319-07398-9_2.

[23] Y. Cheng, F. He, B. Xu, S. Han, X. Cai, and Y.

Chen, “A multi-user selective undo/redo approach

for collaborative CAD systems,” Journal of

Computational Design and Engineering, vol. 1, no.

2, pp. 103–115, Apr. 2014, doi:

 https://doi.org/10.7315/jcde.2014.011.

[24] P. Wang et al., “A comprehensive survey of

AR/MR-based co-design in manufacturing,”

Engineering with Computers, vol. 36, Oct. 2020,

 https://doi.org/10.1007/s00366-019-00792-3.

[25] H. Fan, B. Goyal, and K. Z. Ghafoor, “Computer-

aided architectural design optimization based on

BIM Technology,” IJCAI, vol. 46, no. 3, Sep. 2022,

https://doi.org/10.31449/inf.v46i3.3935.

[26] J. Feng, Z. Zhang, Y. Xu, and A. Zhang, “Intelligent

engineering management of prefabricated building

based on BIM Technology,” IJCAI, vol. 46, no. 3,

Sep. 2022, https://doi.org/10.31449/inf.v46i3.4047.

[27] Y. Xia, Y. Chen, and D. Wang, “Real-Time LOD

Rendering of Tire Tracks in Dynamic Terrain,” in

2019 3rd International Conference on Electronic

Information Technology and Computer

Engineering (EITCE), Oct. 2019, pp. 206–209.

https://doi.org/10.1109/EITCE47263.2019.909509

8.

[28] J. Svensson, REAL-TIME RENDERING OF

DEFORMABLE SNOW COVERS. 2019. Accessed:

Jun. 16, 2022. [Online]. Available:

 http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-

165167

[29] Z. Ge and W. Li, “Geometry compression method

for terrain rendering with GPU-based error metric,”

in Proceedings of the 10th International Conference

on Virtual Reality Continuum and Its Applications

in Industry - VRCAI ’11, Hong Kong, China, 2011,

p. 387. https://doi.org/10.1145/2087756.2087823.

[30] F. Cellier, P.-M. Gandoin, R. Chaine, A. Barbier-

Accary, and S. Akkouche, “Simplification and

streaming of GIS terrain for web clients,” in

Proceedings of the 17th International Conference

on 3D Web Technology - Web3D ’12, Los Angeles,

California, 2012, p. 73.

 https://doi.org/10.1145/2338714.2338726.

[31] C. Ellis, P. Babenko, B. Goldiez, J. Daly, and G. A.

Martin, “Dynamic Terrain for Multiuser Real-Time

Environments,” IEEE Comput. Grap. Appl., vol. 30,

no. 1, pp. 80–84, Jan. 2010,

 https://doi.org/10.1109/MCG.2010.5.

[32] S. Mendoza, A. Cortés-Dávalos, L. M. Sánchez-

Adame, and D. Decouchant, “An Architecture for

Collaborative Terrain Sketching with Mobile

Devices,” Sensors (Basel), vol. 21, no. 23, p. 7881,

Nov. 2021, https://doi.org/10.3390/s21237881.

[33] P.-C. Wang, A. I. Ellis, J. C. Hart, and C.-H. Hsu,

“Optimizing next-generation cloud gaming

platforms with planar map streaming and

distributed rendering,” Jun. 2017, pp. 1–6.

https://doi.org/10.1109/NetGames.2017.7991544.

[34] S. Petrangeli, G. Simon, H. Wang, and V.

Swaminathan, “Dynamic Adaptive Streaming for

Augmented Reality Applications,” in 2019 IEEE

International Symposium on Multimedia (ISM),

Dec. 2019, pp. 56–567.

 https://doi.org/10.1109/ISM46123.2019.00017.

[35] J. T. Tarigan, O. S. Sitompul, M. Zarlis, and E. B.

Nababan, “Multi Patch 3D Terrain Representation

for Collaborative Terrain Editor,” J. Phys.: Conf.

Ser., vol. 1566, p. 012116, Jun. 2020,

https://doi.org/10.1088/1742-6596/1566/1/012116.

