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Abstract

A variation of the classical Wiener index, the modified Wiener index, that was intro-
duced in 1991 by Graovac and Pisanski, takes into account the symmetries of a given graph.
In this paper it is proved that the computation of the modified Wiener index of a graph G
can be reduced to the computation of the Wiener indices of the appropriately weighted
quotient graphs of the canonical metric representation of G. The computation simplifies in
the case when G is a partial cube. The method developed is applied to two infinite families
of fullerene patches.
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1 Introduction
The Wiener index is a central graph invariant in chemical graph theory as well as in met-
ric graph theory, in the latter often being equivalently studied as the average distance.
Several variations of the Wiener index were also extensively investigated, including the
hyper-Wiener index and the terminal Wiener index. In 1991, Graovac and Pisanski [3]
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introduced the modified Wiener index with an idea to design a chemically applicable topo-
logical index which adequately takes into account the symmetries of a graph. The index
received less attention than it deserves, but was studied recently by Koorepazan-Moftakhar
and Ashrafi [13] where bounds on this graph invariant were obtained and exact values for
some fullerenes.

Ten years after the seminal paper [3] an additional variation of the Wiener index was
proposed in [15] and three years later named in [6] by the same term—the modified Wiener
index. In the same paper the so-called variable Wiener index was also introduced; see the
recent survey of Liu and Liu [14] on the variable Wiener index and related indices, espe-
cially on the related terminology. As it happens, also Graovac (see [16]) used the term
modified Wiener index for the variation from [6, 15]. It is thus an unfortunate fact that
the term modified Wiener index is nowadays used also for an invariant different from the
one of Graovac and Pisanski. Anyhow, in this paper the term modified Wiener index is
reserved for the original invariant. If the theory of this index will be more extensively
developed in the future (for instance, it would be interesting to see how the invariant per-
forms in the QSAR modelling for predicting physico-chemical properties of molecules),
then the research community might wish to find a new name for it (to be honest, the terms
“modified” and “variable” are not very descriptive), a possibility would be to call it the
Graovac-Pisanski index.

We proceed as follows. In the next section concepts needed are formally introduced.
The main result and its specialization to partial cubes are presented and proved in Sec-
tion 3. In the final section we give closed expressions for the modified Wiener index of two
infinite families of nanocones. These chemical graphs belong to the family of the so-called
fullerene patches [4, 5].

2 Preliminaries
We denote the set {1, . . . , n} with [n]. Unless stated otherwise, graphs considered are
simple and connected. The distance dG(u, v) between vertices u and v of G is the usual
shortest-path distance. A subgraph of a graph is called isometric if the distance between
any two vertices of the subgraph is independent of whether it is computed in the subgraph
or in the entire graph.

The Wiener indexW (G) ofG is the sum of distances between all pairs of vertices ofG.
A weighted graph (G,w) is a graph G = (V (G), E(G)) together with the weight function
w : V (G)→ R+

0 . The Wiener index W (G,w) of (G,w), first introduced in [10], is:

W (G,w) =
1

2

∑
u∈V (G)

∑
v∈V (G)

w(u) w(v) dG(u, v) .

Note that if w ≡ 1 then W (G,w) = W (G).
The modified Wiener index Ŵ (G) of G was introduced in [3] as

Ŵ (G) =
|V (G)|

2|Aut(G)|
∑

u∈V (G)

∑
α∈Aut(G)

dG(u, α(u)) ,

where Aut(G) is the automorphism group of G. Roughly speaking, the modified Wiener
index measures how far the vertices of a graph are moved on the average by its automor-
phisms.
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The Cartesian product G�H of graphs G and H is the graph with vertex set V (G)×
V (H), where the vertex (g, h) is adjacent to the vertex (g′, h′) whenever gg′ ∈ E(G) and
h = h′, or g = g′ and hh′ ∈ E(H).

If G is a graph, then the Djoković-Winkler’s relation Θ is defined on E(G) as follows:
if e = xy ∈ E(G) and f = uv ∈ E(G), then eΘf if d(x, u)+d(y, v) 6= d(x, v)+d(y, u).
Relation Θ is reflexive and symmetric, hence its transitive closure Θ∗ is an equivalence
relation. The partition of E(G) induced by Θ∗ is called the Θ∗-partition of E(G). Let
G be a graph and let {F1, . . . , Fk} be the Θ∗-partition of E(G). For any j ∈ [k], let
G/Fj be the graph whose vertex set consists of the connected components of the graph
G − Fj , two components C and C ′ being adjacent if there exists an edge uv ∈ Fj such
that u ∈ C and v ∈ C ′. Further, for any j ∈ [k] let αj : G → G/Fj be the mapping
that assigns to each vertex of G the component of G − Fj to which it belongs. Now, the
canonical metric representation of G is the (isometric) mapping α = (α1, . . . , αk) : G→
G/F1 � · · · �G/Fk. This mapping is due to Graham and Winkler [2]. The fundamental
property of α from [2] that is essential for us is that α(G) is an isometric subgraph of
G/F1 � · · · �G/Fk.

3 The main result
Our main result (Theorem 3.1) asserts that Ŵ (G) can be computed from the weighted
Wiener indices of a collection of smaller graphs—the graphs of the canonical metric rep-
resentation of G. Before stating the result we need to introduce the appropriate weighting
functions.

Let G be a connected graph, let V1, . . . , Vt be the orbits under the action of Aut(G) on
V (G), and let F1, . . . , Fk be the Θ∗-classes of G. For any i ∈ [t] and any j ∈ [k] define
wij : V (G/Fj)→ R+

0 by setting

wij(C) = |Vi ∩ C|, C ∈ V (G/Fj) .

We are now ready for the main result.

Theorem 3.1. LetG be a connected graph of order n and let V1, . . . , Vt be the orbits under
the action of Aut(G) on V (G). If F1, . . . , Fk are the Θ∗-classes of G, and G/Fj (j ∈ [k])
and wij (i ∈ [t], j ∈ [k]) are as above, then

Ŵ (G) = n

t∑
i=1

1

|Vi|

k∑
j=1

W (G/Fj , wij) .

Proof. We first recall from [3, p. 57] that the modified Wiener index can be equivalently
written as Ŵ (G) = n

∑t
i=1 (W (Vi)/|Vi|). Hence we can write

Ŵ (G) = n

t∑
i=1

1

|Vi|
∑

{x,y}⊆Vi

dG(x, y) .

As already mentioned above, the canonical metric representation α is an isometry. More-
over, it is well-known (cf. for instance [7, Proposition 5.1]) that the distance function is
additive on the Cartesian product operation, that is, dG�H = dG + dH . These facts yield
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the first equality in the following computation:

Ŵ (G) = n

t∑
i=1

1

|Vi|
∑

{x,y}⊆Vi

k∑
j=1

dG/Fj
(αj(x), αj(y))

= n

t∑
i=1

1

|Vi|

 k∑
j=1

∑
{x,y}⊆Vi

dG/Fj
(αj(x), αj(y))


= n

t∑
i=1

1

|Vi|

k∑
j=1

1

2

∑
x∈Vi

∑
y∈Vi

dG/Fj
(αj(x), αj(y))


= n

t∑
i=1

1

|Vi|

k∑
j=1

W (G/Fj , wij) .

To see the truth of the last equality, note that a pair of vertices x ∈ Vi ∩C and y ∈ Vi ∩C ′,
whereC,C ′ are components ofG−Fj , contributes dG/Fj

(αj(x), αj(y)) to the summation.
For each such pair of vertices the contribution is the same and there are wij(C) · wij(C ′)
such pairs.

We note that a result parallel to Theorem 3.1 was earlier proved in [9] for the Wiener
index, see [1, 17] for applications of this result. It was recently further generalized twofold:
to vertex-weighted graphs and to partitions coarser that the Θ∗-partition [11].

An important case containing many chemical graphs is the class of graphs isometrically
embeddable into hypercubes; these graphs are known as partial cubes. It is well known
that these graphs are precisely the connected bipartite graphs for which the relation Θ is
transitive. Moreover, if F is an arbitrary Θ-class (or, equivalenty, an arbitrary Θ∗-class) of
G, then G− F consists of two connected components. It therefore follows that for partial
cubes Theorem 3.1 can be simplified as follows:

Corollary 3.2. Let G be a partial cube of order n and let V1, . . . , Vt be the orbits under
the action of Aut(G) on V (G). If F1, . . . , Fk are the Θ-classes of G, and nij = |Vi ∩Cj |,
n′ij = |Vi ∩ C ′j | (i ∈ [t], j ∈ [k]), where Cj and C ′j are the connected components of
G− Fj , then

Ŵ (G) = n

t∑
i=1

1

|Vi|

k∑
j=1

nij · n′ij .

4 Modified Wiener index of two families of fullerene patches
To illustrate the applicability of Theorem 3.1 and Corollary 3.2 we determine in this section
the modified Wiener index of two families of nanocones.

4.1 Ŵ of nanocones NCH(n)

The nanocones NCH(n), n ≥ 1, are defined as follows. NCH(1) is isomorphic to the 6-
cycle (“H” in the name stands for “hexagon”), while for n ≥ 2, the nanocone NCH(n)
is obtained from NCH(n − 1) by adding an additional outer ring of hexagons to it. The
construction should be clear from Fig. 1 where NCH(4) is shown. (These nanocones are in
chemical graph theory also known as the coronene/circumcoronene series.)
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Figure 1: The nanocone NCH(4)

It is well-known that the nanocones NCH(n) are partial cubes (cf. [12]). Using Corol-
lary 3.2 we can thus obtain the next result, a sketch of its proof being given in the rest of
the subsection.

Theorem 4.1. If n ≥ 1, then Ŵ (NCH(n)) = 3n3(10n2 − 1).

NCH(n) contains n concentric cycles (that is, the cycles iteratively added when the
graphs is built from NCH(1)), call them the layers of NCH(n) and denote with L1, . . . , Ln.
Clearly, |Li| = 12i−6, 1 ≤ i ≤ n. Consequently, |V (NCH(n))| =

∑n
i=1(12i−6) = 6n2.

The Θ-classes of NCH(n) are its orthogonal cuts, in Fig. 2 the horizontal cuts of
NCH(4) are shown. In general, the cuts are in three directions and hence NCH(n) con-
tains 3(2n− 1) Θ-classes.

 

Figure 2: Horizontal Θ-classes of NCH(4)

To apply Corollary 3.2 we also need to know the symmetries of NCH(n); we claim that
the automorphism group of NCH(n) is isomorphic to the dihedral group D12 of order 12.
To simplify the notation set Γ = Aut(NCH(n)). Let α be the rotation of NCH(n) for 60◦,
and let β be the reflection of NCH(n) over the central vertical line. Clearly, Γ ≥ 〈α, β〉.
On the other hand, if x is any vertex of the middle hexagon of NCH(n), then its orbit
xΓ is formed by the vertices of the middle hexagon and its stabilizer Γx consists of the
identity and the reflection over the line through x and its antipode on the inner cycle. Hence
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|Γ| = |xΓ| × |Γx| = 12. Since α6 = β2 = 1 and β−1αβ = α−1, we conclude that Γ is
indeed isomorphic to D12. Note furthermore that each orbit of the action of Γ is a subset
of some layer Li, i ∈ [n]. Moreover, the layer Li contains i − 1 orbits of size 12 and one
orbit of size 6.

For a graph G set
ŵ(G) = Ŵ (G)/|V (G)| ,

so that Ŵ (NCH(n)) = 6n2ŵ(NCH(n)). Using the above description of orbits, Corol-
lary 3.2, and considering the contributions of the vertices from Ln, a straightforward (but
somehow lengthy) computation yields the recurrence

ŵ(NCH(1)) =
9

2
,

ŵ(NCH(n)) = ŵ(NCH(n− 1)) + 15n(n− 1) +
9

2
, n ≥ 2 .

The solution of this recurrence is ŵ(NCH(n)) = 5n3 − n
2 and Theorem 4.1 follows.

4.2 Ŵ of nanocones NCP(n)

The nanocones NCP(n), n ≥ 1, are defined analogously as the nanocones NCH(n), except
that now we start with a pentagon (hence the letter “P” in NCP) and then adding rings
of hexagons to it. More precisely, NCP(1) is isomorphic to the 5-cycle, while for n ≥ 2
the nanocone NCP(n) is obtained from NCP(n − 1) by adding an additional outer ring of
hexagons to it. See Fig. 3 for NCP(4).

 

Figure 3: The nanocone NCP(4)

Since nanocones NCP(n) are not partial cubes, we cannot apply Corollary 3.2 for them,
hence we need to use the more general Theorem 3.1 to get:

Theorem 4.2. If n ≥ 1, then Ŵ (NCP(n)) = 5n3(11n2 − 2)/3.

In the rest of this subsection we give a sketch of the proof of this result.
Just as for NCH(n), let us denote with L1, . . . , Ln the layers of NCP(n). Since |Li| =

10i − 5, i ∈ [n], we get that |V (NCP(n))| =
∑n
i=1 10i − 5 = 5n2. The Θ∗-classes of

NCP(n) can be described as follows. One class, say F , consists of the edges of the inner
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5-cycle together with the edges of the cuts propagating from them, see the left-hand side
of Fig. 4. (The right-hand side of the figure shows the graph NCP(4) − F .) All the other
Θ∗-classes of NCP(n) are the orthogonal cuts across hexagons. Since each additional layer
defines five such cuts, the total number of Θ∗-classes is 1 + 5(n− 1) = 5n− 4.

 

Figure 4: Θ∗-classes of NCP(3)

Similarly as for NCH(n), the automorphism group of NCP(n) is isomorphic to the
dihedral groupD10 of order 10. Set Γ = Aut(NCP(n)), let α be the rotation of NCP(n) for
72◦, and let β be the reflection of NCP(n) over the central vertical line. Clearly, Γ ≥ 〈α, β〉.
On the other hand, if x is any vertex of the middle pentagon of NCP(n), then its orbit xΓ is
formed by the vertices of the middle pentagon and its stabilizer Γx consists of the identity
and the reflection over the line through x and the midpoint of the edge opposite to x. Hence
|Γ| = |xΓ| × |Γx| = 10. Since α5 = β2 = 1 and β−1αβ = α−1, we conclude that Γ is
isomorphic to D10. Furthermore, the layer Li, i ∈ [n], contains i− 1 orbits of size 10 and
one orbit of size 5. Using Theorem 3.1 and considering the contributions of the vertices
from Ln, a straightforward computation yields

ŵ(NCP (1)) = 3,

ŵ(NCP (n)) = ŵ(NCP (n− 1)) + 11n(n− 1) + 3, n ≥ 2.

The solution of this recurrence is ŵ(NCP (n)) = (11n3−2n)/3 and Theorem 4.2 follows.
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[11] S. Klavžar and M.J. Nadjafi-Arani, Wiener index in weighted graphs via unification of Θ∗-
classes, European J. Combin. 36 (2014), 71–76.
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