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Abstract. In these proceedings we review the construction of the collective coordinate
Hamiltonian that describes the spectrum of baryons with a single heavy quark and up,
down or strange degrees of freedom in the context of chiral soliton models.

1 Introduction

This presentation is based on Ref. [1] that describes the numerical results of this
soliton model analysis in detail. The derivation of the Hamilton for the (light)
flavor degrees of freedom (up,down, strange) and, in particular, the origin of the
constraint that projects onto certain flavor SU(3) representations are discussed
only by the way in Ref. [1]. We therefore provide more details of the derivation
here.

2 Collective rotations in flavor symmetric SU(3)

The approach builds up from a chiral soliton generated from light flavors and
heavy meson fields that are bound to the soliton. Both acquire strangeness com-
ponents by collectively rotating in flavor SU(3). Without symmetry breaking this
corresponds to approximating time dependent configurations by large zero–mode
fluctuations.

2.1 Chiral soliton

The major building block for the chiral soliton is the non–linear representation
of the pseudoscalar mesons in form of the chiral field U but also vector mesons
ρ and ω may be included. In a first step we construct the stable static soliton
(with winding number one). Subsequently we approximate time dependent solu-
tions and introduce collective coordinates for the flavor orientationA(t) ∈ SU(3).
Generically we write this as

U(r, t) = A(t)U0(r)A
†(t) , (1)
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where U0(r) represents the classical (static) soliton. The time dependence is most
conveniently parameterized via eight angular velocitiesΩa

i

2

8∑
a=1

Ωaλa = A†(t)
dA(t)

dt
. (2)

The resulting collective coordinate Lagrange function has the structure

Ll(Ωa) = −Ecl +
1

2
α2

3∑
i=1

Ω2i +
1

2
β2

7∑
α=4

Ω2α −
Nc

2
√
3
Ω8 . (3)

The term linear in the time derivative originates from the Wess–Zumino–Witten
action [3] and therefore carries an explicit factor Nc (number of colors). The co-
efficients α2 and β2 are radial integrals of the profile functions and represent
moments of inertia for rotations in isospace and the strangeness subspace of fla-
vor SU(3), respectively. The form of Eq. (3) is generic. The particular numerical
values for the classical energy and the moments of inertia are, of course, subject
to the particular model. They are reviewed in Ref. [2].

2.2 Heavy meson bound states

In the heavy flavor limit the pseudoscalar and vector meson components become
degenerate [4]. In contrast to the light sector it is hence inevitable to include both
components. Since the soliton configuration itself has non–zero orbital angular
momentum the most strongest coupling to the solution dwells in the P–wave
channel [5] (P and Qµ are SU(3) flavor spinors):

P =
eiωt√
4π
Φ(r)r̂ · τ̂χ ,

Q0 =
eiωt√
4π
Ψ0(r)χ , (4)

Qi =
eiωt√
4π

[
iΨ1(r)r̂i +

1
2
Ψ2(r)εijkr̂jτk

]
χ ,

where χ = χ(ω) is a three component spinor that is constant in space but should
be viewed as the Fourier amplitude of the heavy meson wave–function. Since the
coupling to the light mesons occurs via a soliton in the isospin subspace, only
the first two components of χ are non–zero. The parameterization that emerges
by left multiplication with r̂ · τ̂ has different profile functions and leads to the
S–wave bound states.

The field equations for heavy mesons turn into coupled linear differential
equations for the profile functions in eq. (4) with the soliton generating a binding
potential. This (so–called bound state) approach assumes the soliton as infinitely
heavy and corresponds to (formally) assuming the large NC limit. Normalizable
solutions to these differential equations only exist for certain frequenciesω below
the heavy meson mass.
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To quantize the Fourier amplitudes, χ as harmonic oscillators it is necessary
to properly normalize the bound state profiles. The normalization condition is
that occupying the bound produces one unit of heavy charge (charm or bottom).
This heavy charge arises from the Noether current associated with an infinitesi-
mal phase transformation of the heavy field. We write the Lagrange function for
the heavy meson as

LH(ω) =

∫
d3r

[
ω2

2
ϕtM̂ϕ+ωϕtΛ̂ϕ+ϕtĤϕ

]
χ†(ω)χ(ω) , (5)

where ϕt = (Φ,Ψ0, Ψ1, Ψ2) contains the bound state profiles while the soliton
determines the matrices M̂, Λ̂ and Ĥ are matrices that also contain differential
operators. Since the phase transformation in Eq. (4) can be modeled as ω→ ω+

δω, the normalization condition reads∣∣∣∣∫ d3r [ωϕtM̂ϕ+ϕtΛ̂ϕ+ϕtĤϕ
]∣∣∣∣ !

= 1 . (6)

We require absolute values because bound states withω < 0 have opposite heavy
charge and eventually describe heavy pentaquarks with a heavy anti–quark. The
heavy meson fields are spinors in SU(3) flavor space and thus subject to the col-
lective flavor rotation from Eq. (1),

P −→ A(t)P and Qµ −→ A(t)Qµ , (7)

where the right hand sides contain the bound state profile functions. It is then
very instructive to compute the time derivative

Ṗ = A(t)
[
iω +A†(t)Ȧ(t)

] eiωt√
4π
Φ(r)

(
r̂ · τ̂χ
0

)

= iA(t)

[
ω +

1

2
√
3
Ω8 +

1

2

7∑
a=1

Ωaλa

]
eiωt√
4π
Φ(r)

(
r̂ · τ̂χ
0

)

because it shows that
∂LH(ω)

∂Ω8
=

1

2
√
3

∂LH(ω)

∂ω
. Then the normalization condition

enforces
−
∂L

∂Ω8
=

1

2
√
3

(
Nc − sign(ω)χ†χ

)
=

1

2
√
3
(Nc −N) , (8)

where we have also identified the charge of the heavy quark. Finally, the collec-
tive rotation of the bound state yields the hyperfine coupling [6]

Lhf = ρχ
†
(
Ω · τ

2

)
χ , (9)

where ρ is an integral involving all profile functions, including those of the classi-
cal soliton. The bound state also contributes to the moments of inertia, α2 and β2,
but numerically that contribution is negligible since the bound state is localized
at the center of the soliton.
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3 Symmetry breaking and mass formula

Though it is appropriate to work with mu = md, the deviation ms � mu is
substantial and requires to add terms like

Lsb ∼
f2πm

2
π

4
Tr

1 0 00 1 0

0 0 x

(U +U† − 2
) + . . . where x =̂

2ms

mu +md
� 1 . (10)

to the effective chiral Lagrangian that describe different masses and decay con-
stants of strange and non–strange mesons1. These symmetry breaking terms yield
an explicit A dependence of the collective coordinate Lagrange function

Lsb = −
x

2
γ̃ [1−D88(A)] with Dab = 1

2
Tr
[
λaAλbA

†] . (11)

Again, γ̃ is a radial integral2 over all profile functions. Collecting Eqs. (3,9) and (11)
and Legendre transforming to the right SU(3) generators Ra = ∂L

∂Ωa
yields the

Hamilton operator whose eigenvalues are the baryon masses that are expressed
in the mass formula

E = Ecl +

(
1

α2
−
1

β2

)
r(r+ 1)

2
+
ε(x)

2β2
−

1

24β2
(Nc −N)

2

+ |ω|N+
ρ

2α2
[j(j+ 1) − r(r+ 1)]N . (12)

The moments of inertia are the same for the light and heavy degrees of freedom
as they result from a single local Lagrangian. In Eq. (12) ε(x) is the eigenvalue
of Osb =

∑8
a=1R

2
a + xβ2γ̃ [1−D88(A)] according subject to the constraint R8 =

(Nc − N)/2
√
3. For odd Nc and N = 1 this constraint requires diquark SU(3)

representations. The total spin is j and r(r + 1) is the eigenvalue of
∑3
i=1R

2
i . It is

zero and one for the anti–symmetric and the symmetric diquark wave–functions,
respectively.

Obtaining the eigenvalues ε(x) of the operatorOsb amounts to a non–pertur-
bative treatment of light flavor symmetry breaking. Yet, the approach can be illu-
minated in the language of perturbation theory as it corresponds to linearly com-
bining states that belong to different SU(3) representations, but otherwise have
identical quantum numbers. Possible representations are subject to the constraint
on R8: For the physical value Nc = 3 representations with the lowest eigenvalue
of the quadratic Casimir operator,

∑8
a=1R

2
a are the anti–triplet and the sextet with

r = 0 and r = 1, respectively. That is, these are the quark model representations.
With symmetry breaking added an anti–fifteen–plet and a 24 dimensional repre-
sentation follow suit [7]. Increasing to the next odd value,Nc = 5, an anti–sextet,
a mixed– and a fully symmetric fifteen–plet are allowed by the constraint. The lat-
ter has r = 2 and does not have a counterpart for Nc = 3. Hence the Nc counting
effects (heavy) baryon masses via modified eigenvalues of Osb.

1 Symmetry breaking for the heavy mesons, proportional to e.g. M2
Bs −M2

B, is also in-
cluded.

2 The notation is chosen to distinguish it from γ = xγ̃ in the literature [2].
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4 Summary

In these short proceedings we have explained the origin of the collective coor-
dinate Hamiltonian from treating baryons with heavy quark as a heavy meson
bound to a chiral soliton. The resulting spectrum and its comparison with empir-
ical data has been discussed at length elsewhere [1]. We stress that light baryons
are simultaneously described in this approach by settingN = 0 in Eq. (12) and in
the constraint on R8. In particular, we have unique moments of inertia and sym-
metry breaking coefficients regardless of the value forN. This is in contrast to the
approach of Ref. [8] that employs different Lagrangians in the light and heavy
sectors.
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