Informacije MIDEM 27(1997)1, Ljubljana UDK621.3:(53 +54+621+66), ISSN0352-9045

MODELING AND SIMULATION OF A MICROSYSTEM
WITH SPICE SIMULATOR

|. Zelinka, J. Diaci*, V. Kung, L. Trontelj,
Faculty of Electrical Engineering, University of Ljubljana, Slovenia
*Faculty of Mechanical Engineering, University of Ljubljana, Slovenia

Keywords: MST, MicroSysTems, definitions, simulations, nondifferential capacitive measurements, bipolar measuring ranges, capacitive
micromechanical sensors, CAST, Custom Application Spegific Technology, development trends, mechanical analysis, SPICE model, actuating
capacitors, measuring capacitors

Abstract: In the paper Microsystemn (MST) definition and development trends are described. Modeling of a capacitive micromehanical sensor is
presented. Verification of dynamical behavior is analized. Mechanical analysis and the SPICE model of the mechanical part of the sensor are

shown.

Modeliranje in simuliranje mikrosistema s
simulatorjem SPICE

Kljuéne besede: MST mikrosistemi, definicije, simulacije, meritve kapacitivne nediferencialne, obmodgja merilna dvosmerna, senzorji
mikromehanski kapacitivni, CAST tehnologija specificna uporabnidko aplikacijska, smeri razvoja, analiza mehanska, SPICE model, kondenzatorji
aktivatorski, kondenzatorji merilni

Povzetek: Opisana je definicija mikrosistema (MST) in razvojni trendi. Prikazano je modeliranje kapacitivnega mikromehanskega senzorja in

analizirano je dinamiéno obnasanije sistema. Podana je mehanska analiza in SPICE model mehankega dela senzorja.

1 INTRODUCTION Development trends of ICs are still widely governed by
the development of optical lithography. We see the

The basic difference between ICs and microsystems is advent of 0.18 um custom application specific technol-

shown on Fig. 1. While ICs mostly handle information, ogy (CAST) for volume production and a substantial

MSTs usually deal with energy. They always represent increase of the diameter of silicon wafers. Tools for the

the complete system required to perform the desired development of photoplates capable to be used to-

function. gether with the advanced imaging techniques are
emerging.

communication

On the contrary, the smaller and finer geometries in
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e ' Mechanical MSTs are not vital or even possible considering the
Semperature ‘ - | Dot amount of energy to be handled in specific application.
"""" vl sesos (| Bowng [ AW T Therefore the MST related activities are reserved for

: ; those environments of design and production which are
Packaged MST ~ not able to compete in the every day financially more

demanding new equipment procurement and refined

e —y fab environment associated with the deep submicron
Fig. 1: Microsystem definition technologies. Therefore, it is viable that the Laboratory
for Microelectronics (LMFE) aggressively entered the

new exciting field of MSTs, offering new applications in

The introduction of microsystems followed the same the fields of data storage, displays, communications, IR
basic rules which promoted the development of ICs. imaging, biochips, micromachines, and microinstru-
They are small and require low power. A large number ments.

of them can be manufactured simultaneously, thus of-
fering lower costs and greater reproducibility. In addi-
tion, the ratio of performance versus price is far superior
to that of the lumped versions.

Although there exist remarkable simulation tools, which
offer great support to a designer confronted with spe-
cific design problems in the field of electrical/electronic
or mechanical engineering, there's a very acute lack of

Two basic differences in comparing ICs and MSTs are simulation software which would allow efficient solu-
essential: only few atoms are required to handle infor- tions to coupled electromechanical problems, which
mation in a well optimized and carefully designed IC, are commonly encountered in the field of MSTs. The
while the dimension of MST depends on the amount of gap between the two engineering disciplines seems fo
energy to be manipulated. Therefore the same scaling be too large in any practical situation requiring a solu-
rules as well as Moore’s Law do not apply. tion of coupled electromechanical problems to allow a
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microsystems designer to benefit from a coherent use
of existing mechanical and electronic design packages.

Different schemes exist to construct a micromechanical
partofthe sensor. However, one which uses a cantilever
seems to be the most promising, offering the largest
sensitivity for a given size /2/. In the paper we present a
non differential capacitive MST sensor which also has
definite production advantages over the two capacitor
version, but it requires more effort to model it properly.
We have adapted the equations describing the mi-
cromechanical part of the sensor in a form acceptable
as an input to the standard electronic analog simulator.
This gives us the ability of prediction of a closed loop
behavior of both parts of the system.

In the paper we present the analysis and modeling for
the chosen MST.

The elastic element of the sensor acts as one plate of
the sensing and actuating capacitor. Deformation of the
elastic element, due to external loads (related to the
measured physical quantities), are counteracted by the
electronic servosystem, which consists of a capacitive
sensor, actuator and signal processing electronics. In
the dynamic equilibrium, the actuating electrical force
equals the external load. From the parameters influenc-
ing the actuating force the external load and the related
physical quantities can be dstermined.

2 STATIC ANALYSIS

The configuration of a single capacitor model is on Fig.
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Fig. 2: Cantilever with one capacitor for actuating

and measuring

The basic equation for deflection w of the cantilever
loaded with distributed load qis /3, 4/:

d*w

El
dx*

=q (1)

where E is Young’s modulus, | is the area moment of
inertia, w=w(x) and x is measured from the tip towards
the clamped end of the beam. The boundary conditions
are: atclamped end: w(L)=0
w(L)=0
at free end: w"'(0)=0
w’(0)=0
For the special case of point force F load we take g =
F3(0). The deflection ofthe beam depends on loads. We
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consider the beam (cantilever) loaded with one distrib-
uted external load qq, and point electrostatic force Fg.
We can assume electrostatic force as a point force if
capacitor length (Lc) is less than 10% of beam length
L) /5/.

For distributed load wq or point force wr we have the
following equations describing the deflection /3/:

W (x) = §4L;{3_4(E)+G)4J
We(X) = 2—2{2 - 3(%) " (%)3]

Of special importance for the analysis are the deflec-
tions of the beam tip:

@

(3)

w,(0) = % (4)
Wi (O) = %E_él' (5)

According to the principle of superposition, the total
deflection w(x) under combined loads is the sum of the
two contributions:

(6)

W) = W, () + w ()

In order to examine the stability of the system, we
assume the beam loaded with one distributed load qq
and point electrostatic force Fe. With introducing new
variables kr=3EI/L3 and kq=8EI/L3, which represent
stiffness of the beam, we can write eq.(6) for the deflec-
tion of the beam tip

Fe, Al

ek {7)

Wy =we +w, =
q

In general, Fg is a sum of the electrostatic forces of
actuation and measuring. Therefore this equation is
valid for an open loop system (no actuation voltage,
electrostatic force only due to read-out voltage) and for
a closed loop (voltage driven) with one or two capaci-
tors. We seek solutions from the above equation for wo
subject to the obvious restriction wg < h.

By inserting

h2

Fo=F ——
) (h'Wo)2

(8

where Fe=1/2 £ A (U/h)? in eq.(7) and by introducing
dimensionless variables
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we can write eq.(7) in form

+W, ©)

To find the solution, we rewrite the above equation in
the form of a cubic:

W — (W, +2)WZ +(1+2W, )W, =K+ W, (10)

With finding the maximum ofthe I.h.s. of expression (10)
we get the stability limits:

1+2W,

W, < (11)

4 3
K< —(1-W
2w

The system is stable when either of the above inequali-
ties hold. With the additional condition K>0 we get a
range of possible solutions:

1+2W,

W(,‘<WO<——3 (12)

W, <W, <

3

3W, - 1
2
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0.4f »
0.2t
W, Of
: o
-0.2F”
oA <- stability fimit
0.6} o
087 0 02 04 0.6
Wy - rel. preload deflection
Fig. 3: Rel. measured load (Wy) vs. rel. preloading

(Wo) - shaded area shows the useful range
for bipolar measurement

POSITIONING OF THE BEAM

Since the electrostatic force can not change polarity, we
have to preload the beam with a static actuating force
Feo and move the beam tip by wo below its initial
distance h if we want to measure load in both directions.
The stability diagram on Fig.(3) shows that in principle
we can perform bipolar measurement for any relative
preloading in the range 0<Wo<1/3. To accommodate
the required range omin<o<omax at a selected Wo we
have to select the appropriate beam stiffness (via thick-
ness change). We can select Wo according to different
criteria. We will take a closer look at just one - Maximi-
zation of dynamic range.
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There is exactly one value Wopd where we can fit the
required load range omin<o<omax without any waste
of the dynamic range. To calculate Wod, we equate the
fower and the higher bound value for Wo in €q.(12) and
insert the ratio: ro=omin/0max=Wa/Wa. The result is:

W,s =1/(3-2r)) (13)

Example: for the symmetrical bipolar range we have
ro=-1 and Wod=1/5.

Ifwe select our Wo above Wgd , then the corresponding
W, value is smaller than optimal and we have to in-
crease the beam stiffness/mass ratio kq/m (increase
thickness D) to be able to measure the required omin.
We will waste some dynamic range on the positive side
then, because the corresponding mass, stiffness and
Womax would allow the measurement of higher max.
load than required by omax. The opposite happens
when we select Wo below the optimal value. We have
to design beam thickness according to aumax and thus
waste some dynamic range below amin. We can sum-
marize this discussion with the following formulae:

3plio,,
W o>W. W  =(3W. -1)/2=D= | ———0n_
¢} 08 c.min ( 0 )/ Eh(SWO _1)
(14)
L4
WO < WO?S: Wrtmax = WO = D = Sp O(max (15)
' 2ENW,

There are, of course, practical limitations to D; therefore
we shouldn’t expect to be able to realize the beam when
the selected Wo is close to 1/3 or 0.

3 DYNAMIC ANALYSIS

In general, we can have a system with two capacitors
that are not located on the same plane. For the analysis
of dynamic behavior, we use the system configuration
shown on Fig.(4).

The capacitor sizes estimated by using the point capaci-
tor models show that in practice both capacitors (meas-

measuring
capacitor

actuating capacitor

Loy +

al i

L

L LL La2

Fig. 4:Cantilever with two distributed capacitors
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uring and actuating) should have lengths larger than
10% of the length of the beam. For this size, the inter-
plate spacing variations within each capacitor are not
negligible and we have to treat the capacitors as distrib-
uted along the beam. We model the electrostatic forces
as distributed loads:

[ Ly L)

_18 2 XLy, L
qi(WfX’t) - 2 IBUn [h(X)— W(X)]Z

(1 forl, <x<L,

with H(X’L“’Lm):io elsewhere (16)

where i=a for the actuating and i=c for the measuring
capacitor. B and Uri represent the width of the beam and
applied voltage respectively. For the analysis of dy-
namic behavior dumping and moment of inertia have to
be considered also. Inserting the two loads into the
basic eq.(1) we describe the deflection w(x,t) of the
beam by the following boundary problem:

o*w(x,t
pDBW(x,t) + gy (W, w,X,t)+ El(_%v_(;(...l =
X

=q, (W, x, 1)+ qe (W, x 1)+ q, ()

w(Lt) =0
w(Lt =0
w'(0,) =0
W (0,5) =0

where pDB w(x,t) represents the moment of inertia and
dda(w,w,x,1) dumping. ga and gc are substituted with
eq.(16) and mo(t)/L=pDBa(l).

Electrical inputs to the mechanical part (from the elec-
tronic part of sensor) are voltages on actuating capaci-
tor {(Ua(t)) and measuring capacitor (Uc(t)). The output
for the electronic part is measuring capacitance C(t) of
the air gap capacitor:

Loa dx

=Bl S —wix g

(18)

For solving the upper equation we need function h(x),
describing the initial form of the beam. Assuming a
uniform distribution of the residual stress along the
beam results in a parabolic form and the height function
is defined as:

h(X) = hL + (hO - hL )(1 =X /L)2 - hacn(X’Lc1!L02) (19)

where ho and hy_ are the initial heights of the tip and the
clamped end respectively, measured relative to the
base line, defined by the actuator plate, and where hgc
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is the elevation of the measuring capacitor plate above
the actuator plate.

The damping force qda(w,w,x,t) is strictly speaking the
solution of a special squeezed-film air-flow boundary
problem. We find that it would be quite impractical to try
to solve it by means of electrical analogies using an
electronic simulation codes, such as SPICE. Instead of
that, we suggest the use of an approximate analytical
solution of the varying gap squeezed-film boundary
problem /6, 7/:

Aa(W, W, x,t) = b(w, x)w(x, 1) (20)

where

cosh( 12(L-x)/ B)
cosh(,ﬂ 2L/ B)
[h(x)- w(x,t)]3

1—

b(w,x) = 12uBL?

4 MODELING

Usually approaches to modeling /8, 9, 10/ are based on
substituting mechanical elements with equivalent elec-
trical elements (Fig. 5).

(@ N B
T
| i L
Xy
| p—
K - b v |
R
| m
t - T CQ
Fig. 5: Mechanical system and (b) equivalent elec-

trical circuit

The equation describing a single mass mechanical
system

mX +bx+kx=F, +F_ +q (22)

is similar to the equation describing electrical circuit on
Fig. (5b)

di

1
L—+Ri+—fidt=V 23
il (23)

where

x=i x=[idt m=L b=R k=

1
C



1. Zelinka, J. Diaci, V. Kung, L. Trontel]:

Modelling and Simulation of a Microsystem with SPICE Simulator

Informacije MIDEM 27(1997)1, str. 16-22

The equation describing the behavior of the cantilever
beam (eq. 17) can be substituted with eq.(22) only when
the mechanical system with the single degree of free-
dom is assumed. Modeling (substitution) of our cantile-
ver beam with single mass mechanical system on
Fig.(5a) does not give satisfactory accuracy.

Our modeling of differential equation follows the work
of Herbert /11/ and Pelz /12, 13/. All state variables in
the equation, e.g. velocity, deflection are represented
by node voltages.

Nonlinear dependent voltage controlled voltage
sources are used to determine the state variables of the
highest time derivatives and the algebraic equations.
Simple integrators calculate the values for the lower
derivatives.

For example, the equation for distributed load qq (load
due to electrostatic force of actuating capacitor) from
eq.(16) can be written in HSPICE by using Behavioral
voltage source in form:

E gqgaqga0 vol="((0.5*eps*B*(v(Urefa)**2))/
(v (hx)-v(w))**2))’

where eps and B are defined as parameters. In this way,
systems of algebraic and ordinary differential equations
can be solved.

The output from the mechanical part and the input for
the electronic part is capacitance of the measuring
capacitor:

QT e —

e )~ Wi ) @)

in order to solve the upper equation, the initial form
(height) of cantilever h(x) has to be known and the
deflection w(x,t) calculated. For h(x) we take eq.(19)
where hoc=0

h(x) = hL + (ho - hO)(1 - x/L)? (25)

To getthe w(x,t) we have to solve the boundary problem
in the eq. (17), which we rewrite in order to get the
highest time derivative on the L.h.s.

The proposed method of modeling does not allow direct
modeling of partial differential equations or integration
over spatial variable. With the implementation of some
mathematical approximations, we can extend this work
and solve the system of equations describing our can-
tilever beam. With the method of finite differences (FDM)

/14, 15/, the spatial variables of partial differential equa-
tions are discretized and an algebraic equation is in-
serted for each node. Discretization schemes for spatial
derivatives up to the fourth order /14, 15/ are:

aw(X,’[) R 8 8 27
T - 1_25"‘<Wx342 = 8Wy , oW, _Wxi+2) 7)
Pwxt) 1 \
_—5(?— = 1_2}? - (—WXi—Z +1 6W><i-1 —30x; +1 6WX‘+‘ a Wxi‘*z)
(28)
Pwlxt) 1
T = @*(—Wxi_z + ZWXM - 2W>‘i+1 + Wx'*2>
(29)
84W(X,T) 1
T - ﬁ (WXi—Z - 4Wxi—1 + 6W><i - 4WXi+1 + WXW)

(30)

Each equation describes the behavior of the respective
slot i, by regarding itself and some of its neighbours in
both directions. In our case (eq. 26), w(x,t) is the func-
tion to be derived, and x is the spatial variable (for 0 < x
< 1). The descretization step is h, and n is the number
of discretization steps (h=L/n).

All equations containing the term dw(x1)/d x¥, where k
is the order of the derivative, have to be duplicated n
times. The number of discretization steps n is the
number of nodes. Eq. (26) for slot i is written in form for
HSPICE using E source:

E iw i ttOvol =

“(-konst! * (v(w_(i-2))-4*v(w_(i-1))+
+F6*V(W_i)-4*vw_(i+1))+vw_(i+2)))

-konst2*v(q_d_i)+konst2*v(q_a_i)+
+konst2*v(q_c_i)+v(e))’

Values for konst1,konst2 are calculated and defined as
parameters. Deflection w(x,t) is calculated with a simple
integrator:

XINTEGRATOR bi w_i tt w_i_t INTEGRATOR
XINTEGRATOR aiw i t w_i INTEGRATOR
Index i represents respective slot (0 <i<n)

-2 -l i i+l 042

¥

Fig. 6: Discretization of spatial variable x
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et 100.9 180,0 209,0 280,90 300.¢ 380,90 49,0 480,90 B0, 50,0 649.¢
time L]
Fig. 7: Deflection of the beam for different discretization nodes
C_soc

62'6?)0 1!'><'>.0 200,0 280,0 300.0 3B0.0 400,90 480,¢ 500,06 850,0 [ 2o )
time n§
Fig. 8: Changing of measuring capacitance with changing of load
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Spatial integrals are also discretized and substituted
with algebraic equations following the Simpson’s rule:

h
[Fydx = g(yo +4y, +2y, + 4y, A2y, , +4Y,  +Y,)

(31)

where h=(b-a)/n, with additional condition that n is an
even number. So eq.(24) for capacitance of an air gap
capagcitor in form for HSPICE is as follows:

E Cacc C acc
v(w_0)) + 4/(v(hx_1) - v(w_1)) + 2/(v(hx_2) - v(w
4/(v(hx_3) - v(w_3)) + 1/(v(hx_4) - v(w_4)))’

0 vol="epsilon*B*( 1/(v(hx_0) -
-v(w_2)) +

The exact form of equation depends on the length of the
measuring capacitor and the number of discretizations
steps.

5 RESULTS
The results are shown on Fig. (7) and (8).

The calculation of the deflection for each node of dis-
cretized beam can be seen on Fig. (7) and the resulting
capacitance of an air gap capacitor as an output of
micromechanical part of sensor on fig. (8). The voltage
representing capacitance can be transformed back to
capacitance as input for the electronic part with use of
Voltage controlled Capacitor.

6 CONCLUSIONS

The accuracy of a single mass model is not satisfactory
for the selected micromechanical sensor. With the im-
plementation of mathematical substitutions, we devel-
oped a model for a system with distributed mass and
analysed the behaviour of the sensor with SPICE3 and
HSPICE simulator.

A comparison of the results acquired by the simulation
with HSPICE to those of the MATLAB shows, that an
error introduced with mathematical substitutions is one
order of magnitude smaller than the resolution of the
sSensor.

The described model allows us to predict the behavior
of the micromechanical part, and to simulate close loop
measurements.
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