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Abstract
ZrOCl2/nano-TiO2 has been used as an efficient catalyst for the preparation of naphtho[1’,2’:5,6]pyrano[2,3-d]pyrimidi-

ne derivatives by the three-component reaction of aldehydes, β-naphthol and 1,3-dimethylbarbituric acid. The advanta-

ges of the reaction are solvent-free conditions, short reaction times, easy workup, good to excellent yields, and cost-ef-

fective and reusable catalyst.
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1. Introduction 

Pyrans belong to an important class of compounds
which show a wide range of biological activities.1 The
pyranopyrimidines exhibit important biological properties
such as anticancer,2 antitubercular activity (against Myco-
bacterium tuberculosis H37Rv [ATCC-27294]), antifungal
(against Aspergillus niger [MTCC-282]3) and antibacte-
rial4 activities. Naphthopyranopyrimidines are fused hete-
rocyclic compounds that display antioxidant5 and antimi-
crobial6 activities. Therefore, the development of simple
methods for their synthesis is an important challenge. Un-
doubtedly, the synthesis of naphthopyranopyrimidines
through multicomponent reactions (MCRs) has been paid
much attention due to excellent synthetic efficiency, inhe-
rent atom economy, procedural simplicity and environ-
mental friendliness.7–11 The eco-friendly, solvent-free
multicomponent approach opens up numerous possibi-
lities for environmentally clean synthesis which involves
reduction or elimination of the use or generation of hazar-
dous chemicals.12–13 The possibility of performing multi-
component reactions under solvent-free conditions with a
heterogeneous catalyst could improve their cost-effective-
ness and ecological acceptability. 

Nanoparticles exhibit good catalytic activity due to
their high surface-to-volume ratio in comparison to their
heterogeneous counterparts. Separation of the catalyst
and final product from the reaction mixture is one of the
most important aspects of synthetic protocols. Nanopar-
ticles decrease reaction times, impart greater selectivity
and can be easily recovered from the reaction mixture by
simple filtration.14–19 Utilizing binary supporting ca-
talysts is a vast challenging necessity for organic che-
mists due to their expanding surface area. In comparison
with conventional supports like solid-phase, nanoparticu-
lar matrixes have a higher catalyst loading capacity ow-
ing to their very large surface area. Nano-TiO2 has been
extensively used as a heterogeneous catalyst in many
reactions due to its high activity, simple availability, non-
toxicity, reusability, Lewis acid activity and long-term
stability.20 Meanwhile, ZrOCl2.8H2O owing to its low to-
xicity, commercial availability and moisture stability ha-
ve gained much attention in organic synthesis.21 Accor-
ding to the above results we modified nano-TiO2 surfaces
using ZrOCl2 for the synthesis of naphthopyranopyrimi-
dines. Recently, the synthesis of naphthopyranopyrimidi-
nes has been reported using MCRs in the presence of di-
verse catalysts including iodine,22 InCl3,

23 heteropolya-
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cid24 Al(H2PO4)3
25 and P2O5.

26 Herein, we report the use
of ZrOCl2/nano-TiO2 as an efficient catalyst for the
synthesis of naphthopyranopyrimidines by the three-
component reaction of aldehydes, β-naphthol and 1,3-di-
methylbarbituric acid under solvent-free conditions at
100 °C (Scheme 1).

Investigations of the reaction scope revealed that va-
rious aromatic aldehydes bearing electron-withdrawing
and electron-donating groups can be utilized in this proto-
col (Table 2). 

The proposed mechanism for this three-component
reaction is outlined in Scheme 2. β-naphthol undergoes
condensation with aldehyde in presence of ZrOCl2/nano-
TiO2 to afford α,β-unsaturated carbonyl compound I.
Michael addition reaction between compounds I and 1,3-
dimethylbarbituric acid gives intermediate II followed by
cyclodehydration which gives the desired naphthopyra-
nopyrimidine.

The recycling of ZrOCl2 supported nano-TiO2 ca-
talyst was also examined and results are summarized in
Table 3. The recovered catalyst was washed by hot etha-
nol (3 × 5 mL) then dried at 80 °C and used in the next
run. The results showed that the catalyst could be reused
several times without noticeable loss of catalytic acti-
vity.

Table 1. The model reaction carried out by various catalysts under

solvent-free conditions at 100 °C a

Entry Catalyst mol% Time(min) Yieldb%
1  CH3COOH 10 66 10

2 Na2SO4 15 100 35

3 H2SO4 3 35 20

4 Montmorillonite 5 60 12

5 p-TSA 5 50 60

6 CuO 5 60 30

7 Ethylene glycol 10 60 25

8 ZrOCl2/nano-TiO2 1 25 80

9 ZrOCl2/nano-TiO2 3 25 85
10 ZrOCl2/nano-TiO2 6 25 85

a 4-nitrobenzaldehyde (1.1 mmol), β-naphthol (1 mmol) and 1,3-di-

methylbarbituric acid ( 1 mmol) b Isolated yield.

Scheme 1. Three-component reaction of aldehydes, β-naphthol and

1,3-dimethylbarbituric acid catalyzed by ZrOCl2/nano-TiO2

2. Results and Discussion

The powder XRD pattern for ZrOCl2 supported na-
no-TiO2 catalyst is shown in Figure 1. In order to study
the morphology and particle size of ZrOCl2 supported
nano-TiO2, SEM image was also obtained (Figure 2),
which shows particles with diameters in the range of na-
nometers.

Figure 1. The XRD pattern of ZrOCl2/nano-TiO2.

Figure 2. SEM image of ZrOCl2/nano-TiO2.

Initially, we focused on systematic evaluation of dif-
ferent catalysts in the reaction of 4-nitrobenzaldehyde, β-
naphthol and 1,3-dimethylbarbituric acid as a model reac-
tion. Under solvent-free conditions, we were searching for
the best reaction conditions in which 3 mol% of ZrOC-
l2/nano-TiO2 catalyst gave excellent yields of product and
an excessive amount of catalyst did not increase the yields
significantly (Table 1).
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Table 2. Synthesis of naphtho[1’,2’:5,6]pyrano[2,3-d]pyrimidine by ZrOCl2/nano-TiO2 under solvent-free conditions at 100 °C.

Entry 4a-i aldehyde Product Time (min) Yield%a mp °C (ref)

1 4a 28 82 243–24522

2 4b 25 85 291–293 22

3 4c 30 81 223–225 22

4 4d 27 83 274–276 22

5 4e 27 84 305–307 22

6 4f 31 80 200–202 22

7 4g 25 84 219–221 22

8 4h 27 82 310–312 24

9 4i 28 82 222–224 22

a Isolated yield.
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3. Experimental

3. 1. General

The products were isolated and characterized by
physical and spectral data. 1H NMR and 13C NMR spectra
were recorded on Bruker Avance-400 MHz spectrometers
in the presence of tetramethylsilane as internal standard.
The IR spectra were recorded on FT-IR Magna 550 appa-
ratus using KBr plates. Melting points were determined
on Electro thermal 9200, and are not corrected. The ele-
mental analyses (C, H, N) were obtained from a Carlo
ERBA Model EA 1108 analyzer. X-ray powder diffrac-
tion (XRD) was carried out on a Philips diffractometer of
X’pert company at λ = 1.5406 Å. Microscopic morpho-
logy of products was visualized by SEM LEO 1455VP. 

3. 2. Preparation of ZrOCl2 Supported
Nano-TiO2 Catalyst
In a typical procedure, nano-TiO2 (1 g) and ZrOCl2

(0.3 g) were combined and stirred for 24 h at room tempe-
rature in CH2Cl2. Afterwards, The solid was dried at 80 °C
for 24 h. Then, the solid was calcinated at 300 °C for 30
min. 

3. 3. General Procedure for the Synthesis 
of Naphthopyranopyrimidines (4a–i):
To a mixture of aldehyde (1.1 mmol), β-naphthol

(1.0 mmol), and 1,3-dimethylbarbutyric acid (1.0 mmol),
3 mol% of ZrOCl2/nano-TiO2 were added as the catalyst,
and the mixture was stirred for an appropriate time at 100
°C in an oil bath. After completion of the reaction, indica-
ted by TLC, the reaction mixture was dissolved in the ap-
propriate volume of hot ethanol, stirred for 5 min, filtered,
and the heterogeneous catalyst recovered. Solution with
product was concentrated and recrystallized from ethanol
to get pure compound.

3. 4. Analytical Data: 

12-(4-Bromophenyl)-8,10-dimethyl-8,12-dihydro-9H-
naphtho[[1’,2’:5,6]]pyrano[[2,3-d]]pyrimidine-9,11-
(10H)-dione (4a): White solid; mp 243–245 °C; IR (KB-
r): νmax 2921, 2852, 1665, 1643, 1593, 1483, 1226, 506
cm–1; 1H NMR (CDCl3, 400 MHz): δ (ppm) 3.42 (s, CH3,
3H), 3.49 (s, CH3, 3H), 5.88 (s, CH, 1H), 7.04–7.35 (m,
5H), 7.41 (d, J = 8.5 Hz, 1H), 7.45–8.04 (m, 4H); 13C
NMR (CDCl3, 100 MHz): δ (ppm) 28.3, 29.0, 35.5, 90.8,
116.2, 116.6, 120.6, 123.7, 125.6, 127.5, 128.5, 129.7,
130.0, 130.7, 131.5, 131.7, 142.8, 147.1, 150.5, 152.2,
161.9; Anal.Calcd.for C23H17BrN2O3: C, 61.48; H, 3.81;
N, 6.23. Found C, 61.39; H, 3.75; N, 6.19.

8,10-Dimethyl-12-(4-nitrophenyl)-8,12-dihydro-9H-
naphtho[[1’,2’:5,6]]pyrano[[2,3-d]]pyrimidine-9,11-
(10H)-dione (4b): Cream solid; mp 290–292 °C, IR (KB-
r): νmax 2921, , 1667, 1595, 1513, 1342, 1229, 1175 cm–1;
1H NMR (CDCl3, 400 MHz): δ (ppm) 3.48 (s, CH3, 3H),
3.63 (s, CH3, 3H), 5.91 (s, CH, 1H), 7.26 (m, 5H), 7.60
(m, 2H), 8.07 (d, J = 8.8 Hz, 1H), 8.32 (d, J = 8.6 Hz, 2H);
13C NMR (CDCl3, 100 MHz): δ (ppm) 28.3, 29.1, 36.0,
90.0, 115.7, 116.3, 123.3, 123.7, 125.8, 127.8, 128.7,
129.2, 130.2, 130.5, 131.8, 146.5, 147.1, 150.4, 150.8,
152.4, 161.8; Anal.Calcd.for C23H17N3O5: C, 66.50; H,
4.12; N, 10.12; Found C, 66.41; H, 4.02; N, 10.20.

8,10-Dimethyl-12-phenyl-8,12-dihydro-9H-napht-
ho[[1’,2’:5,6]]pyrano[[2,3-d]]pyrimidine-9,11-(10H)-dio-
ne (4c): White solid; mp 223–225 ° C, IR (KBr): νmax

2921, 2849, 1669, 1645, 1593, 1485, 1234, 1175 cm–1, 1H
NMR (CDCl3, 400 MHz): δ (ppm) 3.34 (s, CH3, 3H), 3.59
(s, CH3, 3H), 5.77 (s, CH, 1H), 7.12–7.50 (m, 8H), 7.82
(m, 2H), 7.96 (m, 1H); 13C NMR (CDCl3, 100 MHz): δ
(ppm) 28.2, 29.1, 35.9, 91.4, 116.2, 117.3, 123.9, 125.4,
126.7, 127.4, 128.2, 128.4, 129.0, 129.5, 130.9, 131.7,
143.8, 147.1, 150.6, 152.2, 161.9; Anal.Calcd.for
C23H18N2O3: C, 74.58; H, 4.90; N, 7.56; Found C, 74.62;
H, 4.96; N, 7.48.

12-(4-chlorophenyl)-8,10-dimethyl-8,12-dihydro-9H-
naphtho[[1’,2’:5,6]]pyrano[[2,3-d]]pyrimidine-9,11-

Scheme 2: The proposed reaction pathway for the synthesis of

naphthopyranopyrimidine catalyzed by ZrOCl2/nano-TiO2.

Table 3. Recycling of ZrOCl2/nano-TiO2 catalyst in the preparation

of 4b.

Run 1 2 3 4 5

Yield (%)a 85 84 84 83 82

a Isolated yield.
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(10H)-dione (4d): White solid; mp 275–277 °C; IR (KB-
r): νmax 2961, 1668, 1622, 1358, 1205 cm–1, 1H NMR
(CDCl3, 400 MHz): δ (ppm) 3.33 (s, CH3, 3H), 3.60 (s,
CH3, 3H), 5.75 (s, CH, 1H), 7.18 (d, J = 8Hz, 2H), 7.28 (d,
J = 8Hz, 2H), 7.32 (m, 1H), 7.48 (m, 2H), 7.75–7.90 (m,
2H), 8.12 (d, J = 8Hz, 1H); 13C NMR (CDCl3, 100 MHz):
δ (ppm) 28.2, 29.0, 35.4, 90.8, 116.3, 116.7, 123.7, 125.6,
127.5, 128.5, 129.6, 129.7, 130.7, 131.7, 132.5, 142.3,
147.1, 150.5, 152.2, 161.9; Anal.Calcd.for C23H17ClN2O3:
C, 68.23; H, 4.23; N, 6.92; Found C, 68.16; H, 4.16; N,
6.96.

12-(4-fluorophenyl)-8,10-dimethyl-8,12-dihydro-9H-
naphtho[[1’,2’:5,6]]pyrano[[2,3-d]]pyrimidine-9,11-
(10H)-dione (4e): White solid; mp 300–303 °C, IR (KB-
r): νmax 2955, 1664, 1631, 1342, 1203, 1164 cm–1, 1H
NMR (CDCl3, 400 MHz): δ (ppm) 3.33 (s, CH3, 3H), 3.62
(s, CH3, 3H), 5.75 (s, CH, 1H), 6.88 (m, 2H), 7.25–7.37
(m, 3H), 7.41 (m, 2H), 7.75–7.89 (m, 3H); 13C NMR
(CDCl3, 100 MHz): δ (ppm) 28.2, 29.1, 35.3, 91.2, 115.4,
116.3, 117.0, 123.8, 125.6, 127.5, 128.6, 129.6, 129.7,
129.8, 130.7, 131.8, 139.6, 147.1, 150.6, 152.2, 161.9;
Anal.Calcd.for C23H17FN2O3: C, 71.13; H, 4.41; N, 7.21;
Found C, 71.19; H, 4.35; N, 7.16.

8,10-Dimethyl-12-p-tolyl-8,12-dihydro-9H-napht-
ho[[1’,2’:5,6]]pyrano[[2,3-d]]pyrimidine-9,11-(10H)-dione
(4f): White solid; mp 200–202 °C, IR (KBr): νmax 2919,
2853, 1700, 1638, 1486, 1229, 1172 cm–1; 1H NMR
(CDCl3, 400 MHz): δ (ppm) 2.24 (s, 3H), 3.32 (s, CH3,
3H), 3.58 (s, CH3, 3H), 5.71 (s, CH, 1H), 6.96 (d, J = 8Hz,
2H), 7.15 (d, J = 8Hz, 2H), 7.45 (m, 3H), 7.66 (m, 2H),
7.94 (m, 1H); 13C NMR (CDCl3, 100 MHz): δ (ppm) 21.1,
28.1, 29.0, 35.5, 91.6, 116.2, 117.7, 124.3, 125.4, 127.4,
128.1, 128.4, 129.2, 129.3, 130.1, 131.7, 136.0, 140.9,
147.1, 150.3, 151.8, 161.5; Anal.Calcd.for C24H20N2O3: C,
74.98; H, 5.24; N, 7.29; Found C, 75.05; H, 5.31; N, 7.21.

12-(2,4-dichlorophenyl)-8,10-dimethyl-8,12-dihydro-
9H-naphtho[[1’,2’:5,6]]pyrano[[2,3-d]]pyrimidine-9,11-
(10H)-dione (4g): White solid; mp 219–221 °C, IR (KB-
r): νmax 2923, 1642, 1582, 1484, 1174, 743, 718 cm–1; 1H
NMR (CDCl3, 400 MHz): δ (ppm) 3.30 (s, CH3, 3H), 3.64
(s, CH3, 3H), 5.98 (s, CH, 1H), 7.1 (m, 1H), 7.22 (s, 1H),
7.33 (m, 2H), 7.53 (m, 2H), 7.80 (m, 2H), 8.10 (m, 1H);
13C NMR (CDCl3, 100 MHz): δ (ppm) 28.1, 29.0, 33.8,
89.9, 116.2, 123.7, 125.5, 127.4, 127.6, 128.6, 129.6,
129.9, 130.9, 131.5, 132.3, 133.0, 133.7, 139.7, 146.8,
150.4, 152.4, 161.5; Anal.Calcd.for C23H16Cl2N2O3: C,
62.88; H, 3.67; N, 6.38; Found C,62.79; H, 3.61; N, 6.29.

8,10-Dimethyl-12-(3-nitrophenyl)-8,12-dihydro-9H-
naphtho[[1’,2’:5,6]]pyrano[[2,3-d]]pyrimidine-9,11-
(10H)-dione (4h): Cream solid; mp 307–309 °C, IR (KB-
r): νmax 2953, 1688, 1645, 1583, 1545, 1483 cm–1; 1H
NMR (CDCl3, 400 MHz): δ (ppm) 3.39 (s, CH3, 3H), 3.71

(s, CH3, 3H), 5.95 (s, CH, 1H), 7.55–7.85 (m, 8H), 8.10
(m, 1H), 8.14 (s, 1H); 13C NMR (CDCl3, 100 MHz): δ
(ppm) 28.2, 29.1, 36.0, 90.0, 115.5, 116.1, 123.2, 123.7,
125.4, 127.6, 128.4, 128.7, 129.0, 130.1, 130.3, 131.5,
143.2, 146.4, 147.0, 150.2, 150.8, 152.3, 161.5;
Anal.Calcd.for C23H17N3O5: C, 66.50; H, 4.12; N, 10.12;
Found C, 66.41; H, 4.07; N, 10.20.

12-(3-chlorophenyl)-8,10-dimethyl-8,12-dihydro-9H-
naphtho[[1’,2’:5,6]]pyrano[[2,3-d]]pyrimidine-9,11-
(10H)-dione (4i): White solid; mp 222–224 °C, IR (KBr):
νmax 2921, 1639, 1588, 1478, 1424 cm–1; 1H NMR (CDC-
l3, 400 MHz): δ (ppm) 3.33 (s, CH3, 3H), 3.61 (s, CH3,
3H), 5.75 (s, CH, 1H), 7.15–7.60 (m, 7H), 7.81–7.92 (m,
3H); 1H NMR (CDCl3, 400 MHz): δ (ppm); 28.2, 29.1,
35.8, 90.8, 116.3, 116.5, 123.7, 125.6, 126.7, 127.0,
127.6, 128.2, 128.6, 129.5, 129.8, 130.7, 131.8, 134.3,
145.7, 147.1, 150.5, 152.3, 161.8; Anal.Calcd.for
C23H17ClN2O3: C, 68.23; H, 4.23; N, 6.92; Found C,
68.18; H, 4.12; N, 6.85.

4. Conclusions

In summary, we have developed the synthesis of
naphtho[1’,2’:5,6]pyrano[2,3-d]pyrimidines in the pre-
sence of ZrOCl2/nano-TiO2 as an efficient catalyst under
solvent-free conditions. The procedure offers several ad-
vantages including easy workup, the employment of a
cost-effective catalyst, short reaction times, excellent
yields and reusability of the catalyst. Furthermore, synthe-
sized compounds provide promising candidates for che-
mical biology and drug discovery.
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Povzetek
V prispevku je opisana uporaba ZrOCl2/nano-TiO2 kot u~inkovitega katalizatorja za pripravo nafto[1’,2’:5,6]pira-

no[2,3-d]pirimidinskih derivatov v trikomponentni reakciji med aldehidi, β-naftolom in 1,3-dimetilbarbiturno kislino.

Prednosti tako izvedenih reakcij so izklju~itev topila med potekom reakcije, kratki reakcijski ~asi, enostavna izolacija

produkta, dobri izkoristki reakcij ter mo`nost recikla`e relativno cenenega katalizatorja. 


