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ABSTRACT

In this paper we show the use of the Boolean model and a class of RACS models that is a generalization of it
to obtain simulations of random binary images able to imitate natural textures such as marble or wood. The
different tasks required, parameter estimation, goodness-of-fit test and simulation, are reviewed. In addition to
a brief review of the theory, simulation studies of each model are included.
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INTRODUCTION

There are many practical situations in which
the imitation of natural textures such as marble or
wood is of great interest. In other words, apparently
equal but random binary or gray level images
must be obtained. Examples include textile and tile
manufacture. Stochastic Geometry is a branch of
Applied Probability that provides very powerful tools
for this task. In particular, Random Closed Sets
(RACS) models can be used. The most widely known
and used Random Closed Set model is the Boolean
model. In this paper we show how the Boolean model
and a class of RACS models that is a generalization
of it, can be used to obtain these simulations. With the
exception of one case, we consider only binary images
because the corresponding mathematical techniques
are simpler and better developed. In any case, a grey
level image can be transformed to a family of binary
images by means of a family of thresholds.

If we want to use a RACS model to simulate
similar images to a natural one these steps should
be followed. A model that fits the data should first
be found. Then the goodness of this fit should be
checked. Thirdly the parameters of this model should
be estimated from the observed image. Finally the
simulation can be carried out. All these steps are
considered in this paper. A brief review of the
theory of the Boolean model and the most important
generalizations of it is provided. These include germ-
grain models, three phased models and Poisson-
Boolean models. Parameter estimation methods and
simulation algorithms are proposed for each of these
models. In order to evaluate the goodness of the fit, the
Monte Carlo test should be used and this is also briefly
reviewed in this paper.

IMATLARB is a trademark of The MathWorks Inc.
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We have written a library of functions to be
used with MATLAB!, to carry out the different tasks
that we refer to: parameter estimation, goodness-of-
fit test and simulation. This library is available at
http://www3.uji.es/~simo.

There is a vast literature about Random closed
Set Models, mainly about Boolean Model. But many
of the papers are focused on theoretical properties
and most of them are devoted to a particular model.
The goal of this paper is to put together the most
useful and interesting models and to emphasize their
practical aspects, doing them easy to use. Although the
statistical methods proposed are mainly well-known,
specially those of section “The Boolean model”, as far
as we know they never have been used in other kind
of models like those of Section “Non-homogeneous
germ-grain model” and “Three-phase Boolean model
or sinter textures”.

The rest of the paper is organized as follows. The
next section begins with the definition of RACS and
general properties are reviewed. The second section
is devoted to the Boolean model: definition, basic
properties, parameter estimation and simulation. In the
third section the same is carried out for the Boolean
model generalizations. Finally, conclusions and future
research are given in the fourth section.

RANDOM CLOSED SETS

DEFINITIONS AND ESTIMATORS

Random closed sets are mathematical models for
irregular random area patterns whose formal definition



was provided by Matheron (1974). A random closed
set (RACS) E is a random variable taking values in
(F,0y), the class of closed subsets in the Euclidean
space, IR, with the o-algebra generated by the Hit or
Miss topology.

The RACS models considered here will be, with
the exception of one case, stationary and ergodic.
Stationarity means that its probability distribution is
invariant against translations. A RACS is said to be
ergodic if its mean characteristics can be obtained from
spatial averages of the functional of this RACS.

—
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The parameters of the probability distribution of a
RACS can be classified into two types: aggregate and
individual. The former are directly observable and can
thus be easily estimated by using the ergodic property.
Their definitions and estimators are common to all the
RACS models. The latter are not directly observed,
although they are of greatest interest when fitting a
model to real data and they are specific to each model.
Individual parameters have to be estimated through
estimates of aggregate parameters and their estimation
is very difficult except in the Boolean case. In this
section the most important aggregate parameters of a
general stationary RACS model are studied.

The probability distribution of any general RACS
is uniquely determined by its capacity functional
(Matheron, 1974);

T=(K)=P(ENK#0) . (1)
where K is any compact subset of R?. If Z is observed
in a window W, an unbiased estimator of 7 will be
given by:

—
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where Z @ K is the dilation of E with K, W © K the
erosion and for B C IR?, A(B) denotes the area of B.
We will call Tx the empirical capacity functional of &
and it is a consistent estimator of Tx.

The simplest aggregate parameter of a RACS is the
area fraction that is defined as the mean of the area of
% in a unitary window W:

p=EA(ENW))=P(0€E).
An unbiased estimator of p is:

A(ENW)

AP 2)

p=

A further, very useful aggregate functional
parameter is the contact distribution function, which
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provides a kind of measurement of ‘size’ when
identification of single particles is inappropriate. The
definition of the contact distribution function depends
on the choice of a structuring element B. If B is a
compact set containing the origin, then the contact
distribution function is defined by:

1— TE(I’B)
I-p
for r > 0. The cases of particular practical importance
are the linear contact distribution function where B
is a segment of unit length and the spherical contact
distribution function where B = B(0, 1) is a unit disk.
The contact distribution function can be estimated by

combining the estimators of the capacity functional
and the area fraction.

Hy(r) = 1— 3)

The last three reviewed aggregate parameters are
less important, they are defined only for Random
Closed Sets that fulfill certain conditions of regularity
(convexity, smooth boundary,. . . ) and will be used only
in the Boolean case.

The specific convexity number, N, of a stationary
and isotropic RACS is defined as the average number
of exposed tangent points in a given direction. The
estimation of the specific convexity number can be
performed as follows. We choose an arbitrary direction
u and we count the number of tangent points in the
direction u inside the window W, N(N*(u«) "W). Thus

NNt () W)
A(W)

is a strong consistent estimator of N .

Vo
NA -

The specific boundary length, L4 of E is its
expected boundary length per unit area. The following
is an unbiased estimator (Weil and Weaieacker, 1984):

UENW)-UENSW)
AW)

where 6tW is the upper-right boundary of W and

U(EN S6tW) is the length of the corresponding

intersection. Simpler estimators, as for example, the

length of the boundary of E inside W divided by the
area of W are strong consistent but biased.

A

A =

bl

Finally, the specific connectivity number x4 of a
RACS is defined as the expected connectivity number
per unit area, roughly speaking the mean of the
difference between the number of clumps and the
number of holes per unit area. An unbiased estimator
of the specific connectivity number is given by

X (ENW)—x(ENStW)
A(W)

where for B C IR?, x(B) denotes the connectivity
number of B.

A

XA =

bl
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MONTE CARLO GOODNESS-OF-FIT
TEST

Different procedures can be found in the literature
to test whether a realization of a RACS can be assumed
that follows a particular model. In Molchanov (1997)
some of them are proposed for the Boolean model. If
we are interested in a general method, Monte Carlo
methods should be used (see Diggle, 1983).

A simple exact Monte Carlo test based on the
contact distribution function can be constructed as
follows.

Let us firstly assume that Hg(r) is known under the
null hypothesis.

Let A é])(r) be the empirical distribution function
of the observed E and let I-Alg)(r), i=2,3,...5, be
the corresponding to each of the s — 1 independent
simulations of the RACS model that we are assuming
under the null hypothesis, we define u#; some measure
of the discrepancy between Fllg') (r) and Hp(r) over the
whole range of r, for example

o

and proceed to a test based on the rank of u, i.e. for
a significance level & = 1 — k/s, the Boolean model
hypothesis is rejected if u#; ranks kth largest or higher.

— Hp( r))zdr

Another possibility is to use a graphical test. The
graphical procedure consists of plotting A, l(;]) (r), H,(r)
and H,(r) against Hp(r), being H,(r) and H,(r) the
upper and lower envelopes of I:Ilgi)(r), i=2,3,...5

If I:Ilgl)(r) lies close to Hp(r) and it is between both
envelopes, there is no evidence to reject the null
hypothesis.

If the theoretical distribution function Hg(r) is
unknown then both, the exact test and the graphical
test, can still be carried out if Hg(r) is replaced by

ZHB

i#]

s—l

THE BOOLEAN MODEL

DEFINITION

This section is devoted to the study of the Boolean
model, the most important and relatively simple
example of RACS. It is both flexible and amenable to
calculations.

The formal definition of Boolean model is as
follows.

135

Definition 1 Suppose ®;, = {xi,...,xy,...} is a
stationary Poisson point process in IR* of intensity A.
Let 51,E,,... be a sequence of independent identically
distributed random compact sets in IR*> that are
independent of the Poisson process ®, and satisfy
EA(Zo® K) < +oo for all compacts K, where Zg is
a random compact set of the same distribution as Z,,.
The Boolean model E is:

= U(x,-—I—E,-) .

i

“4)

The points x; are called germs, the sets E, are known as
grains and the random set X is said the typical grain
of the Boolean model.

The value of parameter A is said to be the intensity
of the Boolean model.

A more in-depth study of this model can be found
in Stoyan et al. (1995), Molchanov (1997), Cressie
(1993), Ayala (1988) and Serra (1982). Boolean model
applications to real images can be found in Stoyan
et al. (1995), Serra (1982), Plaza (1991), Margalef
(1974) and Lyman (1972).

Individual parameters of a Boolean model are the
intensity of the germ process and parameters of the
distribution of the primary grain.

PROPERTIES

In the Boolean model, the expression of the
aggregate parameters defined in the previous section
are known and relatively simple. They are reviewed in
this section, and a theoretical study on them can be
found in Stoyan et al. (1995) and Molchanov (1997).

The expression of the capacity functional for a
Boolean model is:

T=(K) = 1 —exp{—AEA(E¢®K)} .

If the primary grains are convex, the generalized
Steiner formula gives for convex K:

-1
T=(K)=1—exp{—A(A+ EU

(K)U +A(K))},
where U is the mean of the perimeter of =y and A
is the mean of its area. If we substitute K for the
origin, we obtain the expression of the area fraction:
p=1—exp(—AA).

Taking into account Eq. 3, the contact distribution
function of a Boolean model has the following
expression

Hg(r) =1 —exp{—AE[A(Z, @ rB)]

—A}Y. (5



Finally can easily be shown that

and if & is convex and isotropic:

212 )
xa=(1 —P)(1—4—7TZU ) -

PARAMETER ESTIMATION

In this section we provide a brief review of
methods for the estimation of numerical individual
parameters of the Boolean model. As mentioned
above, they are the intensity and the parameters of
the probability distribution of the primary grain. A
great number of methods are available which can be
classified into two general types: Minimum Contrast
Methods and Moment Methods. In practice we will
need to combine some of them to obtain the estimation
of all the parameters of the model.

Minimum Contrast Method

This method was first introduced for contact
distribution functions (Dupac, 1980; Diggle, 1981)
although it can be used for other aggregate functions.

Let B be a structuring element; we consider
the contact distribution function Hp(r) (Eq. 5).
Its corresponding logarithmic transform (henceforth
referred to as the logarithmic contact distribution
function) is equal to:

Hpy(r) = —log(1— Hy(r))

—AE[A(Zo®rB)] —A,

and on applying the Steiner formula (Matheron, 1974):
1 _
Hy(r) = —A(A(B) + 570U (B)) .

For typical structuring elements such as disks,
lines or squares, Hj(r) is a polynomial function.
The essence of the minimum contrast method lies in
finding the polynomial f(r) which best approximates
the empirical logarithmic contact distribution function.
The estimators of individual parameters can be
obtained from their coefficients.

As an example, we can examine the case of
the spherical contact distribution function. If the
structuring element B is the unit disk,

Hi(r) = Anr? + ArU
and
H(r)
r

= Anr+ AU
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is linear, if f(r) = a+ br is fitted to it then:

METHOD OF MOMENTS

This method is similar to the method of moments
in classical statistics, namely, the estimators of
parameters for the Boolean model are chosen to
match the empirical values of aggregate parameters.
Individual parameters are estimated with the relations
given in the previous section being taking into account:

p=1—exp—AA, (6)
fa=L(1-p)U, (7
D
AAz(l—ﬁ)(k——nUZ), (8)
VE=2(1-p). )

It is worthwhile to note that the determination
of %4 and Ny may be difficult in a discrete context.
With respect to the first one, it is usual that popular
software package of mathematical computations, like
MATLAB, has implemented efficient functions to
calculate it. With respect to the second one, our
experience in the practical image analysis, tell us that
good results are obtained by considering as a lower
tangent point, any configuration belonging to the one
of the types shown in Fig. 7.

BOOLEAN MODEL SIMULATION

The simulation of a Boolean model is very simple.
Let W be a rectangular window of size m x n, A the
germ intensity and E the typical grain. The algorithm
is:

Algorithm 1 /. Generate k = Po(AA(W)).
2. Fori=1tok:
(a)Generate x(li) = Un(0,n), xg) = Un(0,m), x; =
(x(i) (i))

1%
(b) Generate Z; following the distribution of Z.
Draw &; + x;

—
2
—
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Po() and Un() denote the Poisson and the uniform
distribution respectively. In the case when AA(W) is
large then some form of rejection technique must be
used in step 1 (Ripley, 1987). In order to correct
the edge effect, this algorithm should be applied to
a larger window W* such that the probability of a
grain centered in the boundary of W* intersects W is
depreciable. In Fig. 1 we can see various simulations of
a Boolean model in a 512 x 512 window. The primary
grains are random balls, random line segments and
random squares respectively.

(b)

Fig. 1. Three simulations of a Boolean model in
a 512 x 512 window. (a) Balls with random radii
R ~ N(10,2) and A = 0.001. (b) Line segments with
random length L ~ N(30,10) and A = 0.005. (c)
Squares with random side 1 ~ N (30, 10).

SIMULATION STUDY

In this section we carry out a simulation study
in order to compare the performance of the different
parameter estimation procedures. We simulated 50
Boolean models in a 512 x 512 window whose primary

grains are random discs with Gaussian radii. Thus the
parameters to be estimated are the intensity and the
first and second moment (E (R), E(R?)) of the random
radius. (We have to note that in all our simulation
studies we will use E(R?) instead of the variance
because most estimation methods provide the direct
estimation of this parameter). Two different intensity
values were used for each experiment: 0.001 and
0.0005. For each intensity value, two values for first
and second moments were used: (20, 449) and (10,
109).

As explained in section “Parameter estimation” a
great number of methods could be used by combining
the different types previously explained. We used the
three following methods:

1. The first method is based on the minimum contrast
method to estimate the intensity and the mean of
the radius and Eq. 6 to estimate the second moment
of the radius. The minimum contrast method is
applied to the contact distribution function with a
square as structuring element (we used a square
instead of a disk because its evaluation is better in

a discrete screen). We call this method 1.

The second method is the method of moments
using Egs. 6, 8 and 9 (in tables, method 2).

The last method is identical to the second one but
we use Egs. 6, 7 and 8 (method 3).

Table 1. Results of the experimental study of Section 3.6: sample means (standard deviation) of the estimates of
the different parameters for each one of the methods for a Boolean model with A = 0.001.

method 1 method 2 method 3
ER)=20 | A |1.2e73(6.7¢™*) | 9.1e7*(1.2¢7%) | 1.5¢73(2.5¢7%)
E(R?)=449 | E(R) | 26.1(30.4) 23.8(1.9) 17.3(2.3)
E(R?) | 598.6(672.3) | 529.7(59.8) 325(51.3)
E(R)=10 A | L 1e—3(1 8e™) | 9.0e7*(6.3¢7%) | 1.2¢73(9.9¢77)
E(R?) =109 | E(R) 9.9(2.4) 10.5(0.9) 11.2(0.16)
E(R?) 114.1(23.5) 133.9(6.3) 100.0(15.5)

Table 2. Results of the experimental study of Section 3.6: sample means (standard deviation) of the estimates of
the different parameters for each one of the methods for a Boolean model with A = 0.0005.

method 1 method 2 method 3
E(R) =20 A 6.0e=4(2.6e7%) | 5.1e74(6.4¢7%) | 6e7*(1.0e™%)
E(RY) =449 | E(R) 18.2(5.5) 21.1(1.7) 19.3(1.6)
E(RY) | 424.5(125) 465.3(44.9) 357(41.1)
E(R) =10 A | 5.5e74(1.4¢7%) | 4.6e74(4.4e75) | 5.7e74(8.1e7)
E(RY) =109 | E(R) 9.6(2.7) 8.4(2.2) 11.8(4.8)
E(R?) | 112.6(25.5) 128.6(8.1) 106.1(13.0)
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The results are shown in Tables 1 and 2. These
tables show the sample means and standard errors of
the estimates of the different parameters for each one
of the previous methods. It can be seen that all of them
provide good estimations: The sample mean is in all
cases very close to the real value and the variance is not
too big exceptin method 1, this method is less efficient.

BOOLEAN MODEL
GENERALIZATIONS

In this section, we study some generalizations or
modifications of the Boolean model that may be used
for the simulation of structures of greater complexity.

GERM-GRAIN MODELS

The Boolean model presupposes very strong
assumptions: homogeneous Poisson process of
germs and independence between germs and grains.
Unfortunately, a great number of real images cannot
assume these premises. The first type of generalization
of a Boolean model studied in this paper attempts to
relax some of these assumptions. The relaxation of
these assumptions leads to the class of germ-grain
models, a general definition of which can be found in
Stoyan et al. (1995) and is as follows:

Definition 2 Suppose ®, = {x1,...,xy,...} is a point
process in R*. Let E,Z,,... be a sequence of random
compact sets in R>. A germ-grain model E is:

(10)

The points x; are called the germs and the sets E,, are
known as the grains of the model.

In this section we will study three particular cases
of germ-grain models: cluster germ-grain model, non-
homogeneous germ-grain model and Gibbs process of
non-intersecting grains.

CLUSTER GERM-GRAIN MODEL

This model is defined as a germ-grain model
(10) whose germ process is a cluster Poisson point
process independent of the grains, and the grains are
independent and identically distributed as &. Note that
this definition is fairly different from the definition of
Boolean cluster model given in Saxl and Rataj (1996)

and Rataj and Saxl (1997).

A cluster point process (Neyman, 1939; Neyman
and Scott, 1979; Diggle, 1983) is generated as
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follows: first, a Poisson point process of intensity p
is generated. This will be called the parent process.
A random non negative integer is associated to each
parent, the number of offsprings. The offspring of a
given parent is located around its parent independently
and according with a given probability distribution.
The final point process is composed only of the
different offspring, i.e., the parent process is not
considered.

Some formulas for Cluster germ-grain models can
be found in Last and Holtmann (1999).

Simulation

In order to simulate the cluster germ-grain model
we simply have to substitute the germ process
generation step in the Boolean model simulation
algorithm 1 by:

1. Generate k = Po(pA(W))
2. Fori=1tok:
(a) Generate ysi) = Un(0,n), yg) = Un(0,m), y; =
o1)

(b)Generate [; following a univariate discrete
distribution f(/)

(¢c)For j =1 to [;. Generate x;; = u;+y; with
u; following a bivariate continuous distribution
h(u)

(b)

Fig. 2. Three simulations of a cluster germ-grain
model in a 512 x 512 window with p = 0.0001, the
position of the offsprings with respect to their parents
are uniform in the ball of radius 40 and the number
of offsprings per parent follows a discrete uniform
distribution on {0,...,10}. (a) balls with random
radii R ~ N(10,4), (b) line segments with random
length L ~ N(10,4) and (c) squares with random side
I~ N(10,4).

Fig. 2 shows three simulations of this model
where parents have intensity p = 0.0001, the positions
of the offsprings with respect to their parents are
uniformly distributed on the ball of radius 40 and
the number of offsprings per parent follows a discrete
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uniform distribution on {0, ..., 10}. In the first image,
the grains are balls with random radii following a
Gaussian distribution with mean, E(R) = 10, and
second moment, E(R?) = 104. In the second image
they are random line segments of random length
with the same distribution. The last image shows
the realization of a model whose grains are random
squares, again with the same distribution for their
sides.

NON-HOMOGENEOUS GERM-GRAIN
MODEL

A non-homogeneous germ-grain model is a germ-
grain model (Eq. 10) whose germ process is a
non-homogeneous Poisson point process independent
of the grains and the grains are independent and
identically distributed as E.

A non-homogeneous Poisson process is obtained
when the constant intensity of the Poisson process is
substituted by a general intensity measure A(A), for
A C R?, usually A(A) = [, A(x)dx.

It can easily be shown that the capacity functional
of this germ-grain model is given by:

Tx(K)=1—exp[-E{[Z0®K[1}], (1)

with
I

Eookli= [ I ox2 () dr.

It should be noted that this model is not stationary.

Example

Let us consider A ((x;,x2)) = Agx1, i.e. the intensity
at point x is proportional to its abscisa, and Zg =
B(0,R) with random R. A similar type of heterogeneity
is considered in Hahn et al. (1999). This model is
not stationary and the definitions of the area fraction
and the contact distribution function will depend on
x = (x1,x2).

If we consider K = B(x, 1) the exponent in Eq. (11)
has the expression

E 9
(Zo®K)

A(y)dy=E [ /B - AO)’Idy:| =
E [Agx1(R+1)’x] .

For t = 0 the expression of the area fraction is:

p(x) = 1 —exp(—E[AR*x 7)) , (12)
and the contact distribution function is:
HB(X’I)(I) =1—exp—(Apx;mt(t +2E(R))). (13)
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Parameter estimation

In this section we study parameter estimation in the
particular non-homogeneous germ-grain model given
in the example of the last section.

The capacity functional 7z(K) and the area
fraction of this model, and in general of any non
stationary model, can be estimated by using a kernel
estimator. Let us consider {y(",...,y"} a grid of
points in the observation window W, then we estimate
the capacity functional at K = B(x,?) by:

_ Zy(i)GEEBB(O,t) k(x — y(i))
YL k(x—y®)

with k() denoting a kernel function.

N

T=(B(x,t))

(14)

bl

Note that if + = 0, we have the estimation of
the area fraction. But for the type of heterogeneity
considered in this example (vertical linear trend), one
may estimate the capacity functional by the length
fraction of Z @ K along the horizontal line with abcisa
x1. Hence no bivariate kernel is needed.

Taking into account Eq. (13), we can estimate
individual parameters of this model using a minimum
contrast method. If we assume that radii are Gaussian,
we have to estimate Ao, E(R) and E(R?). The
expression of the logarithmic contact distribution
function is:

_log{l — Hp(,1)(2) }
t

= Ao 7(t + 2E(R)) .

Given x we can estimate Ay and E(R) by fitting
a linear function to the empirical logarithmic contact
distribution function. However, a better estimation will
be obtained by taking a set of points {x(1),... x("},
estimating f;(¢) log{1— HB(XJ)(Z)}/th'), taking
their sample mean, f(¢) and fitting a linear function
to f(t). E(R?) can be estimated from the expression of
the area fraction (12).

Simulation

The simulation of this model in a rectangular
window W is again very simple. The germ process
step generation in the Boolean model algorithm 1 is
substituted by (see Diggle, 1983):

1. Ay = max,ewA(x). Generate k = Po(4)
2. Fori=1tok:

(a) generate xsi) = Un(0,n), xg) = Un(0,m), x;
() (i))

(x] 1y X



(b) generate p = Un(0, 1)

if p < A(x;)/ o, generate E; following the
distribution of E; and draw E; + x;

else x; is deleted

Fig. 3 shows some simulations of the example of
the non-homogeneous germ-grain model given in this
section with Gaussian radii.

b)

Fig. 3. Two simulations of a non-homogeneous germ-
grain model whose intensity is proportional to the
abcisa coordinate. Grains are random balls with
Gaussian radii and parameters: a) Ay = 0.00001,
E(R) = 10 and E(R?) = 104, b) Ay = 0.000001,
E(R) =20 and E(R*) = 425.

Simulation study

A simulation study was again carried out in
this section. 50 realizations of the example of
the previously studied non-homogeneous germ-grain
model were generated in a 512 x 512 window. The
grains are random balls with Gaussian radii and
all of them have parameters Ao = 2¢~°, E(R) = 20
and E(R?) = 449. We estimated the parameters by
using the method explained in Section ‘“Parameter
estimation”. The results are shown in Table 3 and, as
can be seen, they were quite acceptable.

A
3e7°(1.03¢™°)

E(R?)
344.5(134.1)

E(R)
14.3(7.4)

Table 3. Results of the experimental study of Section
4.3.4: sample mean (standard deviance) of the
estimates of 50 realizations with Ay = 2¢=%, E(R) = 20
and E(R?) = 449.

Gibbs process of non-intersecting grains

This model relaxes the assumption of
independence between germs and grains in such a way
that the grains do not overlap. Their formal definition
is as follows (see Stoyan et al., 1995).
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Definition3 Let Q = R°Q K = {w = (z,K) : z €
R*K € K}

Let Ag = {wn }n>1 be a point process in Q where:

1. {zu}u>1 is a stationary point process in IR>.

2. {Ky}bus1 iid Ko,

3. {zu}n>1 and {K, },>1 are independent.

Let us consider the following neighborhood relation:
wi ~wy iff ELNE, # 0 where &, = K, + z,.

Let A = {w,} be a Gibbs process with density with
respect to Ag:

1
p(Wlu"'awn) = EHCXP{(X‘F G(thj)} )
i<j
where

—00

0

lle ~ W2,
otherwise .

6 (wi,w;) = {

The Gibbs process of non-intersecting grains is:

This model was studied in Mase (1986) and Stoyan
(1989) with circular grains. In Ayala and Simé (1995)
this model with elliptical grains was used to model
nerve fiber.

Parameter estimation

Individual parameters of this model are « and the
parameters of the probability distribution of K. Their
estimation was studied for the case of circular grains
with random radii in Stoyan (1989) and is as follows.

Let A be the intensity of the Gibbs process, m(r)
the density function of the probability distribution of
the radii of the Gibbs process while p(r) denotes the
probability that a disk centered in the origin and radius
r intersects the Gibbs process. All these parameters
are directly estimable from the observation window.
Let mo(r) be the density function of the probability
distribution of the radius of Ky. We have the following

relation:
Am(r)=e *p(r)my(r).

And the estimation of m(r) is obtained:

with & chosen so that:
/ g (r)dr=1.
0

This method could be generalized, for example, to
ellipses or line segments.
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Simulation

Different methods of simulating general Gibbs
processes can be found in the literature (Ripley, 1981;
Van Lieshout, 2000), most of which are based on the
so-called spatial birth-and-death (b-and-d) processes.
The simulation begins with a start configuration which
is then changed step by step, where points disappear
(‘die’) and new ones are generated (‘born’). In our
experiments, we have used a Metropolis-Hasting
(M-H) type algorithm. A M-H algorithm is a discrete
time Markov process where the transitions are defined
in two steps, a proposal for a new state (in our case
a birth or a death) is made that it is subsequently
accepted or rejected based on the likelihood ratio of
the new state compared to the old one. The spatial b-
and-d process is a time continuous Markov process in
which all transitions are accepted with probability one,
but, the process stay in state x for an exponentially
distributed random sojourn time. We have used one
of the simplest M-H algorithm: births and deaths are
equally likely and sampled uniformly.

Let W be the window where the process is
generated.

Algorithm 2 1. An initial configuration Ey with k
non intersecting disks is generated, with k being
arbitrary. Make n =k, £ = &,

with probability %
(a) Generate a new point x' uniform in W and

radius r' from my(r). If ENB(x',1") # O the new
disk is rejected. If not,

i. If n < e ®AW) — 1 the new disk is

accepted.
ii. Ifn>e “A(W) the new disk is accepted
. .7 AW
with probability “— +(1 )

(b) Choose (x,r) at random of E.
Ifn > e~ *A(W) this disk dies.

If n < e *A(W) — 1 the disk dies with
probability —

I
iL.

TA(W)

Although we have choose this algorithm because
it is simpler to implement, we have to warn that, in
general, this algorithm could result in a low acceptance
probability, especially for models exhibiting strong
interaction, that would make it inefficient. In this case
we should use other kind of proposals or well a spatial
b-and-d process. See Clifford and Nicholls (1994) for
an excellent comparison.

Another problem here is to asses how long the
chain should run in order to achieve the desired
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approximation. This problem could be solved by using
the recently developed perfect or exact simulation
(Propp and Wilson, 1996). Fig. 4 shows some
simulations of this model.

Fig. 4. Two simulations of a Gibbs process of non-
intersecting grains with: a) o = 3 and b) o = 4,
the grains are random balls with radii following a
Gaussian distribution N(20,36).

Simulation study

In this section, a simulation study is again carried
out to experimentally test the performance of the
previously described parameter estimation procedure.
In order to do this, we simulated 20 Gibbs processes of
non-intersecting grains with & = 3 and 20 with o = 4.
The grains are in both cases random balls following a
Gaussian distribution with first and second moment 20
and 449 respectively. The sample means and standard
deviation of the estimates are shown in Table 4. The
results are in general fairly good. The results for o =4
are a slightly better, they are less variable and their
mean is nearer to the real value.

o7 E(R) E(R?)
a=3| 2.7.7) | 23.52.9) | 572.546.4)
a=414.4(0.67) | 22.9(3.6) | 557.41 (38.2)

Table 4. Results of the experimental study of Section
4.3.8: sample means (standard deviation) of the
estimates of 20 realizations with E(R) = 20, E(R?) =
449 and oo = 3 and o0 = 4, respectively.

THREE-PHASE BOOLEAN MODEL OR
SINTER TEXTURES

The departure from the Boolean model studied
in this section consists of considering a three-phased
Boolean model. This model is defined in a very simple
way. Suppose that X; and X, are independent Boolean
models. Then we define:

(x]

— . c [ (4
1—X1, Lz—XzﬂX], &3—X2



and we call (E;,%,,E3) the three-phased Boolean
model. Note that the complete Boolean model X
forms component 1. Component 2 can be interpreted
as a pattern destroyed in part by X; and E; is the
background. This three-phased model was introduced
in Serra (1982) and applied to the description of sinter
materials.

It can easily be shown that the area fraction fulfills:
Pz,
P, =1 —-
e - Px
Parameter estimation

Since X; is a completely observable Boolean
model its individual parameters can be estimated using
the methods from section ‘“The Boolean Model”.

In order to estimate the parameters of X;, we can
use the equation of the capacity functional for union-
censoring given in Molchanov (1997):

_ Txux(K) — Ty (K)
TXz(K) - 1 _TX1 (K)

(15)

Using Eq. (15) the contact distribution function of
X, can be estimated and the parameter of X; can be
estimated using the minimum contrast method applied
to the empirical logarithmic contact distribution
function as explained in Section “The Boolean model”.

Simulation

The simulation of this model is trivial when its
definition and the algorithm 1 are taken into account.
Fig. 5 shows a simulation of a three-phased Boolean
model, both Boolean models have intensity A =
0.0005 and random balls with Gaussian radii with
parameters E(R) = 20 and E (R?) = 449.

GALLEGO MA ET AL : RACS models and binary images

Fig. 5. A simulation of a three-phased Boolean model.
Both Boolean models have intensity A = 0.0005 and
random balls with Gaussian radii with parameters
E(R) =20 and E(R?) = 449.

SIMULATION STUDY

In this section we study the performance of the
parameter estimation procedure, again by means of a
simulation study. We applied the previously explained
procedure to 20 simulations of a three-phased Boolean
model. X; and X, are both Boolean models with
intensity A = 0.0005 and random balls with Gaussian
radii with parameters E (R) = 20 and E (R?) = 449. The
results are provided in Table 5. As was expected, the
estimates of X; parameters are more precise because
the model is completely observed.

THE BOOLE-POISSON MODEL

The last Boolean model generalization studied
in this paper is obtained by restricting the Boolean
realizations to remain inside the polygons generated
by a Poisson process of lines. It is called the Boole-
Poisson model (Serra, 1982).

Table 5. Results of the experimental study of Section 4.5: sample means (standard deviation) of the estimates of
20 realizations with E(R) = 20, E(R?) = 449 and A = 0.0005 for both Boolean models.

A E(R) E(R?)
Boolean 1 0.00056 (0.00023) | 22.53 (14.52) | 483.8 (313.6)
Boolean 2 (hidden) | 0.00068 (0.0005) | 26.07 (25.5) | 568.14 (629.6)

A line process is a random collection of lines in the
plane which is locally-finite; i.e. only a finite number
of lines hit each compact planar set. A line process
can be seen as a particular case of point process on
IR?, because we can parameterize it as: (p,¢) € R x

(0,27] C IR?, with p being the perpendicular distance
of the line to the origin and ¢ the angle that the
perpendicular makes with the positive x-axis. Under
this parameterization, the set G of all the lines in the
plane is equivalent to:
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S={(p,9) : 0< p<o,0< ¢ <2m}.

A line process is a point process on S. If K is a
compact planar set and Gk the set of lines hitting K,
the corresponding subset in S will be called Sg. The
measure of these sets is given by the Lebesgue measure
considered as subsets of R”.

A Poisson line process is the line process produced
by a Poisson process on S.

Let us now see the definition of Poisson-Boolean
model.

Let X; be an isotropic Poisson lines process in
RR? with intensity A. This process generates a random
tessellation, each polygon II of the tessellation is
intersected with a realization of a Boolean model X,
with intensity @ and primary grain X?, in such way that
a different realization of X, is used for each polygon.
The union of all these portions of X,, together with
X, make up a set Y that is called the Poisson-Boolean
model.

If Ty, T, and T(B) denote the capacity functional
of X, X, and Y respectively, we have:

T(B) =1—exp{—AU(B) — OE[A(X)® B)]}.

Applying the Steiner formula and taking the logarithm,
we obtain the following expression:

—log{1—-T(B)} = AU(B)+
0 (A(X§+21—EU(X§)U(B)+A(B)) . (16)

This equation together with the expression of the
area fraction:

p=1-exp{0A(X})},

and will be used in the next section to estimate the
parameters of the model.

(17)

Parameter estimation

Individual parameters of this model are the
individual parameters of the Boolean model. To
estimate them we previously need to estimate the
intensity of the line process. This is an aggregate
parameter and it can be estimated as a spatial mean.

Number of lines intersecting W

A= A(Sw)

However, this estimation has added difficulties in
practice. The lines in the image have to be counted
automatically, which is not a simple task. To count the
number of lines in the image we take into account the

fact that this number is equal to the number of local
minima of the Radon transformation of the image.

Once A has been estimated, we again use the
minimum contrast method to estimate the rest of the
parameters of the model. From Eqgs. (16) and (17)
we obtain the expression of the logarithmic spherical
contact distribution function

—log{1—Hp(r)}

r

= A8+ 9(21—7TU(X20)8 +9r).

The estimates are obtained by fitting a linear
function to the empirical function.

SIMULATION

The simulation algorithm of this model has two
basic steps. In the first step the lines process is
generated and in the second, a Boolean model is
simulated in each polygon following algorithm 1. The
simulation of the line process step is as follows (Stoyan
and Stoyan, 1994):

(i) Let W be the window where the process is to be
simulated (To simplify the simulation we assume
that W is square). Find the set Sy in S and its
Lebesgue measure. (If W is convex, as in this case,
this is the measure of the boundary of W)

(i1) Generate a Poisson-distributed random number n
with parameter AA(Sy ).

(iii)Generate n independent random lines using the
following steps (to simplify the notation, assume
that W is the unit square):

1. u=Un(0,1)

2. Ifu> %goto(S)

3. v="Un(0,1)

4. p= %:(j) =2mv: go back to (1)
5. v="Un(0,1): ¢ =2mv

6. T =+/2(sin(9) + cos(9))

7. If u> T then (1)

8. p= %: go back to (1).

Fig. 6 shows two simulations of this model.



Fig. 6. Two simulations of a Poisson-Boolean model
where the grains are random balls with radii following
a Gaussian distribution with parameters (a) A =
0.0001, 6 = 0.001, E(R) = 20 and E(R?) = 449; (b)
A =0.0005, 6 = 0.002, E(R) = 10 and E(R*) = 109.

HH H*H Ay Ry HE

Fig. 7. Pixel patterns used to detect lower tangent
points.

Simulation study

In this section, we again carry out a simulation
study to show the performance of the former method.
We simulated 20 Poisson-Boolean model realizations
with parameters A = 0.002, 8 = 0.00005. The grains
of the Boolean model are balls with random radii
following a Gaussian distribution with E(R) = 20 and

GALLEGO MA ET AL : RACS models and binary images

E(R?*) = 449. The results can be seen in Table 6. They
are relatively good in the estimation of A and 0, a
slightly less so for the mean of the radius and not so
good for the variance.

CONCLUSIONS

In this paper we reviewed the use of Random
Closed Sets as a powerful tool in simulating random
binary images able to imitate natural textures. The
Boolean model and a class of RACS models that is
a generalization derived from it have been studied.
For each model simulation algorithms and parameter
estimation procedures were given.

In addition a library of functions to be used with
MATLAB was written to carry out the different tasks
that we refer to.

Future work could include other generalizations
of Boolean Model with different point processes
like Strauss point processes or area-interaction point
processes.
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Table 6. Results of the experimental study of Section 4.7.1: sample means (standard deviation) of the estimates
of a Poisson-Boolean model with = 0.002, 8 = 0.00005, E(R) = 20 and E(R?) = 449.

~ ~ ~

A b E(R)

E(R?)

0.001 (5.84¢~") | 0.00008 (3.41e7>) | 15 (10.39)

130.6 (54.6)
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