IMPLEMENTATION OF DENOTATIONAL SEMANTICS

Keywords: formal methods, semantics, rapid prototyping,

functional languages

INFORMATICA 1/91

M. MERNIK, V. ZUMER
Technical Faculty of Maribor
University of Maribor
Smetanova 17, 62000 MARIBOR

ABSTRACT : In the paper formal methods for semantics definition and

reasons for their appearance are briefly described.

Denotatlional

approach to semantics definition 1s more detall explained in next

chapter. Implementation of denotational semantics lead us to operational

approach and to rapid prototyped interpreters. We represent one of the

possible implementation of denotational semantics

language LISP.

KEYWORDS : formal methods, semantics, rapld prototyplng,

languages

1. INTRODUCTION

A programming language 1is a notatlon for
describing computatlons and s deflned with
syntax, semantics and pragmatics. The structure
of statements is given by syntax. The area of
syntax has been intensively studied and Backus -
Naur form (BNF) is widely used for defining
syntax, because there exists a close
correspondence between the BNF definition and
parser. The meaning of statements is given by
semantics and language implementation on specific
computer: is described by pragmatics. In this
paper we briefly describe semantics definition
methods. Unfortunately, the semantic area is not
as well developed as the syntax area, because
semantic features ;re much more difficult to
define and describe. Semantics of early developed
programmming languages were described in natural
languages. This _descrlptlon has the advantage
that .semantlcs was easlly understood but also
many disadvantages such as: amblgulty,
inaccuracy, misunderstanding, etc. So we need
formal semantics definitions which, ensures us :-

- precise standards for a computer
lmplementation,‘whlch guarantes that the language
implementation is exactly the same on all
machines ;

- usefull user documentation ;

- a tool for design and analysis ;

- input to compiler generator, which maps

using functional

functional

semantic definlitions to a guaranted correct
implementation of the language.

The effort, on formal methods for semantics
definition,.done in 70-tles have brought us three
distinct and complementary description methods :
operational, denotational and axliomatlc
semantics [3,4,6,8]).

The operational semantics method wuses an
interpreter to define a language. The meaning of
a program 1is the evaluation history that the
interpreter produces when it interprets the
program.

The denotational approach to semantics makes
use of mappings, which are called semantic
valuation functlons. These map syntax constructs
into their abstract mathematlical counter part
thus numerals are mapped into numbers, procedures
are mapped into mathematical functions, and so
on. The depotational definitions are more
abstract then operational.

With the axlomatic semantics method, the meaning
of program 1s not explicitly given' at all
Instead, properties about language constructs are
defined. These propertles are expressed with
axloms and inference rules. Axiomatic definitlons
are more; abstract then denotational and
operational.

All three methods together provide a set of

tools for language development. Designers might
first define properties that they wish the system

to have, so axiomatic deflniplon is constructed
first. Next, a denotational semantics is defined
to give the meaning of the language. Finally, the
denotational definitlon Is implemented using an
operational deflnltlpn. These complementary
semantic definitions of a language support
systematic deslgh. development and
implementation. In thé paper we
denotational approach and one of 1its possible
implementation using

functional : programming

language LISP.

2. DENOTATIONAL SEMANTICS

Denotational semantics [1,2,3) is a methodology
for giving mathematical meaning to programming
languages. To make things more understandable an
example of denotational semantics for a simple
language of binary numbers ls glven first. Its
syntax ls defined with : .

vii=p 81| 8
§::=201 1

The language of binary numbers is composed by
sequence of dlgits 0 and 1. To define the meaning
of statement a valuation semantic functlion V
which maps 'sequence of diglts into thelr meaning
is constructed. We say that the domain of V is a
sequence'bf digits and the codomaln are integers
which represents meanings of digits. Mathematical

notation for-the function V is :
V : Bin -> Integer

We must define an Iinstruction, .which map§ the

‘domain into the codomain for each BNF rule :

vio] =0
V(1] =1
VIv8]l = 2 * viv] + V[3)

The next examble, shows the semantic valuation
function V on work :

Vi1001) = 2 * V[100) + VI[1}

2 * 2 * V[10]) + V[O) + !
2°2%2¢" vtll + V[0] + 0+ 1
2*2*2*14+0+0+1

=9

1)

[i§

Therefore the denotational approach to
languages definition must make clear several sets

of quantities :

- the syntax rules,

describe .

49

- the definition of the various semantlc
functions,
- the syntax domains,

- the semantic domains.

For describing syntax rules the abstract syntax
is used. It specifies the relations 'between
logical parts of ghe language and can be simpler
than concrete syntax, and may not contain enough
information to parse the lhﬁguage unambiguously.
On contrary, concrete syntax contains sufflcient
information to parse a language.

A-notations is used for describing semantic
functions. To show the advantage of a A-notatlon
following definitions must be stated first.
Function f{(x) = y is equivalently described in
A-notation with f = Ax.y . In thls notalioﬁ all
functions usually have only one argument or one
parameter. Consider a -function f with two
variables x and y. A function g with/@he pfoperty‘
g{x){y)} = f{x,y) can be defined and is in some
sense equivalent to f. The-function g ls cglled
the curried version of f. Function which produced
another function on its output is called the high
A-notation has

order function. following

advantages :
,
- a high order function is easier to describe ;
example- :
add : N -> N -> N
standard notation :
add(n) = £ , where f(m) = n+m
A-notatlion : -

add = An.Am.n+m

- a function can be defined without giving 1t a
name. Such function 1is called the anonymous

function.

Several additional notatlons may be used in
expressions of semantic equatlons, such as
“update* expressions of the form [a » blf, which
denotes a function f which Is the szame as the
function f except, that it maps the argument a
into the value b. Conditional expressions are
written in the form "t -> e o ez" where the
value of the expression e, is evaluated if and
only if the boolean expression t is true and the
value éz is evaluated otherwise.

Syntax domains of Iimperative languages are
usually 1identifiers, expression, commands and
definitions. Semantic - domains are most
convgntlonally described with an environment and
a store. The environment is a finite set of
assoclations of identifiers with values they

denote (denotable values) and the store is a

finite set of locatlons with values they contain
(storable values). The store will be sufficlent
for simple languages where equal identifier can
not be used for different obJects. '

And now, let wus define the meaning of
identifiers. ldentiflers may stands for locatlon,
label, procedure and theirs meaning are represent
by semantic domain environment which s a
function from identifiers to denotable values. If
identifier stands for location , a second
semantic domaln 1s used to get value they
contain. Thé store is therefore a function from
locations to storable values.

The meaning of commands 1s to change the store,
the meaning of a definition is to change the
environment and the meaning of an expression is

to prodﬁce a value (expressible value).

3. IMPLEMENTING DENOTATIONAL SEMANTICS
USING LISP

A great advantage of the denotatlonal approach
is that can be mechanized and interpreted on a
computer [1,2,7). In this chapter a small and a
simple example is described with the denotational
semantics first and then Iimplemented using
functional language LISP. LISP 1is selected
because high order functions are relatively
simple to express using it

The abstract syntax for a simple imperative

language 1s given first

Program
Block
. Declaration

Command

m O o w v
m M am M Nn

Expression
Identifier

z
m m

Numeral

:= B.

begin D & C end
Dl & D2 | var 1
= C & C2 | 1:=E |

O o W v
']

if E then Cl else C2 | B
E::=E +E_ | 1IN
1 2

Program is a block of statements and each block
consists of a declaration part and a command
part. Commands are : assignment statement, if
statement and block of statements. Expresslons
are : identifiers, numerals and composed
expressions. Delimiter symbol between statements

is a character &.

Semantlics are described as follows :

Domains and operations on it are

I. Natural numbers nen
11. 1ldentiflers i eld
I111. Location 1 € Loc

reserve_loc : Loc
reserve_loc = random 1000
1V. Denotable values d € D_values = Loc
v. Environment e € Env = Id -> D_values
emptyenv : Env
emptyenv = A1.0
accessenv : Id => Env -> D_values
accessenv = Al.le.e(l)
updateenv : Id -> Value -> Env -> Env
updateenv = Al,Ad.Ae. [}l - v]e
VI. Storable values v € S_value = N
VII. Store s € Store = Loc -> S_value
emptystore : Store
emptystore = 1.0
access : Loc -> Store -> S_value
access = Al.Xs.s(1)
update : Loc -> S_value ->
Store ~-> Store
‘update = Al.Av.As. [1 = v]s
VIII. Expressible values x € Exp_vaules = N

Semantic valuation functions is given next
P: Program -> Store

P(B]) = BI[B) emptyenv emptystore

The meaning of a program is defined with a store,
which 1s the output from function B. The function
B needs environment and store on the input. The
function B is applled on initialized environment

and store first.

B: Block -> Env -> Store =-> Store
Blbegin D & C end] = Ae.As.CIC} (DID) e) s

The meaning of a block 1s the meaning of
commands, which is evaluated on environment and
store. The environment 1s changed by function D
first.

D: Declarations -> Env -> Env
D(D1 & Dzl = Ae.D[Dzl (D[Dll e)

Dlvar 1] = Xe.updateenv [I] reserve_loc e

The meaning of a declaration Is to change the
environment. When an identifler declaration 1is
evaluated, new location is produced first and
then new updated environment is returned. This
updated environment has a property that it maps

an identifler to a new locatlon.

C: Command -> Env -> Store -> Store

C[{B) = Xe.As.B{(Bl e s

C[Cl & Czl = Ae.As‘Clczl e (C[Cll e s)
C(I:=E) = MAe.As.update (accessenv [I1] e)

(E[E) e s) s
C{if E then C1 else Czl = Ae.As.E[E)s = 0 ->
C[Cl]e s 0
C[Czle s

The meaning of a command is to change the store.

. The meaning of an if statement is to evaluate the

expression E first and ihen approprliate command

1s selected and evaluated. The meaning of an

assignment statement is : .
- a location for an ldentifier is evaluated
{ accessenv [1] e) .
- an ekpression E is evaluated (EIE) e s } ,
- a location Is updated with value produced by
the function E '
(update (accessenv [1] e) (E[Ele s} s) .

E: Expression -> Env -> Store -> Exp_value
E(E1+E2] = Ae.As.E[E‘]e s + E[Ezle s

E{I] = Xe.Xs.access (accessenv []] e) s
E(N] = N[N] '

The meaning of an expression 1s to produce a new
value. Semantic valuation function N is similar
to function ¥V , which 1s introduced in chapter 2.
Now, we can apply syntax semantic valuatlon
functions to synt;x construct to get thelr

meaning.
Example :

Plbegin var 1; 1:=10; begin var i; 1:=20 end;
1:=1+1 end] =)
Blbegin var i; 1:=10; begin var i; 1:=20 -end;
1:=1+1 end] emptyenv emptystore =
Cli:=10; begin var §; 1:=20 end; i:=1+1]
(D[var llemptyenv) emptystore =)
Cl1:=10; begin var i; 1:=20 end; 1:=i+1]
(updateenv (1] reserve_loc emptyenv)
emptystore = .
Cli:=10; begin var i; 1:=20 end; 1:=i+1]
{1 + 1)emptyenv emptystore =
Clbegin var §; 1:=20 end; 1:=i+1}
{1+ 1lemptyenv (Cl1:=10] {1 » tlemptyenv
emptystore) =
Clbegin var i; 1:=20 end; 1l:=1i+1]
[1+ 1lemptyenv (update (accessenv [i}
[1 + 1) emptyenv} (E[10] [1+ 1lemptyenv
emptyst;re) emptystore) =
Clbegin var 1; {:=20 end; i:=1+1]
~lir 1lemptyenv (update 1 10 emptystore) .=

51

Clbegin var i; 1:=20 end; 1:=1+1} [i+ 1)emptyenv

{1 + 10)emptystore =

let e = [1+ 1lemptyenv

let s,= {1 » 10lemptystore
Cli:=i+1) e (C{begin var i; i:=20 end] e s
Cli:=1+1] el‘(Blbegln var i; 1:=20 end]} e s
Cli:=1+1] e (Cl1:=20} (D [var 1] e‘) sl) =
Cli:=1+1] e, (cl1: =20}

(updateenv [i] reserve_loc el) s,) =
Cl{i:=1+1) e, (Cl1:=20) (1 + 2]e1 s,) =
Cli:=1+1] e (update (accessenv [i] (i » Zlel)

(E{20] 51) s,) =
Cli:=i+1] e (update 2 29 s,) =
Cli:=1+1] e {2 + 20]5l =

let e = [1+ 2]emptyenv.

2
let s,® {1 » 10, 2 + 20]lemptystore

).=
) =
1

update (accessenv (1] e,)} {Efi+1] e, sé) s, =

update 1 ((acess (accessenv [1] e,)52) + 1) s, =

update 1 (access 1 32)41 s, =
update 1 10+1 s2 =

update 1 1t Sz =

{1 + 11, 2 + 20)emptystore

The'meanlng of the above program ls the store
which map location 1 to value 11 and location 2

to value 20.

Implementation of semantic valuation functlons

“is shown 1n appendix . Now, we can analyze any

semantic valuation function.
Examples

{setq new_env

(funcall (D '{var i & var j & var k)) emplyenv))

=> (1s evaluated to)

((1 599) () 41) (k 855))

Function D changed the environment. The new

environment maps ldentifier i to location 599,

"identifier J to location 41 and identifier k to

location 855.

(funcall (funcall (C " ((i
{J
(k:
)

) new_env) emptystore)

(1)) &
(2)) &
(1) + {3)))

=> (1s evaluated to)

{ (599 1) (41 2) (855 3))

52

Function C changed the store. The new store maps
location 599 to value 1, locatlion 41 to value 2
and locatlon 855 to value 3.

(setq prog '(begin (var 1 & var j & var k) &
((1:=Q)) &
(J:= ((1) + (1)) &
{ begin (var | & var 1 & var m) &
((1 := (20)) &
(m:= ((1) + (1))) &
(1 := {(5) + (1)})
)
end) &
(k := ((1) + (2))]

‘end))

(P prog)

=> (is evaluated to)

((599 1) (41 2) (784 20) (503 21) (981 3)

(855 3})
We can understand the store only with
the environment. The environment for that example

is :
(0§ 599)(J 41)(k 855)(i 784)(1 981)(m 503))

4. CONCLUSION

The impleméntation of semantic

functions has many advantages [1,2,5,7]

valuation

- each semantic valuation function can be
separately tested and analyzed,
- a rapid prototyped

language is produced

interpreter for the

- all advantages of prototyped systems such as
- greater user participation,
- early detectlon of errors,
- better user -~ developer commui ications,
- early dellvered executable systems to the
users,

- help by suppressing uncertainties in
user requirements (I'1l know what I want,

when I see it !).

S. REFERENCES

1. Schmidt D.A., "Denotational semantics", Allyn
and Bacon, Newton, 1986.

2. Allison L., "A practical introduction to

denotational semantics", Cambridge university

press, Melbourne, 1986.

3. Tennent R.D., *“Princliples of Programming

Languages”, Prentice Hall International, London,
1981.

4. Horowitz E., ‘“Fundamentals of Programming
Languages"”, Computer sclience press, Rockville,
1983.

5. Agrestl W.W., "New paradigms for software
development”, IEEE Computer society press, New
York, 1986.

6. Mernik M., Kokol P., Zumer V.,"Formalne metode
za opis semantlke programskega jezlka", XIV.
Simpozi jum o informaclonim tehnologi jama,
Sarajevo - Jahorina 1990, pp. 181-1 - 181-10.

7. Mernik M., Kokol P., Zumer V.,"N-BOSS: A new
rapid prototyping paradigm for language design®,
Proceedings of International Conference on
Computing and Informatlon, Niagara Falls, pp. S04
- 507, 1990,

8. Marcotty M., Ledgard H.F., Bochmann G.V., “A
Definitlons”,

Surveysg, Vol. 8., No. 2., 1976,

Sampler of Formal Computing

APPENDIX : SEMANTIC VALUATION FUNCTIONS IN LISP
i3 Env = Id -> D_value
:; Environment is modeled with association llst
. ((id loe) ... (id loc))

1 1 n n

;: accessenv: Id -> Env -> D_values

(defun accessenv ()}

#’' (lambda (1) #'(lambda (e) (cadr (assoc i e})))

i: updateenv: Id -> D_value -> Env -> Env
(defun updateenv ()
4' (lambda (i)
#* (lambda(d)
' (lambda (e} (putassoc e i d)))))

i; Store = Loc ~> S_value
;s Store ls modeled with assoclation list
HH ((loc, value) ... (loc wvalue))
1 1 n n
;; access : Loc -> Store -> S_value
(defun access ()
(lambda (1)
4" (lambda (s) (assocl 1l s))))
;s update : Loc -> S_value ~> Store -> Store
(defun update ()
' {ambda (1)
#' (lambda (v)

#' (lambda (s) (putassoc s 1 v)))))

;3 reserve_loc is modeled with random numbers

(defun reserve_loc () { random 1000))

;; environment initialization

(defun emptyenv () ' nil)

i: store initialization

(defun emptystore {) nil)

i+ P: Program -> Store
(" defun P (Program)
(funcall (funcall (B Program) {emptyenv))
(emptystore)?))

;; B: Block ~> Env -> Store -> Store
(defun B (Block)
#'(lambda (e)
#' (lambda (s) (funcall (funcall (C (cadddr
Block)} (funcall (D (cadr Block)) e)) s))))

+: D: Dec -> Env ~-> Env
(defun D (Dec)
#' (lambda (e)
.{cond ((equal (caddr Dec) '&}
:: composed declaration
(funcall (D (cdddr. Dec)) (funcall
(D (1ist (car Dec) (cadr Dec))) e)))
;: ldentifler declaration
(t (funcall (funcall {funcall
(ubdateenv) (cadr Dec)) (reserve_loc)) e))}))

i3 C: Comm -> Env -> Store -> Store
(defun C (Conm)
#’ (lambda (e)
#' (lambda (s}
(cond ({not (equal (cdr Comm) nil))
;1 composed commanés)
{(funcall ({funcall (C (cddr Comm}} e)
(funcall (funcall (C (list (car Comm)))
e) s)))
v+ If statements -
"{lequal (caar Comm) 'IF)
(cond ((equal (funcall (funcall
(E (cadar Comm)) e) s) 0)
(funcall (fﬁncall {C (list
(cadddr (car Comm))))-e) s))
(t (funcall (funcall (C (list
{cadddddr (car Comm)))) e) s))))
;3 block statements '
((equal (caar Comm) "BEGIN)
(funcall (funcall (B (car Comm)) e) s))

7

; assignment statement
(t (?uncall (funcall (funcall.
{update) (funcall (funcall
(accessenv) (caar Comm)) e))
(funcall (funcall (E
(caddar Comm)) e) s)) s})}i})

53

HA E:'Exp -> Env -> Store -> Exp_value
(defun E (Exp) ‘
#' (lambda (e)
#' (lambda (s)
i+ number
(cond ((numberp (car Exp)) (car Exp))
i Exp + Exp
{(equal (cadr Exp) +)
(+ (funcall (funcall (E (car Exp)) e) s)
(funcall (funcall (E (caddr Exp))
e) s))) '
i1 ldenfifier

(t (funcall (funcall (access)

(funcall (funcall (accessenv)
(car Exp)) e}) s))))))

