
 Informatica 31 (2007) 431–436 431

A Method for Calculating Acknowledged Project Effort Using
a Quality Index
Marjan Heričko and Aleš Živkovič

University of Maribor, Faculty of Electrical Engineering and Computer Science
Smetanova 17, SI-2000 Maribor, Slovenia
E-mail: {marjan.hericko, ales.zivkovic}@uni-mb.si

Zoltán Porkoláb
Eötvös Loránd University, Faculty of Informatics
Pázmány Péter sétány 1/C , H - 1117 Budapest, Hungary
E-mail: gsd@elte.hu

Keywords: project effort, product metrics, software size, function points, object-oriented metrics

Received: August 11, 2007

Software size is the fundamental metric for project planning. Effort and duration are calculated based
on the size estimate. However, for a given software size, the actual development effort could be
significantly different. The question is whether the increase in effort is due to the low productivity of the
development team or higher product quality. While higher product quality is highly desirable and
usually worth investing in, the reasons for additional effort might be elsewhere. In the research
presented in this paper, the focus is on the correlation between code quality and productivity. Code
quality is only one aspect of product quality. This paper presents a method for calculating a new type of
project effort named “acknowledged effort”. Acknowledged effort is calculated based on the actual
effort and code quality. This new type of effort reflects not only the project’s size and the productivity of
the development team, but also the quality aspect of the delivered software system.
Povzetek: V prispevku je analizrana korelacija med kakovostjo programske kode in produktivnostjo.

1 Introduction
Software size is an elementary measure often used to
calculate project effort, costs, productivity and duration.
In practice, the actual effort measured during the project
development time could be significantly different
although the estimated project size is the same. The
effort is influenced by several factors like the complexity
of the solution, development team size, development
platform, etc. In this research, the focus is on the code
quality that could as well influence the project total
effort. The quality is defined as the totality of features
and characteristics of a product or service that bear on its
ability to satisfy stated or implied needs. [10]. In terms of
measures, it is a collection of metrics that cover
categories like functional correctness, maintainability,
efficiency, portability, usability and dependability
[5,7,8,12]. The number of metrics used to determine
product quality is not well defined and it could range
from just a few to a hundred or more [2,12]. In contrast,
there is the idea of a single number that express quality -
the quality index (QI). The quality index is based on the
20/80 rule. According to some findings, 20% of variables
can capture 80% of the intrinsic quality. The second
principle behind the quality index is consistency and
repeatability. If we perform the same procedure over and
over again it will provide us with insight into product
quality, regardless of its absolute accuracy in general

applications. However, the standard deviation of the
accuracy should be low in order to get valuable results.
In this research, the code quality is measured in order to
justify the deviations in project effort. Besides
productivity, also code quality should be evaluated when
comparing the performance of the development teams.
The general functional relation between the productivity
and software size is [1]:

S
EP = (Eq. 1)

where E is the actual effort spent developing some
functionality and S is the total size of the functionality in
question. For software size estimation, different methods
are used [1,9,14,15], all of which have their roots in the
Function Point Analysis (FPA) method.
The main contribution of the research presented in this
paper could be summarized as:

1. The identification of the minimal object-
oriented source code metrics set that might
compose the quality index (QI) used together
with software size in function points.

2. The definition of acknowledged effort that
combines a team's productivity with the code
quality. The actual project effort is then
compared to the acknowledged effort in order
to evaluate project results.

432 Informatica 31 (2007) 431–436 M. Heričko et al.

The research is based on the following assumptions and
restrictions:

• the delivered code is complete and fully
functional

• financial results, restrictions and influences are
not considered in the proposed method

• the mean value for the productivity of some
data set is valid for average code quality e.g.
the projects are of different quality, however if
the number of projects in the data set is big
enough the data set would represent the
average code quality.

This paper is divided into six sections. In the next
section, the FPA method is briefly presented. The
product metrics are introduced in section three. The main
idea and the proposed method can be found in section
four. The last section summarizes the findings related to
a set of object-oriented projects and discusses the
potential direction for future work.

2 Size Estimation for Object-
Oriented Projects

Albrecht [1, 9] introduced the Function Point Analysis
(FPA) method in 1979. Since then, it has become the
most important method for software size estimation. The
method introduced a specific way of representing a
software system and distinguished between data
functions and transactional functions. Data functions
(DF) are further divided into internal and external logical
files (ILF and EIF) assigning different weights to each
data function type. The transactional functions (TF)
describe functionality through three abstract types,
namely: external inputs (EI), external outputs (EO) and
external inquiries (EQ). To be able to determine the
contribution of the FPA element (ILF, EIF, EI, EO or
EQ) to the final estimated size value, the complexity is
assigned to each element. The complexity is determined
by the number of simple data elements named Data
Element Type (DET) or structured elements named
Record Element Types (RET). To get actual values in
Function Points (FP), the tables defined in the method
are used. The FPA abstraction concept is easily applied
to structured analysis and design artefacts. The mapping
of entities attributes and processes to FPA elements is
straightforward.
The method was intended for all domains, although in
practice, its accuracy is different within different
domains. From a practical standpoint, it can be
concluded that the FPA method application is more
difficult with object-oriented projects. The elements and
constructs of the FPA method are not directly applicable
to object-oriented concepts also used within the Java and
.NET development platforms. Therefore, a mapping of
object-oriented concepts into FPA elements is needed.
The mapping is not defined within the FPA method itself
and is consequently not uniform. Different authors have
proposed different mapping functions [3, 14, 15, 17],
mostly in the form of additional rules. Information is
gathered from different diagrams (e.g. Use Case

diagrams, class diagrams, sequence diagrams)[14, 17]
which are then considered separately. In one of our
previous research, the OO-to-FPA mapping was defined
and automated [17]. More detailed research of the FPA
transformation tables has shown that the weight factors
of the standard FPA method have to be calibrated for use
in object-oriented projects [3, 4, 15].

3 Product Metrics for Object-
Oriented Systems

In the software engineering community the term metric
has been used in many distinct ways. For the purpose of
this research, metrics are defined as a function, whose
value is derived from a product, process or resource. It is
important to distinguish between objective and subjective
metrics. An objective metric is a function whose input is
software data (elements) and whose output is a single
numerical value. Subjective metrics, on the other hand,
attempt to track less quantifiable data and usually depend
on subjective judgment. When speaking about quality
metrics the obtained metric value indicates the degree to
which software possesses a given quality attribute.
Therefore quality metrics are an indirect measure of
software quality. We need validated metrics, metrics
whose values have been proven to be statistically
associated with corresponding software attributes. For
object-oriented software the following metrics are often
used [2, 13]:

• Weighted Methods per Class (WMC) - the sum
of the complexities of the methods of a class (if
all method's static complexities are considered
to be unity, the number of methods). The
number of methods and the complexity of
methods involved are indicators of how much
time and effort is required to develop and
maintain the class. A large number of methods
might limit the possibility of reuse since the
class becomes too application specific.

• Depth of Inheritance Tree (DIT) - depth of the
inheritance of the class. Inheritance through
classes increases its efficiency by reducing the
redundancy. However, the deeper inheritance
hierarchy makes the behavior more difficult to
predict and understand. There is no general
threshold value for this metric. The threshold
must be determined within the development
team.

• Number Of Children (NOC) - the number of
immediate sub-classes subordinated to a class
in the class hierarchy. The greater the number
of children in the inheritance hierarchy the
greater the reuse. Then again a large number of
children of a class might indicate improper
abstraction for a parent class. In general the
high DIT value and low NOC means better
reusability but worse maintainability. It also
has a negative impact on understandability and
is more difficult to modify. Since there are no
empirical or theoretical boundary values, the

A METHOD FOR CALCULATING ACKNOWLEDGED... Informatica 31 (2007) 431–436 433

developers should find the proper threshold
value for the system under development.

• Response For a Class (RFC) - the sum of the
number of its methods and the total of all other
methods that they directly invoke. If the
number of methods invoked in response to a
message received by an object is large, the
maintenance and testing are more demanding.
Again there is no specific threshold value for
the metrics.

• Coupling Between Objects (CBO) - the number
of non-inheritance related couples with other
classes (class is coupled with another if its
methods use the attributes of the other class).
The reusability of classes and/or subsystems is
low when coupling between them is high, the
system is also harder to understand. Normally a
class should have a low coupling with the rest
of the classes. A high coupling between
different parts of a system has a negative
impact on the modularity of the system and is
usually a sign of poor design.

• Lack of Cohesion in Methods (LCOM) - the
number of disjoint sets produced from the
intersection of the set of attributes that are used
by the methods reduced by the number of
method pairs acting on at least one shared
attribute. The LCOM metric is a value of the
dissimilarity of the methods in the class. A high
LCOM value in a class indicates that it might
be a good idea to split the class into two or
more sub classes. The metrics help identify
flaws in the design of a program structure. The
high LCOM values are associated with lower
productivity, greater design and rework effort.
The LCOM could be used as a predictor for
maintenance effort.

• Method Hiding Factor (MHF) - sum of the
invisibilities of all methods defined in all
classes / total number of methods.

• Attribute Hiding Factor (AHF) - sum of the
invisibilities of all attributes defined in all
classes / total number of attributes

• Method Inheritance Factor (MIF) - sum of
inherited methods / total number of available
methods

• Attribute Inheritance Factor (AIF) - sum of
inherited attributes / total number of available
attributes

• Polymorphism Factor (POF) - actual number of
possible different polymorphic situation /
maximum number of possible distinct
polymorphic situation

• Coupling Factor (COF) - actual number of
couplings not imputable to inheritance /
maximum possible number of couplings.

• Cyclomatic Complexity (CC) - in object-
oriented design, the metrics represents the
complexity of a method and indirectly also
complexity of a class. The value should be as

low as possible. The values between 10 and 20
are considered as an upper limit for metrics.

• Maintainability Index (MI) - predict the
maintainability of the software combining
several elementary metrics. Two versions are in
use. The first version uses three elementary
metrics to calculate the index and the second
uses four metrics. The fourth metrics evaluates
the average number of comments per class.
However, it is not clear if the greater number of
comments actually increases the ease of code
maintenance. In this research the first version
of the metrics will be used. The threshold
values for MI are: MI<65 indicate poor
maintainability, 65≤ MI ≤ 85 fair
maintainability and MI > 85 promises excellent
maintainability [2].

In addition to the described metrics, some size-related
metrics should also be considered. Table 1 summarizes
the candidate metrics classified according to the
class/method level.

Table 1: Size Related Metrics
Class Level Method Level

number of methods number of parameters
number of properties number of local variables
number of constructors number of exception blocks
number of nested classes max stack size
number of data fields number of instructions
number of events number of all operators in

the method
number of attributes number of distinct operators
the number of all
instructions

number of operands

In order to collect and analyze metric data of object-
oriented projects, the tool in the Microsoft .NET
framework 2.0 was developed. The input is arbitrary
executable format for the Microsoft platform. The parser
that is a part of the tool performs an analysis directly on
the common intermediate language code as defined in
the .NET framework. In addition to the metrics
presented in section three (not all metrics are supported
in this version), the tool collects the data presented in
Table 1. The tool is also described in [18].

Based on the collected data and the code quality metrics
presented in section three, the correlation between
different metrics were investigated as well as their
potential impact on project effort and code quality. Based
on the findings, the subset of code metrics was selected.
The selected metrics that are used for calculating quality
index (QI) and acknowledged effort (EACK) are listed in
the next section.

434 Informatica 31 (2007) 431–436 M. Heričko et al.

4 The Proposed Method

Figure 1: The Schematic View on the Proposed

Method
Figure 1 shows the proposed method for calculating the
acknowledged effort. In the analysis phase the project
size and effort are calculated based on the UML models
and projects characteristics. After the implementation
phase the code analysis is performed. Based on the code
analysis and actual effort the acknowledged effort is
calculated. The acknowledged effort is defined as:

))((21 REQIREEE AACK ∗+∗= (Eq. 2)
where EACK is the acknowledged effort expressed in
hours, EA is actual effort in hours, RE1 and RE2 are
reward factors and QI is the quality index that has no
unit. In our research the value for RE1 is 0,7 and RE2 is
0,1 which influences the actual effort for ±20 %.
The QI is defined as:

)(
}5..1{

1

iii

n

i
i

mvfPMQR
PMQR

n

PMQR
QI

=
∈

=
∑
=

(Eq. 3)

where PMQR is the product metric quality rating, n is
the number of code metrics used in the calculation, mv is
a code metric value and f is the function that transforms
metric value for metric i to the product metric quality
rating. Code metrics that were considered in this
research are described in section two. The quality rating
transformation function is defined for each metric
individualy. For the purpose of this research f is a step
function that is defined based on the individual metric
threshold values. An example for the maintability index
(MI) metric is shown in Figure 2.

Figure 2: An example of the function f for the MI

metric
QI is composed of n product metrics. The number of
metrics and its type should be defined according to the
project and environment characteristics. Each product
metric has its threshold values. The threshold values are
project specific and should be calibrated considering the
folowing attributes:

• development team (experience level, team size,
number of roles involved, etc.),

• development environment (platform,
technology, process model, tools, etc.),

• domain (telecommunications, insurance,
banking, etc.),

• customer (long term agreements, inhouse
development),

• development type (off the shelf, research
projects, critical systems, new development,
reengineering, etc.).

In this research, the metrics described in section three
were considered for selection. The narrowed list
includes the following metrics:

• Depth of Inheritance Tree (DIT),
• Number of Children (NOC),
• Weighted Methods per Class (WMC),
• Coupling Between Objects (CBO),
• Response fo Classes (RFC),
• Lack of Cohesion in Methods (LCOM),
• Cyclomatic Complexity (CC) and
• Maintainability Index (MI)

The DIT and NOC make a complementary pair and
should be considered as a pair [6, 7]. In this research
only the DIT was used. WMC, CBO and RFC are highly
correlated [2, 6]. The CBO was selected for the final set.
The extended cyclomatic complexity (ECC) is included
in the calculation of the MI which makes CC highly
correlated to the MI values [6, 7]. Therefore the CC
metric is also excluded from our metrics set. Thus the
final metrics set used for calculating QI consists of DIT,
CBO, LCOM and MI.
For the product metrics (PM) in the final metrics set, four
functions f that transform metric values to the product
metric quality ratings (PMQR) were defined. The PMQR
range is one to five and the range of the PM is metric
specific. Figure 3 presents the transformation function
for all four metrics (DIT, CBO, LCOM and MI). Please
note that these step functions should be calibrated before
their use in a different environment.

A METHOD FOR CALCULATING ACKNOWLEDGED... Informatica 31 (2007) 431–436 435

Figure 3: Step function f for the DIT, CBO, LCOM

and MI metrics
Calculating acknowledged effort is only one possibility
for applying the quality index (QI) defined in this paper.
Another possibility is to calculate the corrected
productivity of the development team. The corrected
productivity is defined as the normalized productivity
for the delivered results. In case of bad design and low
quality code, the productivity calculated from the effort
and size -- sometimes called actual productivity -- is
higher then the corrected productivity defined here. If
the delivered code is of outstanding quality the actual
productivity is lower than the corrected productivity
calculated using the quality index.

S
EREQIREPP

S
EP

ACK
AC

A
A

=∗+∗=

=

))((21

 (Eq. 4)

where PA is actual productivity for the current project
calculated from the actual effort EA (sometimes also
called recorded effort). PA is calculated at the end of the
project. PC is corrected productivity, RE1 and RE2 are
reward factors, S is software size and QI is quality
index.
The proposed method was used on a set of OO projects
in order to explore the acknowledged effort on real
projects. Table 2 summarizes the metrics values for
three groups of projects. In the first group are smaller
student projects written in Java. The students were from
the last grade of the computer science study program.
Since Java is already introduced in the first year and
used throughout the study program for individual and/or
group projects at different subjects it can safely be
assumed that in the last year, students have good
programming skills and sufficient development
experience. In the second group are industry projects
developed on the Microsoft .NET platform. The
development team was experienced and used
sophisticated development approaches like custom code
generators and design patterns. The third group is a
control group. The projects are for well known products,
developed by highly experienced development teams.
The metrics data is from the master thesis prepared at
the Uppsala University in Sweden [2]. The DIT, NOC,
CBO and LCOM metrics were collected on the class

level. Therefore two values are provided in the table.
The first value is the mean and the second is the
standard deviation. MI is calculated at the project level,
thus only one value is in the table.

Table 2: The Values for Selected Code Quality
Metrics

 DIT CBO LCOM MI
GROUP 1

Project 1.1 3,35
2,47

11,82
11,23

95,56
13,33

65,19

Project 1.2 1,07
0,38

4,37
5,50

65,19
34,25

49,64

Project 1.3 2,91
2,47

12,55
12,74

68,14
34,54

34,48

Project 1.4 1,82
1,85

5,26
8,49

71,18
28,95

30,31

Project 1.5 2,57
2,18

11,07
12,45

73,17
28,52

34,29

Project 1.6 1,54
1,50

5,7
9,62

72,71
35,41

48,36

Project 1.7 1,00
0

4,20
3,52

51,25
43,18

29,86

Project 1.8 1,21
1,26

2,79
5,36

67,20
35,25

45,37

Project 1.9 4,7
2,13

17,48
12,16

73,91
26,85

72,34

Project 1.10 2,85
2,03

9,00
12,23

66,20
25,08

68,57

Project 1.11 0,36
0,48

1,31
2,57

85,00
10,68

87,49

Project 1.12 0,75
1,68

2,25
5,10

15,63
30,15

49,53

Project 1.13 2,00
2,03

8,58
8,28

74,78
30,47

80,34

Project 1.14 3,64
2,51

14,49
12,42

85,65
7,10

77,04

GROUP 2
Project 2.1 2,47

1,01
0,79
4,08

4,43
18,04

87,53

Project 2.2 2,23
1,11

5,96
8,81

31,06
37,42

79,98

Project 2.3 3,28
1,71

9,00
8,90

23,57
40,25

89,59

Project 2.4 1,20
0,44

5,00
11,18

12,40
27,72

77,41

GROUP 3
Project 3.1 0,58

0,75
8,36
5,87

0,33
0,33

129

Project 3.2 0,21
0,41

9,47
6,18

0,41
0,36

164

Project 3.3 1,23
0,83

6,53
4,56

0,38
0,19

182

Table 3 presents data for size, effort and QI. Project size
is expressed in function points as well as in lines of code
(LOC). In column four is the actual effort EA in hours
followed by the acknowledged effort EACK. In the last
column are the values for the quality index calculated
following the proposed method. For most of the student
projects the QI is less than three. Consequently the
acknowledged effort is smaller than the actual effort
reported by the students. The projects in the second
group demonstrate better code quality then is normally
expected (QI>3,0), the acknowledged effort is higher.

436 Informatica 31 (2007) 431–436 M. Heričko et al.

The projects from the third group are not included in the
table since the actual effort for them is unknown.

Table 3: Size, Effort and QI Results for Test Projects
 Size

(FP)
Size
(LOC)

EA (h) EACK (h) QI

GROUP 1
Project 1.1 72 4.216 95 90 2,50
Project 1.2 65 4.176 105 97 2,25
Project 1.3 163 1.760 191 172 2,00
Project 1.4 37 2.006 88 81 2,25
Project 1.5 88 2.777 192 173 2,00
Project 1.6 157 3.642 57 54 2,50
Project 1.7 71 1.782 171 158 2,25
Project 1.8 173 2.159 54 50 2,25
Project 1.9 110 3.400 143 132 2,25
Project 1.10 35 1.686 45 44 2,75
Project 1.11 43 2.576 210 210 3,00
Project 1.12 35 623 39 40 3,25
Project 1.13 60 985 125 122 2,75
Project 1.14 70 4.189 165 153 2,25

GROUP 2
Project 2.1 2.122 93.978 8.800 10.120 4,5
Project 2.2 440 32.532 1.067 1.120 3,5
Project 2.3 1.987 156.122 2.133 2.347 4,0
Project 2.4 13 771 56 59 3,5

5 Conclusion
The typical evaluation of completed software

projects includes costs, effort and completeness of the
delivered functionality. In this research the focus was
only on project effort. From the management point of
view, the recorded effort is not necessarily the acceptable
project effort when taking into consideration the quality
of the delivered code. In this paper, the idea of
acknowledged effort was presented. Acknowledged
effort combines actual effort with a quality index. The
quality index is a single value that represents the quality
of the delivered code. The management could then
reward or penalize the development team for arbitrary
percentages in accordance with the code quality. The
formula provided in this paper should be calibrated
accordingly. The idea presented in the paper was tested
on the sample data set, including 18 projects. The results
demonstrate when the effort should be smaller than the
actual effort as well as when the quality of code is better
than average and the developers should be additionally
rewarded for their work.

In the future, the method will be tested with different
metrics sets and additional project in order to validate the
sensitivity of the proposed method.

Acknowledgement
This work was realised as a part of the Slovenian-Hungarian
bilateral research project BI-HU/06-07-01 Application of OO
Metrics to estimate .NET project software size.

References
[1] Albrecht,A., (1979). Measuring Application Development

Productivity, IBM Applications Development Symposium,
pp. 83-92.

[2] Andersson, M., Vestergren, P., (2004). Object-Oriented
Design Quality Metrics (Master Theses), Uppsala
University.

[3] Antoniol,G., Lokan,C., Caldiera,G., and Fiutem,R.,
(1999). A Function Point-Like Measure for Object-
Oriented Software, Empirical Software Engineering,
Springer, pp. 263-287.

[4] Antoniol,G., Fiutem,R., and Lokan,C., (2003). Object-
oriented function points: An empirical validation,
Empirical Software Engineering, Springer, pp. 225-254.

[5] Arisholm, E., (2006). Empirical assesment of the impact
of structural properties on the changeability of object-
oriented software, Information and Software Technology,
Elsevier. pp. 1046-1055.

[6] Chidamber, S.R., Darcy, D. P., Kemerer, C.F. (1998).
Managerial Use of Metrics for Object-Oriented Software:
An Exploratory Analysis, IEEE Transaction on Software
Engineering, IEEE, pp. 629-639.

[7] Fioravanti, F., Nesi, P., Stortoni, F., (1999). Metrics for
Controlling Effort During Adaptive Maintenance of
Object Oriented Systems, Proceedings of the IEEE
International Conference on Software Maintenance,
IEEE, pp. 483-493.

[8] Gyimóthy, T, Ferenc, R., Siket, I., (2005). Empirical
Validation of Object-Oriented Metrics on Open Source
Software for Fault Prediction, IEEE Transaction on
Software Engineering, IEEE, pp.897-910

[9] IFPUG, (2004). Function Point Counting Practices
Manual, Release 4.2, International Function Point Users
Group.

[10] ISO, (1986). ISO 8402 - Quality management and quality
assurance, ISO.

[11] ISBSG, (2001). Practical Project Estimation, A toolkit for
estimating software development effort and duration.
International Software Benchmarking Standards Group.

[12] Marinescu, R., Ratiu, D., (2004). Quantifying the Quality
of Object-Oriented Design: the Factor-Strategy Model,
Proceedings on the 11th Working Conference on Reverse
Engineering (WCRE'04), IEEE.

[13] NASA, (1995). Software Quality Metrics for Object
Oriented System Environments, Mational Aeronautics and
Space Administration.

[14] Uemura,T., Kusumoto,S., and Inoue,K., 2001. Function-
point analysis using design specifications based on the
Unified Modelling Language. Journal of Software
Maintenance and Evolution-Research and Practice,
Interscience, pp. 223-243.

[15] Živkovič,A., Heričko,M., and Kralj,T., (2003). Empirical
assessment of methods for software size estimation.
Informatica (Ljubljana), Slovenian Society Informatika,
pp. 425-432.

[16] Živkovič,A., Heričko,M., Brumen B., Beloglavec S.,
Rozman I., (2005a). The Impact of Details in the Class
Diagram on Software Size Estimation, Informatica
(Lithuania), Institute of Mathematics and Informatics, pp.
295-312.

[17] Živkovič, A., Rozman, I., Heričko, M., (2005b).
Automated Software Size Estimation based on Function
Points using UML Models, Information & Software
Technology, Elsevier, 881 - 890

[18] Živkovič, A., Heričko, M., Porkoláb, Z., (2007).
Evaluating the Correlation Between Code Quality,
Software Size and Effort, Proceedings of the 10th
International Multiconference Information Society IS
2007 Volume A, IJS.

