
ERK'2022, Portorož, 453-456 453

CPU simulator FlyHip

Branko Šter1, Paul Daubin2

1University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, 1000, Ljubljana
2ESIGELEC Engineering school, Av. Galilée, 76800 Saint-Étienne-du-Rouvray, France

E-mail: branko.ster@fri.uni-lj.si

Abstract
An implementation of simulator of processor HIP, a little
simplified version of MIPS I architecture, is described.
Both non-pipeline and pipeline versions of HIP are sup-
ported. The simulator, written in Python, can be run ei-
ther in a command-line mode or with a graphical user
interface (GUI), implemented in Flutter, a modern open-
source user interface software development kit. It can be
run by default as a desktop application, but can poten-
tially be adapted for running in a web browser or even as
a mobile application.

1 Introduction
Although x86 instruction set architectures (ISA) are wide-
spread commercially, CISC architectures are quite com-
plex and as such not appropriate for undergraduate level
courses, therefore courses usually employ various RISC
architectures. The instruction set MIPS I by MIPS Tech-
nologies is a very popular RISC ISA, frequently used in
computer architecture courses all over the world. For
example, the MIPS I ISA was used in processors MIPS
R2000 and R3000. For the purpose of teaching computer
architecture in Faculty of computer and information sci-
ence at University of Ljubljana, a little simplified version
of MIPS I called HIP was proposed in the book [1] and
used throughout the years.

The previous simulator for HIP CPU [4] was written
with GUI that was based on WinMIPS64 software [5].
It was used in courses such as Computer systems archi-
tecture and similar courses at Faculty of Computer and
Information Science. However, during the pandemic we
needed to program Moodle quizzes for the evaluation of
the students’ work. These were written in Python pro-
gramming language. Inspired by these scripts, the idea
for writing a new simulator emerged.

The new simulator of the processor HIP is imple-
mented in Python, a very popular programming language
for some time already. The command-line version is called
pyHip (as one would expect). Since the frontend py-
Hip (written in Python) is connected with backend Flutter
GUI, we named the complete program FlyHip (Flutter +
pyHip).

The reason for developing the new simulator was not
only the unavailability of the source code of the old one,

but rather a greater flexibility of maintaining and upgrad-
ing one’s own software. Additionally, since Flutter is
a modern and very popular multi-platform open-source
graphical user interface (GUI) software development kit
(by Google), the GUI is way more flexible and expand-
able than the Windows GUI of WinMIPS64, which had
to be frequently running in some ’compatibility mode’
for older Windows versions, especially due to not flexible
font size. In Flutter, more features and window-related
options are available.

2 HIP CPU
HIP instruction set architecture is a little simplified MIPS
I ISA, as such being a typical RISC CPU. It has a load/sto-
re architecture, meaning that ALU operations directly on
operands in memory are not possible, so the operands first
have to be loaded from the memory to registers in order
to perform operations on them.

HIP supports only two instruction formats (Fig. 1).
HIP ISA has 52 instructions: 31 in format 1 and 21 in for-
mat 2. Format 1 has one source register (Rs1), one input
immediate operand (a constant), and a destination regis-
ter (Rd). This format is used in all load/store instructions,
as well as in all ALU instructions that take one immedi-
ate operand. In the load/store instructions, the immedi-
ate operand serves as the offset added to the base register
(base addressing). Format 2 is used in all ALU instruc-
tions that take two input operands in registers.

Format 1:

Op-code Rs1 Rd Immediate or offset

31 - 26 25 - 21 20 - 16 15 - 0

Format 2:

Op-code Rs1 Rs2 Rd func

31 - 26 25 - 21 20 - 16 15 - 11 10 - 0

Figure 1: HIP supports two instruction formats: format 1 .

The HIP instructions may be divided into 4 groups:
• Load/store instructions
• ALU instructions:

– Arithmetic operations add and subtract



454

– Logical bitwise operations
– Shift operations
– Compare-and-Set operations

• Control instructions
• System instructions

All the instructions are listed in Table 1. There are no

Table 1: HIP instruction set architecture.
Load/store instructions:
LB (load byte), LH (load halfword), LW (load word), LBU (LB unsigned),
LHU (LH uns.), SB (store byte), SH (store halfword), SW (store word)
ALU instructions:
Arithmetic operations add and subtract:
ADD (add signed), SUB (subtract sig.), ADDU (add uns.), SUBU,
ADDI (add signed immediate), SUBI (sub. signed imm.),
ADDUI (add uns. imm.), SUBUI (sub. uns. imm.)
Logical bitwise operations:
AND, OR, XOR, NOT (one’s complement), ANDI (imm.), ORI, XORI
Shift operations:
SLL (shift left logical), SRL (sh. right log.),SRA (sh. right arith.),
SLLI (SLL imm.), SRLI (SRL imm.), SRAI, LHI (load high imm.)
Compare-and-Set operations:
SEQ (set if equal), SNE (set if not eq.), SLT (set if less than),
SGT (set if greater than), SLTU (SLT uns.), SGTU (SGT uns.),
SEQI (SEQ imm.), SNEI, SLTI, SGTI, SLTUI, SGTUI
Control instructions:
BNE (branch if not equal zero), BEQ (branch if eq. zero),
J (jump, unconditional), CALL (jump to subroutine),
TRAP (jump to vector address), RFE (return from exception)
System instructions:
EI (enable interrupts), DI (disable int.),
MOVER (move from EPC to register), MOVRE (move from reg. to EPC)

multiply/divide instructions and no support for floating
point instructions.

The organization of the basic (non-pipeline) version
is shown in Fig. 2. The control unit (on the left) im-
plements a state machine with 28 states. The right side
shows the datapath, including ALU and various registers:
32 general-purpose registers R0, R1, ..., R31, with inter-
face registers A, B and C, and special-purpose registers,
such as PC (Program Counter), EPC (Exception Program
Counter), which is basically the back-up register of PC
when performing interrupt service routines, MAR (Mem-
ory Address Register) and MDR (Memory Data Regis-
ter).

To simplify the operation, the user does not have to
define available code and data segments in the simula-
tor settings, in contrast to simulator WinHIP, where stu-
dents always have to make sure that these settings coin-
cide. In pyHip (and FlyHip), the simulator automatically
allocates the segments given in the assembly source. A
specified default size of the segments can be set in ad-
vance.

3 Simulator
The simulator is written in Python programming langu-
age. The command-line version is called pyHip. It loads
a user-defined HIP assembly source file, runs it through
lexer and parser, which are implemented in a manner sim-
ilar to [6, 7].

The non-pipeline version executes instructions sequ-
entially one after another. Each instruction has its specific
length in the number of clock cycles - caused by the spe-
cific CPU organization of HIP (Fig. 2), as defined in [1].
The instructions last form 3 to 6 clock cycles. Depending

Figure 2: Non-pipeline HIP CPU (from [1]).

Figure 3: Pipeline HIP CPU datapath (from [1]).

on a program running on HIP, the average CPI (Clock
Per Instruction) is usually between 4 and 5. Although
the non-pipeline simulator does not operate on the cycle-
level, it still accumulates the number of clock cycles for
the statistics, such as the execution time and the average
CPI of a program. An example of the HIP assembly code:

.data

.org 0x400
POD: byte 9,2,0,4,7,0,1,2,0,0,0,0

.code

.org 0x0
addui r9, r0, POD

LOOP: lb r1, 0(r9)
lb r2, 1(r9)
sub r3, r1, r2
subi r3, r3, 1
sb 2(r9), r3
slti r17, r3, 0
addui r9, r9, 3
beq r17, LOOP
halt

Fig. 4 shows an example of the command-line pyHip
output.



455

Figure 4: An example of stepping through the code with the
non-pipeline command-line simulator pyHip.

On the other hand, the pipeline version has to operate
on the cycle-level. HIP has a classical 5-stage pipeline,
consisting of the following stages: IF (Instruction Fetch),
ID (Instruction Decode), EX (EXecute), ME (MEmory),
and WB (WriteBack) (Fig. 3), as can be seen in the
command-line pipeline pyHip ouput in Fig. 5.

Since the pipeline datapath is a synchronous digital
circuit, all the registers renew their state at the same time,
typically at the rising edge of the clock signal. Since in
a software simulator this is not possible to do directly,
the synchronicity is achieved by sequential updating of
different stages from right to left (in Fig. 3), due to the
fact that instructions move through the pipeline from left
to right, similarly to a shift register. However, a care must
be taken in cases of feedback connections, for example,
register C1 is ’written back’ to a destination register in
the WB phase.

By default, the pipeline HIP CPU detects data haz-
ards of type RAW (Read-After-Write). Other types of
data hazards, such as Write-After-Write and Write-After-
Read, cannot occur in HIP due to its simplicity. RAW
hazards are detected by additional logic that compares
the address (number) of the destination register in the in-
struction in register IR3 (just prior to the WB phase) to
the addresses of the source registers in phases IR2, IR1,
and IR (the next three instructions). In case of the same
register being written and then read a little later, it must
be assured that the WB phase of the write is done before
the ID (decoding) phase of the read, so that the register
is actually read after being written by an earlier instruc-
tion. If necessary, pipeline interlocks (’bubbles’) need to
be inserted to ensure the correct operation, in effect by
performing the NOP operations.

The pipeline supports additional options of bypass-
ing (data-forwarding) and delayed branches. Bypassing
requires additional logic for detecting the RAW data haz-
ards, as just described, to determine which of the result
registers (C1, C or even the ALU result) is written back
directly via additional feedback connections to the source
registers A and B, in order to avoid stalls.

When conditional branches in the code are actually
performed (the condition it TRUE), two next instructions,
which are already in the pipeline stages IF and ID, need
to be cancelled, since they must not be executed. Thus
two additional stalls occur whenever a branch is done.
However, the option of delayed branches allows for re-

ordering the code - putting at most two instructions from
before the branch to after the branch, in order to avoid the
two stalls.

Figure 5: An example of stepping through the code with the
pipeline command-line simulator pyHip. In the presented case,
no bypassing (data forwarding) was used, so three RAW (Read-
After-Write) stalls or ’bubbles’ are inserted.

4 Graphical User Interface (GUI)
4.1 Objectives of the GUI
The main objective of the GUI is to present the informa-
tion in a way that is comprehensible - accessible to users
and efficient: showing clearly the crucial data without
bloating and allowing interaction between the user and
the simulator. For this project we also wanted to be able
to deploy on multiple platforms as needed. Mainly desk-
top platforms: Windows, Linux, and MacOs, but also
on web platforms for a more lightweight experience, and
eventually a smaller version on mobile.

4.2 Technologies used
To that end, we decided developing the simulator’s inter-
face using Flutter, a framework built by Google around
the Dart programming language. It is a recent technology
(2017), but is backed by a powerful company and thus
provides a level of future proofing, while allowing us to
satisfy the specifications, being able to deploy on several
platforms with the same code. Desktop support was also
officially released only a few months ago, making it a
perfect opportunity.

Our interface, using the MVC (model-view-control-
ler) design pattern can be decomposed into 3 main com-
ponents:

• Views, where information is displayed and inter-
acted with by the users. In Flutter, each element,
from the global scaffold of the application to the
smallest text, is built using Widgets, predefined and
highly customisable blocks, that can be adjusted to
suit the user’s needs, and put one on top of another.
The resulting widget tree defines how the informa-
tion is accessed, displayed, and under which form.



456

• The controller is what allows us to predefine HTTP
requests that the user is going to send to the Python
backend. For example, we have set up a request,
using a specific IP and port, that requests the simu-
lator to move forward in the simulation. By simply
pressing a button, the user can send the instruction
to the simulator. This is also the way we get the
information, in JSON form.

• The model is where this information is stocked.
We define the elements we wish to extract from
the JSON file, decompose it in its various informa-
tion elements, and extracts the ones we wish to use.
This information is mapped into multiple classes or
’models’, which allows us to manipulate it.

Figure 6: An example of the current GUI on desktop, showing
the basic version of the simulator

Figure 7: An example of the current GUI on desktop, showing
the pipeline of the simulator (subject to change)

4.3 Features
The interface has been designed keeping both students
and teachers in mind, giving users as much tools as pos-
sible but staying straightforward and clear. It is used by
providing an assembly file using a file explorer and then
compiled by the Python program. Then, the execution
can be followed step by step, in the non-pipeline version
(6) at the granularity of instructions, and in the pipeline
version (7) at the granularity of clock cycles, and high-
lighting the important information. Alternatively, the pro-
gram can be run until the end to see the end result. Then,
users can either select a new file or simply rewind the
current one at their convenience.

The program provides numerous features allowing the
teacher to customize the desired way of showing the in-
formation to the student, including changing the colour

of the interface, zooming on important information and
more. These options are intuitive, done either using the
buttons on the top left, or simply scrolling or clicking on
the interface. The students are able to get more informa-
tion on different elements by a simple mouseover, allow-
ing us to keep the interface clean while still keeping them
afloat. Each step of the program is also highlighted to
show the relevant information, so they can identify and
focus on the most crucial points.

The program displays lots of information, under dif-
ferent forms, ranging from a simple table for registers
(bottom right), to an intricate and adaptive design for the
pipeline (top left), and designs in between, adapted for
the data they contain. Additionally, the interface is de-
composed in different screens, between which one can
seamlessly navigate as in any website or application. The
source code of the program is available at [8].

5 Conclusion
A CPU simulator is a very valuable tool for students learn-
ing computer architecture, since on practical examples
of assembly programs students can gradually learn how
the CPU behaves. They can view registers and memory,
explore runtime statistics, performance issues, pipeline
stalls, cache behaviour, and many more.

We describe an implementation of simulator of pro-
cessor HIP, a little simplified version of processor MIPS
R3000. Both non-pipeline and pipeline versions of HIP
are supported. The simulator can be run either in a com-
mand-line mode or with a GUI implemented in Flutter.
It can be run by default as a desktop application, but can
potentially be adapted for running in a web browser, with
the advantage of being more system-independent.

In the recent years, the RISC-V open standard ISA is
growing in popularity, gradually also in university cour-
ses. Besides of being open-source, it is also more mod-
ern. We may use the same framework to develop also a
RISC-V simulator.

6 Acknowledgements
We thank Ratko Pilipović and Nejc Ilc for their help and
advices in designing the GUI.

References
[1] D. Kodek: Arhitektura in organizacija računalniških siste-

mov, Bi-Tim, Šenčur, 2008.

[2] D. A. Patterson, J. L. Hennessy: Computer organiza-
tion and design: The hardware/software interface, Morgan
Kauffman, 2012.

[3] A. Akram, L. Sawalha: A Survey of Computer Architecture
Simulation Techniques and Tools, IEEE Access, 2019.

[4] D. Šonc: Simulator WinHIP, FRI, 2007-2012.

[5] M. Scott: WinMIPS64, http://indigo.ie/ mscott/

[6] A. Z. Henley: teenytinycompiler,
https://github.com/AZHenley/teenytinycompiler

[7] A. Z. Henley: Let’s make a Teeny Tiny compiler,
https://austinhenley.com/blog/teenytinycompiler1.html

[8] https://github.com/brankoster/pyhip


