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0  INTRODUCTION

The torque-controlled motor servo system has been 
widely used in the industrial applications in recent 
years due to its low pollution and high efficiency 
compared with its hydraulic counterpart [1]. How to 
design a high-performance controller for the motor 
servo system has been a topic of great interesting in 
domestic and foreign research fields [2].  Adaptive 
control of nonlinear systems has received much 
attention for obtaining the global asymptotical stability 
of the closed-loop system [3]. However, all kinds of 
uncertainties always exist in the system, and these 
uncertainties could deteriorate the systematic control 
performance severely [4]. Input saturation is one such 
uncertainty in the motor servo system, and the typical 
input saturation is shown in Fig. 1. When the input of 
the actuator reaches a certain limit value, the output 
of the actuator does not increase with the increase of 
the input, which is defined as input saturation. Input 
saturation can deteriorate the dynamic performance 
and even result in the instability of the system [5].

To deal with the input saturation, one approach 
is to introduce an additional system to analyse the 
effect of it. The states of the auxiliary system are 
employed for controller design and stability analysis 
[6]. In [7], an auxiliary design system is introduced 
to analyse the input saturation effect. In [8], in order 
to overcome the problem of input saturation, a new 

auxiliary design system and Nussbaum gain functions 
are incorporated into the control scheme. The control 
performance could be improved by establishing this 
kind of auxiliary system, but the model of the system 
becomes complex, which makes it difficult to be used 
in engineering applications. A second approach simply 
takes the input saturation as a kind of disturbance, and 
an observer is designed for it. An RBF neural network 
disturbance observer [9], a sliding-mode observer [10] 
and fuzzy state observer [11] are developed to estimate 
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Highlights
• Input saturation has been considered when establishing the model of motor servo system. 
• Both the parametric uncertainty and the external disturbance have been considered when designing the controller. 
• A single-hidden-layer neural network has been adopted to estimate the input saturation, which cannot be measured.
• Experimental results show the effectiveness of the proposed control strategy.

Fig. 1.  The diagram of typical input saturation nonlinearity
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the unknown disturbance, and the estimation error 
converges to a compact set if the observer’s parameters 
are selected appropriately. In [12], the effects of the 
control singularity and unknown input saturation 
along with the external disturbance are approximated 
by a disturbance observer. In [13], fuzzy logic systems 
are used to approximate the unknown nonlinear 
functions. Then, the disturbance including the input 
saturation could be observed and compensated in 
the controller. Thus, a better tracking accuracy could 
be obtained and the stability of the system could be 
guaranteed. However, when the external disturbance 
is large while the input saturation is relatively small, it 
is very difficult to eliminate the effect caused by input 
saturation with the disturbance compensation term. 

Another approach involves the establishment 
of a smooth function to approximate the input 
saturation nonlinear characteristics [14] to [16]. In 
[14], a dynamic signal and smooth function in a non-
affine structure subject to the control input signal 
are introduced to handle the un-modelled dynamics 
and input saturation. In [15], the input saturation is 
approximated by a smooth function, and a fuzzy state 
observer is designed for estimating the unmeasured 
states. In [16], a smooth nonlinear function of the 
control input signal is first introduced to approximate 
the saturation function to overcome the effect of 
non-differential saturation nonlinearity. This method 
restricted the input saturation nonlinearity, but the 
authenticity of the system is lost. There are still 
some other ways to deal with the effects of input 
saturation. For example, the non-affine problem of 
input saturation is solved by a mean value theorem 
in [17]. A new adaptive sliding mode control scheme 
is proposed to guarantee the globally asymptotic 
convergence of a motion system despite the presence 
of control input constraint, parametric uncertainties, 
and external disturbances in [18]. This method could 
directly overcome the impact of input saturation on 
the system by adjusting the controller’s parameters, 
but the tracking performance is not sufficient. A 
single controller is introduced in [19] to constrain the 
influence caused by input saturation. It can obtain 
better tracking accuracy, but the robustness of the 
system simultaneously decreased.

According to the above analysis, all the proposed 
controllers have both advantages and disadvantages. 
In this paper, an adaptive robust control method is 
proposed to improve the tracking accuracy of motion 
systems driven by torque-controlled motors with input 
saturation. Considering the universal approximation 
ability of neural networks (NN) [20] and [21], a kind 
of single-hidden layer parameter linearized NN [22] is 

designed to approximate the input saturation, and the 
input saturation is compensated effectively later in the 
controller. The experiment results verify the validity 
of the proposed controller. This method considers 
both the input saturation and the disturbance in the 
system, therefore, it has better performance than the 
other controllers do.

This paper is organized as follows. The dynamics 
of a motor servo system are established in Section 2. 
Section 3 designs an adaptive robust controller with 
a NN-based observer in detail. A Lyapunov stability 
proof and analysis has also been given in this part. 
Extensive experiments are carried out in Section 4, 
and the conclusions are given in Section 5.

1  DYNAMICS OF A TORQUE-CONTROLLED  
MOTOR SERVO SYSTEM

In this part, an accurate model of a torque-controlled 
motor servo system is established. A torque-controlled 
motor servo system is usually composed of a torque-
controlled motor, a servo driver, a position controller, 
a reducer, sensors, and so on [23] and [24]. The 
systematic diagram is shown in Fig. 2.

Fig. 2.  Specific composition diagram of the motor servo system

In order to improve the tracking precision of the 
system, the system parametric uncertainty and other 
nonlinearities, such as the external disturbance, should 
be considered when establishing the system’s model. 
The external disturbance of the system should be 
divided into two parts. One is the constant disturbance, 
and the other is the time-varying disturbance. 
Furthermore, the input saturation should also be 
considered when modelling. In addition, only the 
mechanical dynamical property is considered while 
the current’s dynamic property is neglected when 
establishing the system’s model since the electrical 
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response speed is much higher than the mechanical 
response speed. Considering all the above factors 
[25] and [26], the mathematic model of the torque-
controlled motor servo system can be described as:

 J y k u B y d f tu equ nequ  = ⋅ − ⋅ − − ( ),  (1)

where Jequ is the equivalent inertia of the motor and 
load, y is the position of the load, ku is the voltage-
torque coefficient, u is the control input, Bequ is 
the equivalent viscous friction coefficient, dn is 
the constant disturbance, f(t) is the time-varying 
disturbance.

Before the controller is designed, some 
hypotheses should be made as follows:
1) All the parameters of system are invariant 

variables or slowly time-varying variables. That 
is  


J k B dequ u equ n= = = = 0.

2) All the parameters are bounded, and the upper/ 
lower bounds for all these parameters are known.

Assuming that the input saturation exists in the 
actuator. u is the output of the actuator, the maximum 
value of u is umax, v is the control input of the actuator, 
δ is the input saturation. u = δ + v, u = sat(v), the 
function sat(v) can be expressed as:

 sat v
u v u
v v u
u v u
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It is necessary to build a state space equation of 
the system for designing a controller for the system. 
Thus, a number of parameters are defined: θ1 = Jequ / ku, 
θ2 = Bequ / ku, θ3 = dn / ku. Then, the mathematical 
model, Eq. (1), can be rewritten as:

 θ θ θ τ δ1 2 3 y v y t= − − − +( ) ,  (3)

where τ(t) = f(t) / ku indicates the time-varying 
disturbance and other systematic un-modelled 
nonlinearities.

Denote the state variables as:
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Then the state space equation of the system could 
be obtained as follows:
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2  DESIGN OF A CONTROLLER WITH NEURAL NETWORK 
BASED OBSEVER

2.1 Neural Network Based Observer Design

In the mechanical-electrical servo system, the state of 
the system is nonlinear, time-varying, and uncertain; 
in other words, it is very difficult to know the precise 
value of overflow by using the sensor and other 
measuring tools. Designing an observer to observe the 
overflow of input saturation is necessary. A NN can 
approximate any smooth nonlinear function to within 
arbitrary accuracy when given a sufficient number of 
hidden layer neurons and input information. Thus, a 
single hidden-layer network is defined to approximate 
the unknown parameter δ.

The mathematical expression of the single-layer 
NN is as follows:

 δ ε= +W h xT
approx

* ( ) ,  (6)

 h
x c
bj
j

j
= −

−
exp(

|| ||
),

2

2 2
 (7)

where x = [x1 x2 ... xn]T is the input of network, j is the 
jth node of the hidden layer, h = [hj]T is the output of 
network’s Gauss radial function, cj = [cj1 cj2 ... cjn] is 
centre vector value of the jth node, b = [b1 b2 ... bm]T 
is the width of the Gauss basis function, W*T is ideal 
weights of NN, εapprox is approximation error of the 
NN and  εapprox ≤ εN.

The input of the neural network is chosen as 
x = [x1, x2]T, and then the real output of the network is:

 δ� �=W h x
T

( ),  (8)

where W  represent the estimated value of W*. Design 
the adaptive law of weights as follows:

  (9)
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and Γ2 is the adaptive law matrix of weights. 
Define � �W W W= − * , thus

 

δ δ ε

ε

ε

− = + −

= − +

= − +

 W h x W h x

W W h x

W h x

T
approx

T

T T
approx

T

*

*

( ) ( )

( ) ( )

( ) aapprox .  (11)



Strojniški vestnik - Journal of Mechanical Engineering 63(2017)9, 519-528

522 Liu, L. – Hu, J. – Wang, Y. – Xie, Z.

Remark 1: Input saturation is an inevitable 
phenomenon in mechanical-electrical servo systems, 
so the impact of the input saturation should be 
restrained when designing the controller. How to 
compensate the overflow of input saturation is 
the key to solving the nonlinear problem. A single 
hidden-layer network-based observer can estimate 
the overflow δ and the estimation error of the single 
hidden-layer network can be close to 0 as long as 
the nodes in the hidden layer are enough in theory. 
That is to say, the single hidden-layer network can 
approximate δ within arbitrary accuracy. It is obvious 
that the value of δ could be replaced by estimation 
value δ when designing the controller later, and the 
control performance could be observably improved.

2.2  Design of a Controller

The system that is driven by a torque-controlled 
motor is a typical motor servo system, and the control 
system is a second-order system. The design process 
of a specific controller is as follows.

Step 1. In this step, x2 is deemed a dummy 
control input. And x2 is regarded as the dummy control 
input; afterwards, a control function x2eq ought to be 
designed for x2. The result in the tracking property 
is guaranteed. Denoting x1d as the ideal position and 
z1 = x2 – x1d indicate the position tracking error. After 
that, the dynamic equation of error is as follows:

    z x x x xd d1 1 1 2 1= − −= .  (12)

Let z2 = x2 – x2eq indicates the error between the 
virtual input and the real input, thus the Eq. (12) can 
be rearranged as follows:

  z z x xeq d1 2 2 1= + − .  (13)

Based on Eq. (13), the resulting virtual control 
law x2eq could be designed as follows:

 x x k zeq d2 1 1 1= − ,  (14)

where k1 > 0. Substituting Eq. (14) into Eq. (13), we 
could obtain:

 z z k z1 2 1 1= − .  (15)

From Eq. (15), it is indicated that we want to turn 
z2 converge into zero to turn z1 converge into zero.

Step 2. The dummy control law x2eq has been 
designed in Step 1. In this step, we need to design the 
real control law for v. The time derivative of z2 can be 
given by:

 

θ θ θ
θ θ τ δ θ

1 2 1 2 1 2

2 2 3 1 2
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
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v x t x
v
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=

      

      

( )

−− − − − +θ θ θ τ δ1 2 2 2 3x x teq ( ) .  (16)

To make z2 converge to 0, the following control 
law v is proposed:

 v v va s= + ,  (17)

 v x xa eq= + + −θ θ θ δ� � � ��1 2 2 2 3 ,  (18)

 v v vs s s= +1 2,  (19)

 v k z v h zs s
s

s
1 2 2 2

2

2
4

= − = −, ,
ε

 (20)

where va is the feed-forward compensation term of 
the system model, vs1 is a linear robust feedback term 
to stabilize the system nominal model and k2 > 0, vs2 
is a nonlinear robust feedback term which is used to 
compensate for the time-varying disturbance and the 
model error.

Substituting Eqs. (18) and (11) into Eq. (16), later 
the Eq. (16) could be transformed to:
θ θ θ θ δ δ τ
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( )

ε τ

θ ϕ ε      22 −τ ( ),t  (21)

where θ1, θ2, θ3 is unknown, and the value would be 
changed in the working process of the system, in order 
to design the controller simply, we should adopt the 
estimated value to replace the uncharted parameter 
when designing the controller, (for example θ1 , θ 2 , 
θ 3 ). Thus, a parameter matrix θ = [θ1 θ2 θ3] and an 
estimated parameter matrix θ θ θ θ   =  1 2 3  should 
be defined. Based on Assumption 2.1, we could 
obtain:

 θ θ θ θ θθ∈ = < <{ }Ω : ,min max  (22)

 | | ,τ δ(t) < d  (23)

where θ θ θ θmin min min min= [ ]1 2 3

T , and 
θ θ θ θmax max max max= [ ]1 2 3

T  is the upper/lower 
bounds of the system parameters, and the values of 
the upper and lower bounds are known, and δd is a 
constant.

F://Program Files/Youdao/Dict/6.3.69.5012/resultui/frame/javascript:void(0);
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Step 3. In this step, an estimator should be 
designed to estimate the unknown system parameters. 
In order to make both the estimated parameters and the 
model uncertainty bounded, design a discontinuous 
projection gradient type parameter adaptation law as 
follows:

  (24)

where

 Proj

and

and

otherwis
θ

θ

θ

θ

θ

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( )
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, (25)

 ϕ = − − −



x xeq
T

2 2 1 . (26)

φ is the parameter adaptive regression, Γ1 is 
the adaptation law matrix, in addition, there are the 
following properties:

         θ θ ϕ ϕ
θ

� �
�∈ − ≤∞  L z z, ( ) ,Proj Γ Γ2 2 0  (27)

where � �θ θ θ= -  represents the error of parametric 
estimation. 

Step 4. In this step, in order to overcome the 
parameters approximation error and approximation 
error of model uncertainty, a nonlinear robust 
feedback item us2 should be designed to stabilize the 
system and improve the tracking performance.

Define vs h zs s2
2

2 4= −( ) ε , where this represents 
all the errors’ upper bound, and it means 
| | | ( ) | | | θ φ ε δT T

d sW h x h+ + + ≤ , εs is a positive 
real number which has the following characters:

       
i z v W h x t

ii z v
s

T T
S

s

: ( ) ( )

:
.

2 2

2 2 0

− − − −  ≤

⋅ ≤







 θ ϕ ε τ ε
 (28)

2.3  Stability Analysis

The specific diagram of control tactics is shown in Fig. 
3. The strategy adopts an NN observer to estimate the 
state that cannot be measured, and the weight adaptive 
velocity is used to estimate the weights online. In 
addition, the parameter regression is used to estimate 
the unknown parameters; all the estimated parameters 
are required in the feed-forward compensator. A linear 
robust term vs1 is designed to overcome the constant 
disturbance of the system, and a nonlinear robust 

term vs2 is designed to compensate the time-varying 
disturbance and modelling errors.

Fig. 3.  The neural network observer based robust  
adaptive control tactics graph

Based on the controller designed earlier, we could 
obtain the following theorem:

Theorem 2.1. With the NN-based observer, Eqs. 
(8) and (9), the parameter adaption law in Eq. (24), the 
adaptive robust full state feedback control law in Eq. 
(17), we can obtain a specified transient and 
everlasting performance in the sense that limiting the 
tracking error to a small extent by a known function 
exponentially converges to the 1 21 1k s( ) ( ) ( )ε λθ min

   
with a converging law no fewer than λ.

Proof: See Appendix 7.1.
Remark 2: The consequence of theorem 2.1 

denotes that the contrivable controller consists of a 
robust adaptive controller and NN-based observer, 
which has an exponential convergence transitory 
property with the exponentially converging rate λ, and 
the ultima tracking error was inhibited by adjusting 
the system’s parameters online. The parameter 
adaption law could approximate the unknown 
system parameters, and the weight adaptive law 
could estimate the value of the weights. The constant 
disturbance of the system was compensated by the 
feed-forward compensation item which used the 
estimated parameters. Moreover, the input saturation 
was compensated by the output value of the NN based 
observer. Furthermore, the nonlinear robust feedback 
item was proposed to reduce the effect of parameter 
estimation error and weights estimation error, which 
could effectively improve the stability of the closed-
loop system.

Theorem 2.2: With NN observer, Eqs. (8) and 
(9), parameter adaptive law, Eq. (24), adaptive robust 
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full state feedback control law, Eq. (17), the system 
could achieve asymptotic export tracking merely in 
the presence of parametric uncertainty.

Proof: See Appendix 7.2.
Remark 3: The consequence of theorem 2.2 

denote that the adaptive robust controller based on 
an NN observer could obtain improved tracking 
performance, and the system could achieve asymptotic 
export tracking in the absence of the estimated error of 
NN.

3  EXPERIMENTAL RESULTS

The experimental platform of torque-controlled motor 
servo system is shown in Fig. 4. This experimental 
platform consists of a torque-controlled servomotor, a 
speed reducer, a slewing mechanism, a photoelectric 
encoder, sensors, a power supply, and an IPC. The 
photoelectric encoder could sample the position 
signals of the two servo-motor. The voltage signal is 
transmitted to the driver by using a (digital/analogue) 
D/A board card. 

Fig. 4.  The experimental platform of torque-controlled  
motor servo system

The parameters of the experimental platform are 
given as follows:

Table 1.  The parameters used in experiment

Equivalent inertia Jequ 0.00138 kg·m2

Equivalent viscous friction coefficient Bequ 0.4 N·m·s/rad
Voltage-torque coefficient ku 2.36 N·m/V

Three controllers are compared for a sinusoidal-
like motion trajectory, and two cases are compared 
for this normal motion trajectory. Case 1 is “constant 
disturbance case”: Setting the constant disturbance 
as dn = 0.5. Then, after a simple calculation, we can 
obtain: θ1 = 0.01, θ2 = 0.294, θ3 = 0.36. Case 2 is 
“time-varying disturbance case”: The time-varying 

disturbance in the system was set as f(t) = 0.015∙x1∙x2, 
and x1, x2 are state variables selected. The three 
controllers are as follows:
1) The proportional–integral–derivative controller 

(PID): in industrial control applications, the 
PID controller was used widely, its proportional 
integral differential control of position and 
speed loop has low dependence on the system 
model, and could obtain a high accuracy. In 
this experiment, the PID controller of position 
loop is used, and its three parameters could be 
adjusted by observing the position error. Denote 
the parameters of the proportional, integral and 
differential as kp = 25, ki = 0.8, kd = 0. 

2) The adaptive robust controller (ARC): in the 
closed-loop system was realized by the control 
law, Eq. (17), and the parameter adaptive law, Eq. 
(24), which designed in the above, and the effect 
caused by input saturation was not considered 
in this case. In this experiment, the feedback 
gains are chosen as k1 = 35, k2 = 002. The 
upper and the lower bounds of parameters are  
θmax = [0.05, 0.5,  0.5], θmin = [0.005,  0.01, 0.01].

3) The adaptive robust controller with neural 
network based observer (ARCNN): The control 
gains are chosen as k1 = 20, k2 = 0.01, and [v z2] 
is the input of the NN, the parameters of the 
Gauss basis function was designed via the actual 
input extent of the network; therefore, choose 
cj = 8 × [–1, –0.5, 0, 0.5, 1], bj = 5, in this case, 
and define the initial value of network weights as 
zero.
In order to verify the feasibility of the adaptive 

robust controller based on the NN observer, set 
the limitation of input saturation in actuator:  
umax = 0.45, umin = –0.45. The desired output signal: 
yd = x1(t) = 2 × sin(3.14t)[1 – exp(–0.01t)] [°]. To ensure 
that the performance of the designed controller is fully 
demonstrated, the sample time at least is set to 15 s.

Table 2.  The accuracy of the three controllers in Case 1: “constant 
disturbance case”

Controller Time [s] Accuracy [°]
ARC t > 5 0.062

PID t > 5 0.045

ARCNN t > 10 0.0028

The position curve in the ideal state and the 
homologous tracking property of the three controllers 
in Case 1 are shown in Fig. 5, which shows that 
the PID controller and ARCNN controller could 
obtain the better position tracking performance than 
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ARC controller in terms of both transient and final 
tracking errors, the result of experimental indicate 
that the impact caused by input saturation could not 
be ignored in the control system. By comparing the 
control performance of the three controllers, the 
ARCNN controller has the best tracking property, 
and its maximum steady tracking error is about 
0.0028°. Fig. 6 shows the voltage signals v and u; v 
is the voltage signal before the saturation constraint 
occurred, and u is the voltage signal after the 
saturation constraint occurred; from the picture we can 
see the error between v and u cannot be ignored, thus 
the effect of input saturation should be considered. 
Fig. 7 shows the overflow of input saturation and 
corresponding estimation. It can be seen that the NN 
observer could estimate the overflow immediately 
and thus the input saturation could be compensated 
effectively. In addition, ARCNN adopts the parameter 
adaptive law and the weights adaptive law to estimate 
uncertain parameters and weights, which are used in 
the feed-forward compensation item. Therefore, a 
high performance was realized, which also proved the 
validity of the adaptive control law.

Fig. 5.  Tracking error of three controllers in Case 1 

Fig. 6.  The voltage signal v, u in Case 1

Fig. 7.  The true value and the estimated value  
of input saturation in Case 1

Table 3.  The accuracy of the three controllers in Case 2: “time-
varying disturbance case”

Controller Time [s] Accuracy [°]
ARC t > 5 0.056

PID t > 5 0.045

ARCNN t > 5 0.035

The position curve in the ideal state and the 
homologous tracking property of the three controllers 
in Case 2 is revealed in Fig. 8. As seen from the figure, 
the input saturation is compensated by NN or PID has 
the better tracking performance than uncompensated, 
which confirms that the accuracy of the estimation is 
very important. Fig. 9 indicate that the voltage before 
and after saturation constrain, as seen when t ≤ 1 s, the 
output voltage exceeds the limitation of actuator input, 
the voltage signal is limited to the working voltage 
range of actuator owing to saturation constraint, which 
improved the tracking accuracy of the system, and 
reduces the shock range of the voltage signal at the 
same time. Fig. 10 shows the curve of δ and δ , from 
the figure, the NN could observe and estimate the 
overflow immediately when the input saturation rises, 
then the estimated value is used in the feed-forward 
compensation. The ARCNN controller has the best 
tracking performance and the position tracking error is 

F://Program Files/Youdao/Dict/6.3.69.5012/resultui/frame/javascript:void(0);
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less than 0.0035°; this also proved the effectiveness of 
parameter adaptive estimation and NN weight 
estimation in the presence of constant disturbance and 
time-varying interference (adaptive parameter 
estimation curve is shown in Fig. 11).

Fig. 11.  Adaptive parameter estimation curve of ARCNN in Case 2

4  CONCLUSIONS

In this paper, considering the universal approximation 
ability of NN, a single hidden-layer NN based 
observer is designed to estimate the input saturation 
of the system, which is later compensated in the 
controller. An adaptive law is introduced to estimate 
the unknown parameters, and a nonlinear robust 
term is designed to overcome the time-varying 
disturbances. The NN weight adaption law has 
been deduced by using the Lyapunov method. The 
proposed controller pledges the asymptotic stability 
of the tracking performance under the condition that 
the NN estimation error is zero. The effectiveness 
of the proposed control strategy has been proved by 
comparing the experimental results. In the future, 
the input saturation and external disturbance should 
be estimated by designing a double- observer, which 
is helpful in improving the control precision of the 
motor servo system. 
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7  APPENDICES

Proof of Theorem 2.1: Without considering 
the neural network estimation error, the Lyapunov 
function is established as follows:
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where λ θ= 2 2 1k / min  , we can obtain:
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With the passage of time, the position tracking 
error and angular velocity tracking error will be 
limited to a certain extent.

 | | ,
min

z s s
2

1 1

2 2
= ≤

ε
λθ

ε
λθ

 (32)

 | | .
min

z
k

s
1

1 1

1 2
≤

ε
λθ

 (33)

Proof of theorem 2.2: when εapprox = 0, consider 
the following Lyapunov function candidate:
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Since θ and W are invariant or slowly varying 
variables, we could have . Then we 
could obtain:
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