

ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 22 (2022) #P3.05 / 443–458 https://doi.org/10.26493/1855-3974.2645.8fc (Also available at http://amc-journal.eu)

On the essential annihilating-ideal graph of commutative rings*

Mohd Nazim D, Nadeem ur Rehman[†] D

Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India

Received 30 May 2021, accepted 8 September 2021, published online 9 June 2022

Abstract

Let R be a commutative ring with unity, A(R) be the set of annihilating-ideals of R and $A^*(R) = A(R) \setminus \{0\}$. In this paper, we introduced and studied the *essential annihilating-ideal graph* of R, denoted by $\mathcal{EG}(R)$, with vertex set $A^*(R)$ and two distinct vertices I_1 and I_2 are adjacent if and only if $Ann(I_1I_2)$ is an essential ideal of R. We prove that $\mathcal{EG}(R)$ is a connected graph with diameter at most three and girth at most four if $\mathcal{EG}(R)$ contains a cycle. Furthermore, the rings R are characterized for which $\mathcal{EG}(R)$ is a star or a complete graph. Finally, we classify all the Artinian rings R for which $\mathcal{EG}(R)$ is isomorphic to some well-known graphs.

Keywords: Annihilating-ideal graph, zero-divisor graph, complete graph, planar graph, genus of a graph.

Math. Subj. Class. (2020): 13A15, 05C10, 05C12, 05C25

1 Introduction

Throughout this paper all rings are commutative rings (not a field) with unit element such that $1 \neq 0$. For a commutative ring R, we use $\mathbb{I}(R)$ to denote the set of ideals of R and $\mathbb{I}^*(R) = \mathbb{I}(R) \setminus \{0\}$. An ideal I of R is said to be *non-trivial* if it is nonzero and proper both. An ideal I of R is said to be *annihilator ideal* if there is a nonzero ideal J of R such that IJ = 0. For $X \subseteq R$, we define *annihilator* of X as $Ann(X) = \{r \in R : rX = 0\}$. We use A(R) to denote the set of annihilator ideas of R and $A^*(R) = A(R) \setminus \{0\}$. We denote the set of zero-divisors, the set of nilpotent elements, the set of maximal ideals, the set of minimal prime ideals, and the set of Jacobson radical of a ring R by Z(R), Nil(R),

^{*}The authors are greatly indebted to the referee for his/her constructive comments and suggestion, which improves the quality of the paper a lot.

[†]Corresponding author.

E-mail addresses: mnazim1882@gmail.com (Mohd Nazim), nu.rehman.mm@amu.ac.in (Nadeem ur Rehman)

Max(R), Min(R) and J(R), respectively. A nonzero ideal I of R is called *essential*, denoted by $I \leq_e R$, if I has a nonzero intersection with every nonzero ideal of R. Also, if I is not an essential ideal of R then, it is denoted by $I \not\leq_e R$. A ring R is said to be reduced, if it has no nonzero nilpotent element. For a nonzero nilpotent element x of R, we use η to denote the index of nilpotency of x. If S is any subset of R, then S^* denote the set $S \setminus \{0\}$. For any undefined notation or terminology in ring theory, we refer the reader to see [9].

Let G be a graph with vertex set V(G). The distance between two vertices u and v of G denoted by d(u, v), is the smallest path from u to v. If there is no such path, then $d(u, v) = \infty$. The diameter of G is defined as $diam(G) = \sup\{d(u, v) : u, v \in V(G)\}$. A cycle is a closed path in G. The girth of G denoted by gr(G) is the length of a shortest cycle in $G(qr(G) = \infty$ if G contains no cycle). A graph is said to be *complete* if all its vertices are adjacent to each other. A complete graph with n vertices is denoted by K_n . If G is a graph such that the vertices of G can be partitioned into two nonempty disjoint sets U_1 and U_2 such that vertices u and v are adjacent if and only if $u \in U_1$ and $v \in U_2$, then G is called a *complete bipartite graph*. A complete bipartite graph with disjoint vertex sets of size m and n, respectively, is denoted by $K_{m,n}$. We write $K_{n,\infty}$ (respectively, $K_{\infty,\infty}$) if one (respectively, both) of the disjoint vertex sets is infinite. A complete bipartite graph of the form $K_{1,n}$ is called a *star graph*. A graph G is said to be *planar* if it can be drawn in the plane so that its edges intersect only at their ends. A subdivision of a graph is a graph obtained from it by replacing edges with pairwise internally-disjoint paths. A remarkably simple characterization of planar graphs was given by Kuratowski in 1930. Kuratowski's Theorem says that a graph G is planar if and only if it contains no subdivision of K_5 or $K_{3,3}$. The genus of a graph G, denoted by $\gamma(G)$, is the minimum integer k such that the graph can be drawn without crossing itself on a sphere with k handles (i.e. an oriented surface of genus k). Thus, a planar graph has genus 0, because it can be drawn on a sphere without self-crossing. For more details on graph theory, we refer to reader to see [21, 22].

The concept of *zero-divisor graph* of a commutative ring R, denoted by $\Gamma(R)$, was introduced by I. Beck [10]. The vertex set of $\Gamma(R)$ is $Z^*(R) = Z(R) \setminus \{0\}$ (set of nonzero zero-divisors of R) and two distinct vertices x and y are adjacent if and only if xy = 0, for details see [5, 8, 7]. In [14], Dolžan and Oblak also obtained several interesting results related with zero-divisor graph of rings and semirings. The zero-divisor graph of a noncommutative ring has been introduced and studied by Redmond [18], whereas the same concept for semigroup by Demeyer et al. [13].

In [11], Behboodi et al. generalized the zero-divisor graph to ideals by defining *the* annihilating-ideal graph AG(R), with vertex set is $A^*(R)$ and two distinct vertices I_1 and I_2 are adjacent if and only if $I_1I_2 = 0$. For more details on annihilating-ideal graph, we refer the reader to see [1, 2, 3, 4, 6, 12, 16].

In [17], M. Nikmehr et al. introduced *the essential graph* EG(R) with vertex set $Z^*(R) = Z(R) \setminus \{0\}$ and two distinct vertices x and y are adjacent if and only if $ann_R(xy)$ is an essential ideal of R.

Motivated by [17], we define the essential annihilating-ideal graph of R denoted by $\mathcal{EG}(R)$ with vertex set $A^*(R)$ and two distinct vertices I_1 and I_2 adjacent if and only if $Ann(I_1I_2)$ is an essential ideal of R. In this paper we first prove that AG(R) is a subgraph of $\mathcal{EG}(R)$ and then studied some basic properties of $\mathcal{EG}(R)$ such as connectedness, diameter, girth and shows that $\mathcal{EG}(R)$ is a connected graph with $diam(\mathcal{EG}(R)) \leq 3$ and $gr(\mathcal{EG}(R)) \leq 4$, if $\mathcal{EG}(R)$ contains a cycle. In the third section, we determine some condi-

tions on R under which $\mathcal{EG}(R)$ is a star graph or a complete graph. In the last, we identify all the Artinian rings R for which $\mathcal{EG}(R)$ is isomorphic to some well-known graphs.

2 Basic properties of essential annihilating-ideal graph

We begin this section with the following lemma given by [17].

Lemma 2.1 ([17, Lemma 2.1]). Let R be a commutative ring and I be an ideal of R. Then

- (1) I + Ann(I) is an essential ideal of R.
- (2) If $I^2 = (0)$, then Ann(I) is an essential ideal of R.
- (3) If R contains no proper essential ideals, then J(R) = (0).

The following lemma is analogue of [17, Lemma 2.2].

Lemma 2.2. Let R be a commutative ring. Then

- (1) If I_1 and I_2 are adjacent in AG(R), then I_1 and I_2 are also adjacent in $\mathcal{EG}(R)$.
- (2) If $I^2 = 0$ for some $I \in A^*(R)$, then I is adjacent to every other vertex in $\mathcal{EG}(R)$.

Proof. (1) Suppose I_1 and I_2 are adjacent in AG(R), then $I_1I_2 = 0$ and so $Ann(I_1I_2) = R$, is an essential ideal of R. Thus I_1 and I_2 are also adjacent in $\mathcal{EG}(R)$. (2) Suppose that $I^2 = 0$ for some $I \in A^*(R)$. Then by Lemma 2.1(2), Ann(I) is an essential ideal of R. Since $Ann(I) \subseteq Ann(IJ)$ for every $J \in A^*(R)$, therefore Ann(IJ) is also an essential ideal of R. Thus I is adjacent to every other vertex of $\mathcal{EG}(R)$.

Let R be a commutative ring. By [11, Theorem 2.1], the annihilating ideal graph AG(R) is a connected graph with $diam(AG(R)) \leq 3$. Moreover, if AG(R) contains a cycle, then $gr(AG(R)) \leq 4$.

In view of part (1) of Lemma 2.2, we have the following result.

Theorem 2.3. Let R be a commutative ring. Then $\mathcal{EG}(R)$ is connected with $diam(\mathcal{EG}(R)) \leq 3$. Moreover, if $\mathcal{EG}(R)$ contain a cycle, then $gr(\mathcal{EG}(R)) \leq 4$.

In Lemma 2.2(1), we proved that AG(R) is a spanning subgraph of $\mathcal{EG}(R)$ but this containment may be proper. The following examples shows that AG(R) and $\mathcal{EG}(R)$ are not identical.

Example 2.4.

- 1. If $R = \mathbb{Z}_{16}$, then AG(R) is P_3 and $\mathcal{EG}(R)$ is K_3 .
- 2. If $R = \mathbb{Z}_{p^5}$, where p is a prime number. Then AG(R) is the following graph and $\mathcal{EG}(R)$ is K_4 .

Theorem 2.5. Let R be a commutative reduced ring. Then $\mathcal{EG}(R) = AG(R)$.

Proof. Clearly, $AG(R) \subseteq \mathcal{EG}(R)$. We just have to prove that $\mathcal{EG}(R)$ is a subgraph of AG(R). Suppose on contrary that $I_1 \sim I_2$ is an edge of $\mathcal{EG}(R)$ such that $I_1I_2 \neq 0$. Since R is a reduced ring, then $I_1I_2 \cap Ann(I_1I_2) = 0$, which implies that $Ann(I_1I_2)$ is not an essential ideal of R, a contradiction. Thus $I_1I_2 = 0$ and $\mathcal{EG}(R) = AG(R)$.

Figure 1: The graph $AG(\mathbb{Z}_{p^5})$.

Theorem 2.6 ([12, Theorem 1.9(3)]). Let R be a commutative ring with finitely many minimal primes. Then diam(AG(R)) = 2 if and only if either R is reduced with exactly two minimal primes and at least three nonzero annihilating-ideals, or R is not reduced, Z(R) is an ideal whose square is not (0) and for each pair of annihilating-ideals I_1 and I_2 , $I_1 + I_2$ is an annihilating-ideal.

Theorem 2.7. Let R be a commutative ring with $|Min(R)| < \infty$. Then

- (1) If R is reduced ring, then $diam(\mathcal{EG}(R)) = 2$ if and only if |Min(R)| = 2 and R has at least three nonzero annihilating-ideals. Moreover, in this case $gr(\mathcal{EG}(R)) \in \{4, \infty\}$.
- (2) If R is non-reduced, then $diam(\mathcal{EG}(R)) \leq 2$. Moreover, in this case $gr(\mathcal{EG}(R)) \in \{3, \infty\}$.

Proof. (1) First part is clear from Theorems 2.5 and 2.6. Now, let $Min(R) = \{P_1, P_2\}$, then $\mathcal{EG}(R)$ is a complete bipartite graph with partitions $V_1 = \{I \in V(\mathcal{EG}) : I \subseteq P_1\}$ and $V_2 = \{I \in V(\mathcal{EG}) : I \subseteq P_2\}$ by [12, Theorem 1.2]. Hence $gr(\mathcal{EG}(R)) \in \{4, \infty\}$.

(2) Since R is a non-reduced ring, then there is $I_1 \in A^*(R)$ such that $I_1^2 = 0$. Thus by Lemma 2.2(2), I_1 is adjacent to every other vertex of $\mathcal{EG}(R)$. Hence $diam(\mathcal{EG}(R)) \leq 2$. Also, if there are $I, J \in V(\mathcal{EG}(R)) \setminus \{I_1\}$ such that $I \sim J$ is an edge of $\mathcal{EG}(R)$, then $I_1 \sim I \sim J \sim I_1$ is a triangle in $\mathcal{EG}(R)$. Thus, $gr(\mathcal{EG}(R)) = 3$, otherwise $gr(\mathcal{EG}(R)) = \infty$.

3 Completeness of essential annihilating-ideal graph

In this section, we characterize commutative rings R for which $\mathcal{EG}(R)$ is a star graph or a complete graph. We begin with the following lemma.

Lemma 3.1. Let R be a commutative nonreduced ring. Then

- (1) For every nilpotent ideal I_1 of R, I_1 is adjacent to every other vertex of $\mathcal{EG}(R)$.
- (2) The subgraph induced by the nilpotent ideals of R is a complete subgraph of $\mathcal{EG}(R)$.

Proof. (1) Suppose that I_1 be any nilpotent ideal of R. Let $I_2 \in A^*(R)$. We show that $Ann(I_1I_2) \leq_e R$. Since $Ann(I_1) \subseteq Ann(I_1I_2)$, then it is enough to show that $Ann(I_1) \leq_e R$. Suppose on contrary that $Ann(I_1) \not\leq_e R$, then there exists $I_3 \in \mathbb{I}^*(R)$ such that $Ann(I_1) \cap I_3 = 0$, which implies that $rI_1 \neq 0$ for every $r \in I_3^*$. Since $0 \neq rI_1 \subseteq I_3$, then $I_1 \cdot rI_1 = rI_1^2 \neq 0$. Continuing this process, we get $rI_1^n \neq 0$, for every positive integer n, which is a contradiction. This complete the proof. (2) It is clear from (1).

Lemma 3.2. Let (R, \mathfrak{m}) be a commutative Artinian local ring. Then $\mathcal{EG}(R)$ is a complete graph.

Proof. Follows from Lemma 3.1.

Lemma 3.3. Let R be a commutative decomposable ring. Then $\mathcal{EG}(R)$ is a star graph if and only if $R = F \times D$, where F is a field and D is an integral domain.

Proof. (\Rightarrow) Suppose that $\mathcal{EG}(R)$ is a star graph and let $R = R_1 \times R_2$, where R_1 and R_2 are commutative rings. If R_1 and R_2 both are not fields and $I_1 \in \mathbb{I}^*(R_1), I_2 \in \mathbb{I}^*(R_2)$, then $(R_1 \times (0)) \sim ((0) \times R_2) \sim (I_1 \times (0)) \sim ((0) \times I_2) \sim (R_1 \times (0))$ is a cycle of length 4 in $\mathcal{EG}(R)$, a contradiction. Thus, without loss of generality we can assume that R_1 is a field. We claim that R_2 is an integral domain. Suppose on contrary that R_2 is not an integral domain, then there exists $I_3, I_4 \in \mathbb{I}^*(R_1)$ such that $I_3I_4 = 0$. If $I_3 \neq I_4$, then $(R_1 \times (0)) \sim ((0) \times I_3) \sim ((0) \times I_4) \sim (R_1 \times (0))$ is a triangle in $\mathcal{EG}(R)$, a contradiction. Also, if $I_3 = I_4$, then by Lemma 3.1, $(R_1 \times (0)) \sim ((0) \times I_3) \sim ((0) \times R_2) \sim (R_1 \times (0))$ is a triangle in $\mathcal{EG}(R)$, again a contradiction. This complete the proof. (\Leftarrow) is clear.

Theorem 3.4. Let R be an Artinian commutative ring with atleast two non-trivial ideals. Then $\mathcal{EG}(R)$ is a star graph if and only if $\mathcal{EG}(R) \cong K_2$.

Proof. (\Rightarrow) Suppose $\mathcal{EG}(R)$ is a star graph. If R is a local ring, then from Lemma 3.2, $\mathcal{EG}(R)$ is a complete graph. Since $\mathcal{EG}(R)$ is a star graph, therefore $\mathcal{EG}(R) \cong K_2$. If R is non-local ring, then it is decomposable. Thus by Lemma 3.3, $R = F \times D$, where F is a field and D is an integral domain. Since R is Artinian ring, then D is Artinian and hence is a field. Thus $\mathcal{EG}(R) \cong K_2$. (\Leftarrow) is evident.

Theorem 3.5. Let R be a commutative ring with at least two non-trivial ideals. Then $\mathcal{EG}(R)$ is a star graph if and only if one of the following holds:

- (1) *R* has exactly two non-trivial ideals.
- (2) $R = F \times D$, where F is a field and D is an integral domain which is not a field.
- (3) *R* has a minimal ideal I_1 such that I_1 is not an essential ideal of *R*, $I_1^2 = 0$ and for any nonzero annihilating ideal I_2 of R, $Ann(I_2) = I_1$.

Proof. (\Rightarrow) Suppose $\mathcal{EG}(R)$ is a star graph. If $|A^*(R)| < \infty$, then from [11, Theorem 1.1], R is an Artinian ring. Thus, by Theorem 3.4, $\mathcal{EG}(R) \cong K_2$ and hence (1) hold.

Now, let $|A^*(R)| = \infty$ and I_1 is adjacent to every other vertex of $\mathcal{EG}(R)$. We show that I_1 is minimal ideal of R. Suppose on contrary that there exists $I_2 \in \mathbb{I}^*(R)$ such that $I_2 \subset I_1$. Let $I_3 \in A^*(R) \setminus \{I_1, I_2\}$, then $Ann(I_1I_3) \leq_e R$. Since $I_2I_3 \subseteq I_1I_3$, then $Ann(I_2I_3)$ is also essential ideal of R. This implies that I_2 is also adjacent to every other vertex of $\mathcal{EG}(R)$, a contradiction. Now, following two cases occur:

Case I: $I_1^2 \neq 0$. Then $I_1^2 = I_1$, thus by Brauer's Lemma [15, p. 172, Lemma 10.22], R is decomposable. Since $|A^*(R)| = \infty$ and $\mathcal{EG}(R)$ is a star graph. Then from Lemma 3.3, $R = F \times D$, where F is a field and D is an integral domain which is not a field. Hence (2) hold.

Case II: $I_1^2 = 0$. Let $I_2 \in A^*(R) \setminus \{I_1\}$. Then $I_2 \neq Ann(I_2)$, otherwise $I_2^2 = 0$

implies that I_2 is also adjacent to every other vertex of $\mathcal{EG}(R)$, a contradiction. Now, since $I_2 \sim Ann(I_2)$, then $Ann(I_2) = I_1$. If I_1 is an essential ideal of R, then $Ann(I_2)$ is also an essential ideal of R. This shows that I_2 is also adjacent with every other vertex of $\mathcal{EG}(R)$, which is a contradiction to our assumption that $\mathcal{EG}(R)$ is a star graph because we are assuming that I_1 is adjacent with every other vertex of $\mathcal{EG}(R)$ and $I_1 \neq I_2$. Hence I_1 is not an essential ideal of R.

(\Leftarrow) If *R* has exactly two non-trivial ideals, then *R* is Artinian ring with $|A^*(R)| = 2$. Since $\mathcal{EG}(R)$ is connected, therefore $\mathcal{EG}(R) \cong K_2$. If $R = F \times D$, where *F* is a field and *D* is an integral domain which is not a field, then from Lemma 3.3, $\mathcal{EG}(R)$ is a star graph. Now, suppose that *R* has a minimal ideal I_1 such that I_1 is not an essential ideal of *R*, $I_1^2 = 0$ and for any nonzero annihilating ideal I_2 of *R*, $Ann(I_2) = I_1$. Let $I_2, I_3 \in A^*(R) \setminus \{I_1\}$ such that $I_2 \sim I_3$ in $\mathcal{EG}(R)$. This implies that $Ann(I_2I_3) \leq_e R$ and $Ann(I_2) = I_1 = Ann(I_3)$. Since $Ann(I_2) = Ann(I_3)$ is not an essential of *R*, there exists a nonzero ideal I_4 of *R* such that $Ann(I_2) \cap I_4 = Ann(I_3) \cap I_4 = 0$. This shows that $rI_2 \neq 0$ and $rI_3 \neq 0$ for every $r \in I_4^*$. On the other hand, since $Ann(I_2I_3) \leq_e R$, then $Ann(I_2I_3) \cap I_4 \neq 0$. That is there exists $s \in I_4^*$ such that $sI_2I_3 = 0$. Now, observe that $sI_2 \subseteq I_4^*$ satisfies $sI_2 \subseteq Ann(I_3)$, which implies that $Ann(I_3) \cap I_4 \neq 0$, a contradiction. This complete the proof.

Theorem 3.6. Let R be a commutative Artinian ring. Then $\mathcal{EG}(R)$ is a complete graph if and only if one of the following holds:

- (1) $R = F_1 \times F_2$, where F_1 and F_2 are fields.
- (2) R is a local ring.

Proof. (\Rightarrow) Suppose that $\mathcal{EG}(R)$ is a complete graph. Since R is Artinian, then $R \cong R_1 \times R_2 \times \cdots \times R_n$, where R_i is Artinian local ring for each $1 \le i \le n$. The following cases occur:

Case I: $n \ge 3$. Then $R_1 \times (0) \times \cdots \times (0)$ and $R_1 \times (0) \times R_3 \times \cdots \times (0)$ are nonzero annihilating ideals of R such that $(R_1 \times (0) \times \cdots \times (0)) \not\sim (R_1 \times (0) \times R_3 \times \cdots \times (0))$ in $\mathcal{EG}(R)$, a contradiction.

Case II: n = 2. We show that R_1 and R_2 are fields. Suppose on contrary that R_1 is not a field with non-trivial maximal ideal \mathfrak{m} . Then $Ann(((0) \times R_2) \cdot (\mathfrak{m} \times R_2)) = Ann((0) \times R_2) = R_1 \times (0)$, which is not an essential ideal of R. Thus $((0) \times R_2) \not\sim (\mathfrak{m} \times R_2)$ in $\mathcal{EG}(R)$, a contradiction. Hence (2) holds.

Case III: n = 1. Then R is Artinian local ring and (1) holds.

(\Leftarrow) If R is local, then from Lemma 3.2, $\mathcal{EG}(R)$ is a complete graph. If $R = F_1 \times F_2$, where F_1 and F_2 are fields, then $\mathcal{EG}(R) \cong K_2$.

Theorem 3.7. Let R be a commutative ring with at least one minimal ideal. Then $\mathcal{EG}(R) \cong K_{m,n}$, where $m, n \ge 2$ if and only if $R = D \times S$, where D and S are integral domains which are not fields.

Proof. (\Rightarrow) Suppose that $\mathcal{EG}(R) \cong K_{m,n}$, where $m, n \geq 2$. Let I_1 be minimal ideal of R. If $I_1^2 = 0$, then from Lemma 2.2, I_1 is adjacent to every other vertex, a contradiction. Thus $I_1^2 \neq 0$. Since I_1 is minimal, therefore $I_1^2 = I_1$. Therefore, Brauer's Lemma [15, p. 172, Lemma 10.22], $R = R_1 \times R_2$, where R_1 and R_2 are commutative rings. Now, our objective is to show that R_1 and R_2 are integral domains. Suppose on contrary that

 R_1 is not an integral domain with nonzero annihilating ideal I_2 . As above, $I_2^2 \neq 0$ which implies that $I_2 \notin Ann(I_2)$. Thus $(I_2 \times (0)) \sim ((0) \times R_2) \sim (Ann(I_2) \times (0)) \sim (I_2 \times (0))$ is a triangle in $\mathcal{EG}(R)$, a contradiction. Hence R_1 is an integral domain. Similarly, one can prove that R_2 is an integral domain. Since $m, n \geq 2$, therefore R_1 and R_2 are not fields. (\Leftarrow) Suppose that $R = D \times S$, where D and S are integral domains which are not fields. Let $U = \{I_1 \times (0) : I_1 \in \mathbb{I}^*(D)\}$ and $V = \{(0) \times I_2 : I_2 \in \mathbb{I}^*(S)\}$. Then $A^*(R) = U \cup V$ such that no two vertices of U or V are adjacent in $\mathcal{EG}(R)$. Also, every vertex of U is adjacent to every vertex of V in $\mathcal{EG}(R)$. Thus, $\mathcal{EG}(R) \cong K_{m,n}$. Since D and S are not fields, therefore $m, n \geq 2$.

Lemma 3.8. Let R be a commutative ring. Then

- (1) Let $I_1, I_2, I_3 \in A^*(R)$ such that $Ann(I_1) = Ann(I_2)$. Then $I_1 \sim I_3$ is an edge of $\mathcal{EG}(R)$ if and only if $I_2 \sim I_3$ is an edge of $\mathcal{EG}(R)$.
- (2) Let $I \in A^*(R)$. Then $Ann(I) \leq_e R$ if and only if $Ann(I^n) \leq_e R$ for every $n \geq 2$. In particular, if $Ann(I^3) \leq_e R$, then $Ann(I^n) \leq_e R$ for every $n \geq 1$.

Proof. (1) (\Rightarrow) Suppose that $I_1 \sim I_3$ is an edge of $\mathcal{EG}(R)$, then $Ann(I_1I_3) \leq_e R$. We have to show that $Ann(I_2I_3) \leq_e R$. Suppose on contrary that $Ann(I_2I_3)$ is not an essential ideal of R, then there exits $I_4 \in \mathbb{I}^*(R)$ such that $Ann(I_2I_3) \cap I_4 = 0$. This implies that $rI_2I_3 \neq 0$ for all $r \in I_4^*$. On the other hand, since $Ann(I_1I_3)$ is an essential ideal of R, then $Ann(I_1I_3) \cap I_4 \neq 0$. That is there exists some $s \in I_4^*$ such that $sI_1I_3 = 0$. Now, observe that $sI_3 \subseteq I_4^*$ satisfies $sI_3 \subseteq Ann(I_1) = Ann(I_2)$, which implies that $sI_2I_3 = 0$, a contradiction.

 (\Leftarrow) Using similar argument as above we get the required result.

(2) (\Rightarrow) is clear.

(\Leftarrow) Suppose on contrary that Ann(I) is not an essential ideal of R, then there exists nonzero ideal I_1 of R such that $Ann(I) \cap I_1 = 0$. This implies that $rI \neq 0$ for all $r \in I_1^*$. On the other hand, since $Ann(I^2) \leq_e R$, then $Ann(I^2) \cap I_1 \neq 0$. That is there exists some $s \in I_1^*$ such that $sI^2 = 0$. Now, observe that $r = sI \subseteq I_1^*$ such that rI = 0, a contradiction.

For the particular case, we need to show that $Ann(I^2) \leq_e R$. Suppose on contrary that there is some $I_1 \in \mathbb{I}^*(R)$ such that $Ann(I^2) \cap I_1 = 0$, which implies that $rI^2 \neq 0$ for all $r \in I_1^*$. On the other hand, since $Ann(I^3) \leq_e R$, then $Ann(I^3) \cap I_1 \neq 0$. That is there exists some $s \in I_1^*$ such that $sI^3 = 0$. Now, observe that $r = sI^2 \subseteq I_1^*$ such that rI = 0, which implies that $Ann(I) \cap I_1 \neq 0$. Since Ann(I) is a subset of $Ann(I^2)$, then $Ann(I^2) \cap I_1 \neq 0$, a contradiction. \Box

Theorem 3.9. Let R be a commutative non-reduced ring. Then $\mathcal{EG}(R)$ is a complete graph if and only if $Ann(I) \leq_e R$ for every $I \in A^*(R)$.

Proof. (\Rightarrow) Suppose that $\mathcal{EG}(R)$ is a complete graph. We claim that R is indecomposable ring. Suppose on contrary that $R = R_1 \times R_2$, where R_1 and R_2 are commutative rings. Since R is non-reduced ring, without loss of generality, we can assume that R_1 is non-reduced ring with nonzero nilpotent element x. Let $I_1 = xR_1$. Then $Ann((I_1 \times R_2) \cdot ((0) \times R_2)) = Ann((0) \times R_2) = R_1 \times (0)$, is not an essential ideal of R, a contradiction to the completeness of $\mathcal{EG}(R)$. Let $I \in A^*(R)$ be arbitrary. If I is nilpotent ideal, then from Lemma 3.1(1), $Ann(I) \leq_e R$. Suppose I is not nilpotent ideal.

Since R is indecomposable, then $I^2 \neq I$, which implies that $Ann(I^3) \leq_e R$. Hence by Lemma 3.8(2), $Ann(I) \leq_e R$. (\Leftarrow) is evident.

4 Essential annihilating-ideal graph as some special type of graphs

In this section, we characterize all the Artinian rings R for which $\mathcal{EG}(R)$ is a tree, a unicycle graph, a split graph, a outerplanar graph, a planar graph and a toroidal graph.

Theorem 4.1. Let R be a commutative Artinian ring (not a field). Then $\mathcal{EG}(R)$ is a tree if and only if either $R \cong F_1 \times F_2$, where F_1 and F_2 are fields or R is a local ring with at most two non-trivial ideals.

Proof. Suppose that $\mathcal{EG}(R)$ is a tree. Since R is an Artinain ring, then $R \cong R_1 \times R_2 \times \cdots \times R_n$, where each R_i is an Artinian local ring. If $n \ge 3$. Consider $I_1 = R_1 \times (0) \times \cdots \times (0)$, $I_2 = (0) \times R_2 \times (0) \times \cdots \times (0)$ and $I_3 = (0) \times (0) \times R_3 \times (0) \times \cdots \times (0)$. Then $I_1 \sim I_2 \sim I_3 \sim I_1$ is a cycle of in $\mathcal{EG}(R)$, a contradiction.

Suppose n = 2, then we show that R_1 and R_2 both are fields. Suppose on contrary that R_1 is not a field with nonzero maximal ideal m. Consider $J_1 = (0) \times R_2$, $J_2 = \mathfrak{m} \times (0)$, $J_3 = \mathfrak{m} \times R_2$ and $J_4 = R_1 \times (0)$. Then $J_1 \sim J_2 \sim J_3 \sim J_4 \sim J_1$ is a cycle in $\mathcal{EG}(R)$, a contradiction.

If n = 1, then R is Artinian local ring. Thus by Lemma 3.2, $\mathcal{EG}(R)$ is a complete graph. Since $\mathcal{EG}(R)$ is a tree, therefore R has at most two non-trivial ideal. Converse is clear.

Theorem 4.2. Let R be a commutative Artinian ring (not a field). Then $\mathcal{EG}(R)$ is unicycle if and only if either $R \cong F_1 \times F_2 \times F_3$, where F_i is a field for each $1 \le i \le 3$ or R is an Artinain local ring with exactly three non-trivial ideals.

Proof. Suppose that $\mathcal{EG}(R)$ is unicycle. Since R is Artinian ring, then $R \cong R_1 \times R_2 \times \cdots \times R_n$, where R_i is Artinian local ring for each $1 \leq i \leq n$. Let $n \geq 4$. Consider $I_1 = R_1 \times (0) \times \cdots \times (0)$, $I_2 = (0) \times R_2 \times (0) \times \cdots \times (0)$, $I_3 = (0) \times (0) \times R_3 \times (0) \times \cdots \times (0)$ and $J_1 = (0) \times (0) \times R_3 \times (0) \times \cdots \times (0)$, $J_2 = R_1 \times R_2 \times (0) \times \cdots \times (0)$, $J_3 = (0) \times (0) \times R_4 \times (0) \times \cdots \times (0)$. Then $I_1 \sim I_2 \sim I_3 \sim I_1$ as well as $J_1 \sim J_2 \sim J_3 \sim J_1$ are two different cycles in $\mathcal{EG}(R)$, a contradiction. Hence $n \leq 3$.

First, let n = 3 and suppose on contrary that R_2 is not a field with nonzero maximal ideal m. Consider $I_1 = R_1 \times (0) \times (0)$, $I_2 = (0) \times R_2 \times (0)$, $I_3 = (0) \times (0) \times R_3$ and $J_1 = R_1 \times (0) \times (0)$, $J_2 = (0) \times \mathfrak{m} \times (0)$, $J_3 = (0) \times (0) \times R_3$. Then $I_1 \sim I_2 \sim I_3 \sim I_1$ and $J_1 \sim J_2 \sim J_3 \sim J_1$ are two different cycles in $\mathcal{EG}(R)$, a contradiction. Hence R_i is a field for each $1 \le i \le 3$.

Now, let n = 2. If R_1 and R_2 both are fields then $\mathcal{EG}(R) \cong K_2$, a contradiction. Thus one of R_i say R_2 is not a field with nonzero maximal ideal \mathfrak{m} . Then $(R_1 \times (0)) \sim ((0) \times \mathfrak{m}) \sim$ $((0) \times R_2) \sim (R_1 \times (0))$ as well as $(R_1 \times \mathfrak{m} \sim ((0) \times \mathfrak{m}) \sim ((0) \times R_2) \sim (R_1 \times \mathfrak{m})$ are two different cycles in $\mathcal{EG}(R)$, again a contradiction.

If n = 1, then R is an Artinian local ring. Thus, by Lemma 3.2, $\mathcal{EG}(R)$ is a complete graph. Since $\mathcal{EG}(R)$ is unicycle, R have exactly three non-trivial ideals.

Theorem 4.3 ([21]). Let G be a connected graph. Then G is a split graph if and only if G contains no induced subgraph isomorphic to $2K_2$, C_4 , C_5 .

Theorem 4.4. Let R be a commutative Artinian non-local ring. Then $\mathcal{EG}(R)$ is split graph if and only if either $R \cong F_1 \times F_2 \times F_3$ or $R \cong F_1 \times F_2$, where F_i is a field for each $1 \le i \le 3$.

Proof. Suppose that $\mathcal{EG}(R)$ is a split graph. Since R is Artinian non-local ring, then $R \cong R_1 \times R_2 \times \cdots \times R_n$, where each R_i is an Artinian local ring and $n \ge 2$. If $n \ge 4$, then $I_1 = R_1 \times R_2 \times (0) \times \cdots \times (0) \sim J_1 = (0) \times (0) \times R_3 \times R_4 \times (0) \times \cdots \times (0)$ and $I_2 = R_1 \times (0) \times R_3 \times (0) \times \cdots \times (0) \sim J_2 = (0) \times R_2 \times (0) \times R_4 \times (0) \times \cdots \times (0)$ induces $2K_2$ in $\mathcal{EG}(R)$, a contradiction. Hence n = 2 or 3. We have following cases:

Case I: If n = 3, then we show that each R_i ia a field. Suppose on contrary that R_1 is not a field with nonzero maximal ideal m. Then $(R_1 \times (0) \times (0)) \sim ((0) \times R_2 \times R_3) \sim (\mathfrak{m} \times (0) \times (0)) \sim ((0) \times R_2 \times (0)) \sim (R_1 \times (0) \times (0))$ is C_4 in $\mathcal{EG}(R)$, a contradiction. Hence R_i is a field for each $1 \le i \le 3$.

Case II: Let n = 2 and suppose that R_2 is not a field with nonzero maximal ideal \mathfrak{m}' . Then $(R_1 \times (0)) \sim ((0) \times R_2) \sim (R_1 \times \mathfrak{m}') \sim ((0) \times \mathfrak{m}') \sim (R_1 \times (0))$ is C_4 in $\mathcal{EG}(R)$, a contradiction. Hence R_1 and R_2 both are fields.

Theorem 4.5 ([22]). A graph G is outerplanar if and only if it does not contain a subdivision of K_4 or $K_{2,3}$.

Theorem 4.6. Let R be a commutative Artinian ring. Then $\mathcal{EG}(R)$ is outerplanar if and only if one of the following holds:

- (1) $R = F_1 \times F_2 \times F_3$, where F_i is a field for each $1 \le i \le 3$.
- (2) $R = F_1 \times F_2$, where F_1 and F_2 are fields.
- (3) $R = F \times R_1$, where F is a field and (R_1, \mathfrak{m}) is a local ring with \mathfrak{m} is the only non-trivial ideal of R_1 .
- (4) R is a local ring with at most three non-trivial ideals.

Proof. Suppose that $\mathcal{EG}(R)$ is outerplanar. Since R is Artinian ring, then $R \cong R_1 \times R_2 \times \cdots \times R_n$, where each R_i is Artinian local ring. If $n \ge 4$, then the set $\{I_1 = R_1 \times (0) \times \cdots \times (0), I_2 = (0) \times R_2 \times (0) \times \cdots \times (0), I_3 = (0) \times (0) \times R_3 \times (0) \times \cdots \times (0), I_4 = (0) \times (0) \times (0) \times R_4 \times (0) \times \cdots \times (0)\}$ induces K_4 in $\mathcal{EG}(R)$, a contradiction. Hence $n \le 3$. The following cases occur:

Case I: n = 3. We claim that R_i is a field for each $1 \le i \le 3$. Suppose on contrary that R_2 field with nonzero maximal ideal m. Then the set is not а $\{R_1 \times (0) \times (0), R_1 \times \mathfrak{m} \times (0), (0) \times \mathfrak{m} \times (0), (0) \times (0) \times R_3, (0) \times R_2 \times R_3\}$ induces a copy of $K_{2,3}$ with partition sets $A = \{(0) \times (0) \times R_3, (0) \times R_2 \times R_3\}$ and $B = \{R_1 \times (0) \times (0), R_1 \times \mathfrak{m} \times (0), (0) \times \mathfrak{m} \times (0)\}, a \text{ contradiction. Therefore } R_i \text{ is a}$ field for each $1 \le i \le 3$.

Case II: n = 2 and let R_i is not a field with nonzero maximal ideal \mathfrak{m}_i for each i = 1, 2. Then the set $\{R_1 \times (0), (0) \times R_2, \mathfrak{m}_1 \times (0), (0) \times \mathfrak{m}_2\}$ induces a copy of K_4 in $\mathcal{EG}(R)$, a contradiction. Hence one of R_i (say R_1) must be a field. Let I be a non-trivial ideal of R_2 other than maximal ideal \mathfrak{m}_2 . Then the set $\{R_1 \times (0), R_1 \times \mathfrak{m}_2, (0) \times R_2, (0) \times \mathfrak{m}_2, (0) \times I\}$ induces a copy of $K_{2,3}$ with partition sets $A = \{R_1 \times (0), R_1 \times \mathfrak{m}_2\}$ and $B = \{(0) \times R_2, (0) \times \mathfrak{m}_2, (0) \times I\}$ in $\mathcal{EG}(R)$, a contradiction. Hence R_2 is a field or

has unique non-trivial ideal.

Case III: n = 1, then R is an Artinian local ring. Thus by Lemma 3.2, $\mathcal{EG}(R)$ is a complete graph. Since $\mathcal{EG}(R)$ is outerplanar, R have at most three non-trivial ideals.

Converse follows from Lemma 3.2, Theorem 4.5, Figures 2 and 3.

Figure 2: The graph $\mathcal{EG}(F_1 \times F_2 \times F_3)$.

Figure 3: The graph $\mathcal{EG}(F \times R_1)$, where m is the only non-trivial ideal of R_1 .

Lemma 4.7 ([20, Proposition 2.7]). If (R, \mathfrak{m}) is an Artinian local ring and there is an ideal I of R such that $I \neq \mathfrak{m}^i$ for every i, then R has at least three distinct non-trivial ideals J, K and L such that $J, K, L \neq \mathfrak{m}^i$ for each i.

Theorem 4.8 (Kuratowski's Theorem). A graph G is planar if and only if it contains no subdivision of K_5 or $K_{3,3}$.

Lemma 4.9. Let (R, \mathfrak{m}) be a commutative Artinian local ring. Then $\mathcal{EG}(R)$ is planar if and only if R have at most four non-trivial ideals.

Proof. It is clear from Lemma 3.2 and Theorem 4.8.

Theorem 4.10. Let R be a commutative Artinian ring. Then $\mathcal{EG}(R)$ is planar graph if and only if one of the following hold:

(1) $R = F_1 \times F_2 \times F_3$, where F_i is a field for each $1 \le i \le 3$.

 \square

(2) *R* has at most four non-trivial ideals.

Proof. Suppose that $\mathcal{EG}(R)$ is a planar graph. If $|A^*(R)| \leq 4$, then (2) holds. Thus, we assume that $|A^*(R)| \geq 5$. Since R is Artinian ring, then $R \cong R_1 \times R_2 \times \cdots \times R_n$, where each R_i is Artinian local ring. If $n \geq 4$, then the set $\{R_1 \times (0) \times \cdots \times (0), R_1 \times R_2 \times (0) \times \cdots \times (0), (0) \times R_2 \times (0) \times \cdots \times (0)\} \cup \{(0) \times (0) \times R_3 \times R_4 \times (0) \times \cdots \times (0), (0) \times (0) \times (0) \times (0) \times R_4 \times (0) \times \cdots \times (0)\}$ induces a copy of $K_{3,3}$ in $\mathcal{EG}(R)$, a contradiction. Hence $n \leq 3$. The following cases occur:

Case I: n = 3. We claim that R_i is a field for each $1 \le i \le 3$. Suppose on contrary that one of R_i say R_2 is not a field with nonzero maximal ideal \mathfrak{m} . Then the set $\{R_1 \times (0) \times (0), R_1 \times \mathfrak{m} \times (0), (0) \times \mathfrak{m} \times (0), (0) \times \mathfrak{m} \times R_3, (0) \times (0) \times R_3, (0) \times R_2 \times R_3\}$ induces a copy of $K_{3,3}$ with partition sets $A = \{R_1 \times (0) \times (0), R_1 \times \mathfrak{m} \times (0), (0) \times \mathfrak{m} \times (0)\}$ and $B = \{(0) \times (0) \times R_3, (0) \times \mathfrak{m} \times R_3, (0) \times R_2 \times R_3\}$ in $\mathcal{EG}(R)$, a contradiction. Hence, (1) satisfied.

Case II: n = 2. Since $|A^*(R)| \ge 5$, then one of R_i is not a field for some i = 1, 2. Suppose that R_1 is not a field with nonzero maximal ideal \mathfrak{m}_1 . If R_2 is a field, then $|A^*(R)| \ge 5$ shows that R_1 have at least two non-trivial ideals. Let I be a non-trivial ideal of R_1 other than the maximal ideal. Then the set $\{R_1 \times (0), \mathfrak{m}_1 \times (0), I \times (0)\} \cup \{(0) \times R_2, \mathfrak{m}_1 \times R_2, I \times R_2\}$ induces a copy of $K_{3,3}$ in $\mathcal{EG}(R)$, a contradiction.

Now, if R_2 is not a field with nonzero maximal ideal \mathfrak{m}_2 , then the set $\{R_1 \times (0), (0) \times \mathfrak{m}_2, R_1 \times \mathfrak{m}_2\} \cup \{(0) \times R_2, \mathfrak{m}_1 \times (0), \mathfrak{m}_1 \times R_2\}$ induces a copy of $K_{3,3}$ in $\mathcal{EG}(R)$, again a contradiction.

Case III: n = 1. Then R is an Artinian local ring. Thus, by Lemma 3.2, $\mathcal{EG}(R)$ is a complete graph. Since $|A^*(R)| \ge 5$, then $\mathcal{EG}(R)$ contains a copy of K_5 , which is a contradiction.

Conversely, If R is an Artinian ring with at most four non-trivial ideals, then by Theorem 4.8, $\mathcal{EG}(R)$ is planar. Also, if $R = F_1 \times F_2 \times F_3$, where F_i is a field for each $1 \le i \le 3$, then from Figure 2, $\mathcal{EG}(R)$ is planar.

Lemma 4.11 ([22]). $\gamma(K_n) = \lceil \frac{1}{12}(n-3)(n-4) \rceil$, where $\lceil x \rceil$ is the least integer that is greater than or equal to x. In particular, $\gamma(K_n) = 1$ if n = 5, 6, 7.

Lemma 4.12 ([22]). $\gamma(K_{m,n}) = \lceil \frac{1}{4}(m-2)(n-2) \rceil$, where $\lceil x \rceil$ is the least integer that is greater than or equal to x. In particular, $\gamma(K_{4,4}) = \gamma(K_{3,n}) = 1$ if n = 3, 4, 5, 6.

Theorem 4.13. Let (R, \mathfrak{m}) be a commutative Artinian local ring. Then $\gamma(\mathcal{EG}(R)) = 1$ if and only if R have at least five and at most seven non-trivial ideals.

Proof. Since (R, \mathfrak{m}) is an Artinian local ring, then from Lemma 3.2, $\mathcal{EG}(R)$ is a complete graph. Thus, by Lemma 4.11, $5 \le r \le 7$, where r is the number of non-trivial ideals of R.

Theorem 4.14. Let R be a commutative Artinian ring such that $R = F_1 \times F_2 \times \cdots \times F_n$, where $n \ge 4$ and F_i is a field for each $1 \le i \le n$. Then $\gamma(\mathcal{EG}(R)) = 1$ if and only if n = 4.

Proof. Since R is a reduced ring, $\mathcal{EG}(R) = AG(R)$ by Theorem 2.5. Hence the result follows from [19, Theorem 2].

Theorem 4.15. Let R be a commutative Artinian ring such that $R = R_1 \times R_2 \times \cdots \times R_n$, where $n \ge 2$ and each (R_i, \mathfrak{m}_i) is an Artinian local ring with $m_i \ne 0$. Let η_i be the nilpotency of \mathfrak{m}_i . Then $\gamma(\mathcal{EG}(R)) = 1$ if and only if n = 2 and \mathfrak{m}_1 and \mathfrak{m}_2 are the only non-trivial ideals of R_1 and R_2 respectively.

Proof. Suppose that $\gamma(\mathcal{EG}(R)) = 1$. If $n \geq 3$, then the set $\{\mathfrak{m}_1^{\eta_1-1} \times (0) \times \cdots \times (0), (0) \times \mathfrak{m}_2^{\eta_2-1} \times (0) \times \cdots \times (0), \mathfrak{m}_1^{\eta_1-1} \times \mathfrak{m}_2^{\eta_2-1} \times (0) \times \cdots \times (0)\} \cup \{(0) \times (0) \times R_3 \times (0) \times \cdots \times (0), (0) \times (0) \times \mathfrak{m}_3 \times (0) \times \cdots \times (0), \mathfrak{m}_1 \times \mathfrak{m}_2 \times \mathfrak{m}_3 \times (0) \times \cdots \times (0), \mathfrak{m}_1 \times (0) \times \mathfrak{m}_3 \times (0) \times \cdots \times (0), \mathfrak{m}_1 \times (0) \times \mathfrak{m}_3 \times (0) \times \cdots \times (0), \mathfrak{m}_1 \times (0) \times \mathfrak{m}_3 \times (0) \times \cdots \times (0), \mathfrak{m}_1 \times (0) \times \mathfrak{m}_3 \times (0) \times \cdots \times (0), \mathfrak{m}_1 \times (0) \times \mathfrak{m}_3 \times (0) \times \cdots \times (0), \mathfrak{m}_1 \times \mathfrak{m}_2 \times \mathfrak{m}_3 \times (0) \times \cdots \times (0), \mathfrak{m}_1 \times \mathfrak{m}_2 \times \mathfrak{m}_3 \times (0) \times \cdots \times (0), \mathfrak{m}_1 \times \mathfrak{m}_2 \times \mathfrak{m}_3 \times \mathfrak{m}_3$

Suppose I is non-trivial ideal of R_1 such that $I \neq \mathfrak{m}_1$. Then the set $\{R_1 \times (0), \mathfrak{m}_1 \times (0), R_1 \times \mathfrak{m}_2, I \times (0), I \times \mathfrak{m}_2\} \cup \{(0) \times R_2, (0) \times \mathfrak{m}_2, \mathfrak{m}_1 \times R_2, \mathfrak{m}_1 \times \mathfrak{m}_2\}$ induces a copy of $K_{4,5}$ in $\mathcal{EG}(R)$. By Lemma 4.12, $\gamma(\mathcal{EG}(R)) > 1$, a contradiction. Hence R_1 has unique non-trivial ideal \mathfrak{m}_1 . Similarly, we can show that R_2 has unique non-trivial ideal \mathfrak{m}_2 .

Conversely, let $R = R_1 \times R_2$, where \mathfrak{m}_1 and \mathfrak{m}_2 are the only non-trivial ideals of R_1 and R_2 respectively, then $|A^*(R)| = 7$. It is easy to see that the set $\{R_1 \times (0), \mathfrak{m}_1 \times (0), R_1 \times \mathfrak{m}_2\} \cup \{(0) \times R_2, (0) \times \mathfrak{m}_2, \mathfrak{m}_1 \times R_2\}$ induces a copy of $K_{3,3}$, which implies that $K_{3,3} \leq \mathcal{EG}(R) \leq K_7$. Hence, by Lemma 4.11 and 4.12, $\gamma(\mathcal{EG}(R)) = 1$. \Box

Theorem 4.16 ([19, Theorem 4]). Let $R = R_1 \times R_2 \times F$ be a commutative ring, where each (R_i, \mathfrak{m}_i) is a local ring with $\mathfrak{m}_i \neq 0$ and F is a field. Let η_i be the nilpotency of \mathfrak{m}_i . Then $\gamma(AG(R)) > 1$.

Theorem 4.17 ([19, Theorem 5]). Let $R = R_1 \times F_1 \times F_2 \times \cdots \times F_m$ be a commutative ring, where each (R_1, \mathfrak{m}_1) is a local ring with $\mathfrak{m}_1 \neq 0$ and each F_j is a field. Let η_1 be the nilpotency of \mathfrak{m}_1 and $m \geq 3$. Then $\gamma(AG(R)) > 1$.

Theorem 4.18. Let R be a commutative Artinian ring such that $R = R_1 \times R_2 \times \cdots \times R_n \times F_1 \times F_2 \times \cdots \times F_m$, where each (R_i, \mathfrak{m}_i) is an Artinian local ring with $\mathfrak{m}_i \neq 0$ and each F_i is a field. Let η_i be the nilpotency of \mathfrak{m}_i and $n \geq 2$ or $m \geq 3$. Then $\gamma(\mathcal{EG}(R)) > 1$.

Proof. Follows from Theorems 4.16 and 4.17.

Theorem 4.19. Let R be a commutative Artinian ring such that $R = R_1 \times F_1 \times F_2$, where (R_1, \mathfrak{m}) is an Artinian local ring and F_1 and F_2 are fields. Let η be the nilpotency of \mathfrak{m} . Then $\gamma(\mathcal{EG}(R)) = 1$ if and only if $\eta = 2$ and \mathfrak{m} is the only non-trivial ideal of R_1 .

Proof. Suppose that $\eta = 2$ and \mathfrak{m} is the only non-trivial ideal of R_1 . Then from Figure 5, we get $\gamma(\mathcal{EG}(R)) = 1$, where $a = \mathfrak{m} \times (0) \times (0)$, $b = R_1 \times (0) \times (0)$, $c = \mathfrak{m} \times F_1 \times F_2$, $d = (0) \times F_1 \times F_2$, $e = \mathfrak{m} \times (0) \times F_2$, $f = (0) \times F_1 \times (0)$, $g = R_1 \times F_1 \times (0)$, $h = R_1 \times (0) \times F_2$, $i = (0) \times (0) \times F_2$, $j = \mathfrak{m} \times F_1 \times (0)$.

Conversely, assume that $\gamma(\mathcal{EG}(R)) = 1$. Let J be a non-trivial ideal of R_1 such that $J \neq \mathfrak{m}$. Then the set $\{\mathfrak{m} \times (0) \times (0), \mathfrak{m} \times F_1 \times (0), J \times F_1 \times (0), (0) \times F_1 \times (0)\} \cup \{J \times (0) \times (0), \mathfrak{m} \times (0) \times F_2, J \times (0) \times F_2, (0) \times (0) \times F_2, R_1 \times (0) \times (0)\}$ induces a copy of $K_{4,5}$ in $\mathcal{EG}(R)$, which is a contradiction. Hence \mathfrak{m} is the only non-trivial ideal of R_1 .

Theorem 4.20. Let R be a commutative Artinian ring such that $R = R_1 \times F$, where (R_1, \mathfrak{m}) is an Artinian local ring and F is a field. Let η be the nilpotency of \mathfrak{m} . Then $\gamma(\mathcal{EG}(R)) = 1$ if and only if one of the following holds:

Figure 4: Toroidal embedding of $\mathcal{EG}(R_1 \times R_2)$, where \mathfrak{m}_i is the only non-trivial ideal of R_i for i = 1, 2.

Figure 5: Toroidal embedding of $\mathcal{EG}(R_1 \times F_1 \times F_2)$, where \mathfrak{m} is the only non-trivial ideal of R_1 .

- (1) $\eta = 3$ and \mathfrak{m} and \mathfrak{m}^2 are the only non-trivial ideals of R_1 .
- (2) $\eta = 4$ and \mathfrak{m} , \mathfrak{m}^2 and \mathfrak{m}^3 are the only non-trivial ideals of R_1 .

Proof. Suppose that $\gamma(\mathcal{EG}(R)) = 1$. If $\eta \geq 5$, then the set $\{\mathfrak{m}^{\eta-1} \times (0), \mathfrak{m}^{\eta-2} \times (0), \mathfrak{m}^{\eta-3} \times (0)\} \cup \{R_1 \times (0), \mathfrak{m} \times (0), (0) \times F, \mathfrak{m}^{\eta-1} \times F, \mathfrak{m}^{\eta-2} \times F, \mathfrak{m}^{\eta-3} \times F, \mathfrak{m} \times F\}$

Figure 6: Toroidal embedding of $\mathcal{EG}(R_1 \times F)$, where \mathfrak{m} and \mathfrak{m}^2 are only non-trivial ideals of R_1 .

induces a copy of $K_{3,7}$. Thus, by Lemma 4.12, $\gamma(\mathcal{EG}(R)) > 1$, a contradiction. Hence $\eta \leq 4$. We have following cases:

Case I: $\eta = 2$. Let J be a non-trivial ideal of R_1 such that $J \neq \mathfrak{m}$. Then by Lemma 4.7, R_1 has at least three non-trivial ideals I_1 , I_2 and I_3 such that $I_1, I_2, I_3 \neq \mathfrak{m}$. We can see that the set $\{R_1 \times (0), J \times (0), I_1 \times (0), I_2 \times (0)\} \cup \{(0) \times F, J \times F, I_1 \times F, I_2 \times F, \mathfrak{m} \times F\}$ induces a copy of $K_{3,7}$ in $\mathcal{EG}(R)$, a contradiction. Hence \mathfrak{m} is the only non-trivial ideal of R_1 . It follows from Theorem 4.10 that $\mathcal{EG}(R)$ is a planar graph, a contradiction.

Case II: $\eta = 3$. Let I be a non-trivial ideal of R_1 such that $I \neq \mathfrak{m}, \mathfrak{m}^2$. Then by Lemma 4.7, R_1 has at least three non-trivial ideals I_1, I_2 and I_3 such that $I_1, I_2, I_3 \neq \mathfrak{m}, \mathfrak{m}^2$. It is easy to see that the set $\{R_1 \times (0), \mathfrak{m} \times (0), \mathfrak{m}^2 \times (0)\} \cup \{I \times (0), I_1 \times (0), I_2 \times (0), 0 \times F, \mathfrak{m} \times F, \mathfrak{m}^2 \times F, I \times F\}$ induces a copy of $K_{3,7}$ in $\mathcal{EG}(R)$, a contradiction. Hence \mathfrak{m} and \mathfrak{m}^2 are the only non-trivial ideals of R_1 .

Case III: $\eta = 4$. Let I be a non-trivial ideal of R_1 such that $I \neq \mathfrak{m}^i$ for each i = 1, 2, 3. Then by Lemma 4.7, R_1 has at least three non-trivial ideals I_1 , I_2 and I_3 such that $I_1, I_2, I_3 \neq \mathfrak{m}^i$ for each i = 1, 2, 3. It is easy to see that the set $\{\mathfrak{m} \times (0), \mathfrak{m}^2 \times (0), \mathfrak{m}^3 \times (0)\} \cup \{R_1 \times (0), I \times (0), I_1 \times (0), I_2 \times (0), \mathfrak{m} \times F, \mathfrak{m}^2 \times (0), \mathfrak{m}^3 \times (0)\}$ induces a copy of $K_{3,7}$ in $\mathcal{EG}(R)$, a contradiction. Hence $\mathfrak{m}, \mathfrak{m}^2$ and \mathfrak{m}^3 are the only non-trivial ideals of R_1 .

Conversely, if \mathfrak{m} and \mathfrak{m}^2 are the only non-trivial ideals of R_1 , then $|A^*(R)| = 6$ and the set $\{R_1 \times (0), \mathfrak{m} \times (0), \mathfrak{m}^2 \times (0)\} \cup \{(0) \times F, \mathfrak{m} \times F, \mathfrak{m}^2 \times F\}$ induces a copy of $K_{3,3}$ in $\mathcal{EG}(R)$. Thus, $K_{3,3} \leq \mathcal{EG}(R) \leq K_6$, which implies that $\gamma(\mathcal{EG}(R)) = 1$.

Now, if \mathfrak{m} , \mathfrak{m}^2 and \mathfrak{m}^3 are the only non-trivial ideals of R_1 . Then from Figure 7, $\gamma(\mathcal{EG}(R)) = 1$.

Figure 7: Toroidal embedding of $\mathcal{EG}(R_1 \times F)$, where $\mathfrak{m}, \mathfrak{m}^2$ and \mathfrak{m}^3 are non-trivial ideals of R_1 .

ORCID iDs

Mohd Nazim D https://orcid.org/0000-0001-8817-4336 Nadeem ur Rehman D https://orcid.org/0000-0003-3955-7941

References

- G. Aalipour, S. Akbari, M. Behboodi, R. Nikandish, M. J. Nikmehr and F. Shaveisi, The classification of the annihilating-ideal graphs of commutative rings, *Algebra Colloq.* 21 (2014), 249–256, doi:10.1142/s1005386714000200.
- [2] G. Aalipour, S. Akbari, R. Nikandish, M. Nikmehr and F. Shaveisi, On the coloring of the annihilating-ideal graph of a commutative ring, *Discrete Math.* **312** (2012), 2620–2626, doi: 10.1016/j.disc.2011.10.020.
- [3] G. Aalipour, S. Akbari, R. Nikandish, M. J. Nikmehr and F. Shaveisi, Minimal prime ideals and cycles in annihilating-ideal graphs, *Rocky Mountain J. Math.* 43 (2013), 1415–1425, doi: 10.1216/rmj-2013-43-5-1415.
- [4] M. Ahrari, S. A. S. Sabet and B. Amini, On the girth of the annihilating-ideal graph of a commutative ring, J. Linear Topol. Algebra 4 (2015), 209–216.
- [5] S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, *J. Algebra* 274 (2004), 847–855, doi:10.1016/s0021-8693(03)00435-6.
- [6] F. Aliniaeifard, M. Behboodi, E. Mehdi-Nezhad and A. M. Rahimi, On the diameter and girth of an annihilating-ideal graph, 2014, arXiv:1411.4163v1 [math.CO].
- [7] D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, *J. Algebra* 159 (1993), 500–514, doi:10.1006/jabr.1993.1171.
- [8] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434–447, doi:10.1006/jabr.1998.7840.

- [9] M. F. Atiyah and I. G. Macdonald, *Introduction to Commutative Algebra*, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
- [10] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208–226, doi:10.1016/ 0021-8693(88)90202-5.
- [11] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 (2011), 727–739, doi:10.1142/s0219498811004896.
- [12] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings II, J. Algebra Appl. 10 (2011), 741–753, doi:10.1142/s0219498811004902.
- [13] F. R. DeMeyer, T. McKenzie and K. Schneider, The zero-divisor graph of a commutative semigroup, *Semigroup Forum* 65 (2002), 206–214, doi:10.1007/s002330010128.
- [14] D. Dolžan and P. Oblak, The zero-divisor graphs of rings and semirings, *Internat. J. Algebra Comput.* 22 (2012), 1250033, 20, doi:10.1142/s0218196712500336.
- [15] T. Y. Lam, A First Course in Non-Commutative Rings, Springer-Verlag, New York, 1991, doi: 10.1007/978-1-4684-0406-7.
- [16] M. J. Nikmehr and S. M. Hosseini, More on the annihilator-ideal graph of a commutative ring, J. Algebra Appl. 18 (2019), 1950160, 14, doi:10.1142/s0219498819501603.
- [17] M. J. Nikmehr, R. Nikandish and M. Bakhtyiari, On the essential graph of a commutative ring, J. Algebra Appl. 16 (2017), 1750132, 14, doi:10.1142/s0219498817501328.
- [18] S. P. Redmond, The zero-divisor graph of a non-commutative ring, in: *Internat. J. Commutative Rings*, Nova Sci. Publ., Hauppauge, NY, volume 1, 2002.
- [19] K. Selvakumar and P. Subbulakshmi, Classification of rings with toroidal annihilating-ideal graph, *Commun. Comb. Optim.* 3 (2018), 93–119, doi:10.22049/cco.2018.26060.1072.
- [20] K. Selvakumar, P. Subbulakshmi and J. Amjadi, On the genus of the graph associated to a commutative ring, *Discrete Math. Algorithms Appl.* 9 (2017), 1750058, 11, doi:10.1142/ s1793830917500586.
- [21] D. B. West, Introduction to Graph Theory, Prentice-Hall of India, New Delhi, 2002.
- [22] A. T. White, *Graphs, Groups and Surfaces*, North-Holland Mathematics Studies, No. 8, North-Holland Publishing Co., Amsterdam, 1973.