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Abstract

Carlitz defined the degenerate Bernoulli polynomials βn(λ, x) by means of the generat-
ing function t

(
(1+λt)1/λ−1

)−1
(1+λt)x/λ. In 1875, Glaisher gave several interesting de-

terminant expressions of numbers, including Bernoulli, Cauchy and Euler numbers. In this
paper, we show some expressions and properties of hypergeometric degenerate Bernoulli
polynomials βN,n(λ, x) and numbers, in particular, in terms of determinants.

The coefficients of the polynomial βn(λ, 0) were completely determined by Howard
in 1996. We determine the coefficients of the polynomial βN,n(λ, 0). Hypergeometric
Bernoulli numbers and hypergeometric Cauchy numbers appear in the coefficients.

Keywords: Bernoulli numbers, hypergeometric Bernoulli numbers, hypergeometric Cauchy numbers,
hypergeometric functions, degenerate Bernoulli numbers, determinants, recurrence relations.
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1 Introduction
Carlitz [7, 8] defined the degenerate Bernoulli polynomials βn(λ, x) by means of the gen-
erating function (

t

(1 + λt)1/λ − 1

)
(1 + λt)x/λ =

∞∑
n=0

βn(λ, x)
tn

n!
. (1.1)

When λ→ 0 in (1.1), Bn(x) = βn(0, x) are the ordinary Bernoulli polynomials because

lim
λ→0

(
t

(1 + λt)1/λ − 1

)
(1 + λt)x/λ =

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
.

∗The author thanks the anonymous referee for careful reading of the manuscript and helpful comments and
suggestions.

E-mail address: komatsu@zstu.edu.cn (Takao Komatsu)

cb This work is licensed under https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-6204-5368


164 Ars Math. Contemp. 18 (2020) 163–177

When λ → 0 and x = 0 in (1.1), Bn = βn(0, 0) are the classical Bernoulli numbers
defined by

t

et − 1
=

∞∑
n=0

Bn
tn

n!
. (1.2)

The degenerate Bernoulli polynomials in λ and x have rational coefficients. When x = 0,
βn(λ) = βn(λ, 0) are called degenerate Bernoulli numbers. In [16], explicit formulas for
the coefficients of the polynomial βn(λ) are found. In [26], a general symmetric identity in-
volving the degenerate Bernoulli polynomials and the sums of generalized falling factorials
are proved.

In another direction, hypergeometric Bernoulli polynomials BN,n(x) (see, e.g., [17])
are defined by the generating function

etx

1F1(1;N + 1; t)
=

∞∑
n=0

BN,n(x)
tn

n!
, (1.3)

where 1F1(a; b; z) is the confluent hypergeometric function defined by

1F1(a; b; z) =

∞∑
n=0

(a)(n)

(b)(n)
zn

n!

with the rising factorial (x)(n) = x(x+ 1) · · · (x+ n− 1) (n ≥ 1) and (x)(0) = 1. When
x = 0 in (1.3), BN,n = BN,n(0) are the hypergeometric Bernoulli numbers ([12, 13, 14,
15, 19]). When N = 1 in (1.3), Bn(x) = B1,n(x) are the ordinary Bernoulli polynomials.
When x = 0 and N = 1 in (1.3), Bn = B1,n(0) are the classical Bernoulli numbers.

Many kinds of generalizations of the Bernoulli numbers have been considered by many
authors. For example, such generalizations include poly-Bernoulli numbers, Apostol Ber-
noulli numbers, various types of q-Bernoulli numbers, Bernoulli Carlitz numbers. One of
the advantages of hypergeometric numbers is the natural extension of determinant expres-
sions of the numbers.

A determinant expression of hypergeometric Bernoulli numbers ([2, 18]) is given by

BN,n = (−1)nn!

∣∣∣∣∣∣∣∣∣∣∣∣

N !
(N+1)! 1 0
N !

(N+2)!
N !

(N+1)!

...
...

. . . 1 0
N !

(N+n−1)!
N !

(N+n−2)! · · · N !
(N+1)! 1

N !
(N+n)!

N !
(N+n−1)! · · · N !

(N+2)!
N !

(N+1)!

∣∣∣∣∣∣∣∣∣∣∣∣
. (1.4)

The determinant expression for the classical Bernoulli numbersBn = B1,n was discovered
by Glaisher ([11, p. 53]).

In this paper, we introduce and study the hypergeometric degenerate Bernoulli num-
bers as total generalizations of degenerate Bernoulli numbers and hypergeometric Bernoulli
numbers in the aspects of determinants. By applying Trudi’s formula and the inversion for-
mula, we show several arithmetical and combinatorial identities. The coefficients of the
polynomial βn(λ) were completely determined by Howard in 1996. We determine the co-
efficients of the polynomial βN,n(λ). The constant term and the leading coefficient are
exactly equal to Hypergeometric Bernoulli numbers and hypergeometric Cauchy numbers,
respectively.
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2 Definition and preliminary results
Denote the generalized falling factorial by for n ≥ 1

(x|α)n = x(x− α)(x− 2α) · · ·
(
x− (n− 1)α

)
with (x|α)0 = 1. When α = 1, (x)n = (x|1)n is the ordinary falling factorial. Define
hypergeometric degenerate Bernoulli polynomials βN,n(λ, x) by(

2F1

(
1, N − 1

λ
;N + 1;−λt

))−1
(1 + λt)x/λ =

∞∑
n=0

βN,n(λ, x)
tn

n!
, (2.1)

where 2F1(a, b; c; z) is the Gauss hypergeometric function defined by

2F1(a; b; z) =

∞∑
n=0

(a)(n)(b)(n)

(c)(n)
zn

n!
.

When x = 0 in (2.1), βN,n(λ) = βN,n(λ, 0) are the hypergeometric degenerate Bernoulli
numbers. When λ → 0, BN,n(x) = limλ→0 βN,n(λ, x) are the hypergeometric Bernoulli
polynomials in (1.3). Since

t

(1 + λt)1/λ − 1
= t

( ∞∑
n=1

(1− λ|λ)n−1
n!

tn

)−1
in (1.1), we can write

2F1

(
1, N − 1

λ
;N + 1;−λt

)

=

(
(1− λ|λ)N−1

N !
tN
)( ∞∑

n=N

(1− λ|λ)n−1
n!

tn

)−1

= 1 +

∞∑
n=1

(1− λ|λ)N+n−1N !

(1− λ|λ)N−1(N + n)!
tn

= 1 +

∞∑
n=1

(1−Nλ|λ)n
(N + n)n

tn .

(2.2)

When N = 1, βn(λ, x) = βN,1(λ, x) are degenerate Bernoulli polynomials, defined by(
1 +

∞∑
n=1

(1− λ|λ)n
(n+ 1)!

tn

)−1
(1 + λt)x/λ =

∞∑
n=0

βn(λ, x)
tn

n!
.

When N = 1 and λ→ 0, Bn(x) = limλ→0 βN,1(λ, x) are the classical Bernoulli polyno-
mials, defined by (

1 +

∞∑
n=1

tn

(n+ 1)!

)−1
ext =

∞∑
n=0

Bn(x)
tn

n!
.

The definition (2.1) may be obvious or artificial for the readers with different backgrounds.
One of our motivations is mentioned in Section 5.
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We have the following recurrence relation of hypergeometric degenerate Bernoulli
numbers βN,n(λ).

Proposition 2.1. For N,n ≥ 1, we have

βN,n(λ) = −
n−1∑
k=0

n!(1−Nλ|λ)n−kN !

(N + n− k)!k!
βN,k(λ)

with βN,0(λ) = 1.

Proof. By (2.1) with (2.2), we get

1 =

(
1 +

∞∑
l=1

(1−Nλ|λ)lN !

(N + l)!
tl

)( ∞∑
n=0

βN,n(λ)
tn

n!

)

=

∞∑
n=0

βN,n(λ)
tn

n!
+

∞∑
n=1

n−1∑
k=0

(1−Nλ|λ)n−kN !

(N + n− k)!
βN,k(λ)

k!
tn .

Comparing the coefficients on both sides, we obtain for n ≥ 1

βN,n(λ)

n!
+

n−1∑
k=0

(1−Nλ|λ)n−kN !

(N + n− k)!
βN,k(λ)

k!
= 0 .

We can use Proposition 2.1 to give an explicit expression for βN,n(λ).

Theorem 2.2. For N,n ≥ 1,

βN,n(λ) = n!

n∑
k=1

(−N !)k
∑

i1+···+ik=n

i1,...,ik≥1

(1−Nλ|λ)i1
(N + i1)!

· · · (1−Nλ|λ)ik
(N + ik)!

. (2.3)

Remark 2.3. When λ→ 0, Theorem 2.2 is reduced to

BN,n = n!

n∑
k=1

∑
i1+···+ik=n

i1,...,ik≥1

(−N !)k

(N + i1)! · · · (N + ik)!
, (2.4)

as seen in [2, 18]. When λ → 0 and N = 1, there is a combinatorial interpretation of
Bernoulli numbers in terms of the cardinality of Z2-graded groupoids [4, Corollary 45].

Proof of Theorem 2.2. The proof is by induction on n. From Proposition 2.1 with n = 1,

βN,1(λ) = −
(1−Nλ)N !

(N + 1)!
βN,0(λ) = −

N !(1−Nλ)
(N + 1)!

.

This matches the expression (2.1) when n = 1. Assume that the result is valid up to n− 1.
For simplicity, put

Sk(n) =
∑

i1+···+ik=n

i1,...,ik≥1

(1−Nλ|λ)i1
(N + i1)!

· · · (1−Nλ|λ)ik
(N + ik)!

. (2.5)
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Then by Proposition 2.1

βN,n(λ)

n!
= −

n−1∑
l=0

(1−Nλ|λ)n−lN !

(N + n− l)!
βN,l(λ)

l!

= − (1−Nλ|λ)nN !

(N + n)!
−
n−1∑
l=1

(1−Nλ|λ)n−lN !

(N + n− l)!

l∑
k=1

(−N !)kSk(l)

= − (1−Nλ|λ)nN !

(N + n)!
−
n−1∑
k=1

(−N !)k
n−1∑
l=k

(1−Nλ|λ)n−lN !

(N + n− l)!
Sk(l)

= − (1−Nλ|λ)nN !

(N + n)!
−

n∑
k=2

(−N !)k−1
n−1∑
l=k−1

(1−Nλ|λ)n−lN !

(N + n− l)!
Sk−1(l)

= − (1−Nλ|λ)nN !

(N + n)!
+

n∑
k=2

(−N !)kSk(n)

=

n∑
k=1

(−N !)kSk(n) .

Here, we put n− l = ik in the second last equation.

There is an alternative form of βN,n(λ) using binomial coefficients. The proof may be
similar to that of Theorem 2.2, but a different proof is given.

Theorem 2.4. For N,n ≥ 1,

βN,n(λ) = n!

n∑
k=1

(−N !)k
(
n+ 1

k + 1

) ∑
i1+···+ik=n

i1,...,ik≥0

(1−Nλ|λ)i1
(N + i1)!

· · · (1−Nλ|λ)ik
(N + ik)!

.

Proof. Put

1 + w = 2F1

(
1, N − 1

λ
;N + 1;−λt

)
.

By the definition (2.1) with x = 0, we have

βN,n(λ) =
dn

dtn
(1 + w)−1

∣∣∣∣
t=0

=
dn

dtn

( ∞∑
l=0

(−w)l
)∣∣∣∣∣

t=0

=

n∑
l=0

dn

dtn
(−w)l

∣∣∣∣
t=0

=

n∑
l=0

l∑
k=0

(−1)k
(
l

k

)
dn

dtn

(
2F1

(
1, N − 1

λ
;N + 1;−λt

))k∣∣∣∣∣
t=0

.

By (2.2), we get

dn

dtn

(
2F1

(
1, N − 1

λ
;N + 1;−λt

))k∣∣∣∣∣
t=0

=
dn

dtn

( ∞∑
l=0

(1−Nλ|λ)l
(N + l)l

tl

)k∣∣∣∣∣∣
t=0

= n!Rk(n) ,
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where

Rk(n) =
∑

i1+···+ik=n

i1,...,ik≥0

(1−Nλ|λ)i1
(N + i1)i1

· · · (1−Nλ|λ)ik
(N + ik)ik

.

Thus, we have

βN,n(λ) =

n∑
l=0

l∑
k=0

(−1)k
(
l

k

)
n!Rk(n)

= n!

n∑
k=0

(−1)kRk(n)
n∑
l=k

(
l

k

)

= n!

n∑
k=0

(−1)kRk(n)
(
n+ 1

k + 1

)

= n!

n∑
k=1

(−1)k
(
n+ 1

k + 1

)
Rk(n)

= n!

n∑
k=1

(−N !)k
(
n+ 1

k + 1

) ∑
i1+···+ik=n

i1,...,ik≥0

(1−Nλ|λ)i1
(N + i1)!

· · · (1−Nλ|λ)ik
(N + ik)!

.

3 Hypergeometric degenerate Bernoulli polynomials
In this section, a relation between hypergeometric degenerate Bernoulli polynomials and
numbers and some more related properties are shown.

Theorem 3.1. For N ≥ 1 and n ≥ 0,

βN,n(λ, x+ y) =

n∑
k=0

(
n

k

)
(y|λ)n−kβN,k(λ, x) .

Proof. By the definition in (2.1),

∞∑
n=0

βN,n(λ, x+ y)
tn

n!

=

(
2F1

(
1, N − 1

λ
;N + 1;−λt

))−1
(1 + λt)(x+y)/λ

=

( ∞∑
n=0

βN,n(λ, x+ y)
tn

n!

)( ∞∑
l=0

(
y/λ

l

)
(λt)l

)

=

( ∞∑
n=0

βN,n(λ, x+ y)
tn

n!

)( ∞∑
l=0

(y|λ)l
tl

l!

)

=

∞∑
n=0

(
n∑
k=0

(
n

k

)
(y|λ)n−kβN,k(λ, x)

)
tn

n!
.

Comparing the coefficients on both sides, we get the desired result.



T. Komatsu: Hypergeometric degenerate Bernoulli polynomials and numbers 169

By specializing y = 0 in Theorem 3.1, we have a relation between the hypergeometric
degenerate Bernoulli polynomials and numbers.

Corollary 3.2. For N ≥ 1 and n ≥ 0,

βN,n(λ, x) =

n∑
k=0

(
n

k

)
(x|λ)n−kβN,k(λ) .

Theorem 3.3. For N ≥ 1 and n ≥ 0,

d

dx
βN,n(λ, x) =

n−1∑
k=0

(−λ)n−k−1n!
(n− k)k!

βN,k(λ, x) .

Proof. By the definition in (2.1),

d

dx

∞∑
n=0

βN,n(λ, x)
tn

n!

=

(
2F1

(
1, N − 1

λ
;N + 1;−λt

))−1
d

dx
(1 + λt)(x)/λ

= log(1 + λt)1/λ
∞∑
n=0

βN,n(λ, x)
tn

n!

=

(
1

λ

∞∑
l=1

(−1)l−1 (λt)
l

l

)( ∞∑
n=0

βN,n(λ, x)
tn

n!

)

=

∞∑
n=1

(
n−1∑
k=0

(−λ)n−k−1

(n− k)k!
βN,k(λ, x)

)
tn .

Comparing the coefficients on both sides, we get the desired result.

4 A determinant expression of hypergeometric degenerate Bernoulli
numbers

Theorem 4.1. For N,n ≥ 1, we have

βN,n(λ)

= (−1)nn!

∣∣∣∣∣∣∣∣∣∣∣∣∣

(1−Nλ)N !
(N+1)! 1 0

(1−Nλ|λ)2N !
(N+2)!

(1−Nλ)N !
(N+1)!

...
...

. . . 1 0
(1−Nλ|λ)n−1N !

(N+n−1)!
(1−Nλ|λ)n−2N !

(N+n−2)! · · · (1−Nλ)N !
(N+1)! 1

(1−Nλ|λ)nN !
(N+n)!

(1−Nλ|λ)n−1N !
(N+n−1)! · · · (1−Nλ|λ)2N !

(N+2)!
(1−Nλ)N !
(N+1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Remark 4.2. When λ→ 0 in Theorem 4.1, we get a determinant expression of hypergeo-
metric Bernoulli numbers BN,n in (1.4). If λ→ 0 and N = 1 in Theorem 4.1, we recover
the classical determinant expression of the Bernoulli numbers Bn ([11, p. 53]).

Proof of Theorem 4.1. For simplicity, we put β̃N,n = (−1)nβN,n(λ)/n! and

f(i, j) =


(1−Nλ|λ)i−j+1N !

(N + i− j + 1)!
if i ≥ j;

1 if i = j − 1;

0 otherwise

and shall prove that
β̃N,n = |f(i, j)|1≤i,j≤n . (4.1)

From Proposition 2.1, we have

β̃N,n =

n−1∑
m=0

(−1)n−m−1(1−Nλ|λ)n−mN !

(N + n−m)!
β̃N,m

=

n−1∑
m=0

(−1)n−m−1f(n−m, 1)β̃N,m .

(4.2)

When n = 1, it is trivial because by Theorem 2.2

β̃N,1 = − (1−Nλ)N !

(N + 1)!
.

Assume that (4.1) is valid up to n−1. By expanding along the first row, the right-hand side
of (4.1) is equal to

f(1, 1)β̃N,n−1 −

∣∣∣∣∣∣∣∣∣∣∣

f(2, 1) 1 0
f(3, 1) 1

...
...

. . . 1 0
f(n− 1, 1) f(n− 1, 3) · · · f(n− 1, n− 1) 1
f(n, 1) f(n, 3) · · · f(n, n− 1) f(n, n)

∣∣∣∣∣∣∣∣∣∣∣
= f(1, 1)β̃N,n−1 − f(2, 1)β̃N,n−2 + · · ·+ (−1)n−2

∣∣∣∣ f(n− 1, 1) 1
f(n, 1) f(n, n)

∣∣∣∣
=

n−1∑
m=0

(−1)n−m−1f(n−m, 1)β̃N,m = β̃N,n .

Here, we used the relation (4.2) with β̃N,0 = 1.

5 Applications of Trudi’s formula and inversion relations
One motivation of this paper comes from a 1989 paper of Cameron [6], in which he con-
sidered the operator A defined on the set of sequences of non-negative integers as follows:
for x = {xn}n≥1 and z = {zn}n≥1, set Ax = z, where

1 +

∞∑
n=1

znt
n =

(
1−

∞∑
n=1

xnt
n

)−1
. (5.1)
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Suppose that x enumerates a class C. Then Ax enumerates the class of disjoint unions
of members of C, where the order of the “component” members of C is significant. The
operator A also plays an important role for free associative (non-commutative) algebras.
More motivations and background together with many concrete examples (in particular, in
the aspects of graph theory) by this operator can be seen in [6].

Though only nonnegative numbers in the sequence are treated with combinatorial inter-
pretations in [6], the transformation in (5.1) can be extended to negative or rational numbers
too. Some combinatorial interpretations for rational numbers can be found in [3, 4], where
a categorical setting is proposed. In the sense of Cameron’s operator A, we have the fol-
lowing relations.

A

{
− 1

(n+ 1)!

}
=

{
Bn
n!

}
A

{
− 1

(N + n)n

}
=

{
BN,n
n!

}
A

{
− (1− λ|λ)n

(n+ 1)!

}
=

{
βn(λ)

n!

}
A

{
− (1−Nλ|λ)n

(N + n)n

}
=

{
βN,n(λ)

n!

}
These relations are interchangeable in the sense of determinants too.

We shall use Trudi’s formula to obtain different explicit expressions and inversion rela-
tions for the numbers βN,n(j).

Lemma 5.1. For n ≥ 1, we have∣∣∣∣∣∣∣∣∣∣∣∣

a1 a0 0 · · ·

a2 a1
. . .

...
...

...
. . .

. . . 0
an−1 · · · a1 a0
an an−1 · · · a2 a1

∣∣∣∣∣∣∣∣∣∣∣∣
=

∑
t1+2t2+···+ntn=n

(
t1 + · · ·+ tn
t1, . . . , tn

)
(−a0)n−t1−···−tnat11 a

t2
2 · · · atnn ,

where
(
t1+···+tn
t1,...,tn

)
= (t1+···+tn)!

t1!···tn! are the multinomial coefficients.

This relation is known as Trudi’s formula [24, Vol. 3, p. 214], [25] and the case a0 = 1
of this formula is known as Brioschi’s formula [5], [24, Vol. 3, pp. 208–209].

In addition, there exists an inversion formula (see, e.g. [22]). From Cameron’s operator
Ax = z in (5.1),

∞∑
n=0

n∑
k=0

(−1)n−kxn−kzk = 1 .

Hence, for n ≥ 1
n∑
k=0

(−1)n−kxn−kzk = 0 .

When x0 = z0 = 1, we have the following inversion formula.
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Lemma 5.2.

If xn =

∣∣∣∣∣∣∣∣∣∣
z1 1

z2
. . .

. . .
...

. . .
. . . 1

zn · · · z2 z1

∣∣∣∣∣∣∣∣∣∣
, then zn =

∣∣∣∣∣∣∣∣∣∣
x1 1

x2
. . .

. . .
...

. . .
. . . 1

xn · · · x2 x1

∣∣∣∣∣∣∣∣∣∣
.

From Trudi’s formula, it is possible to give the combinatorial expression

xn =
∑

t1+2t2+···+ntn=n

(
t1 + · · ·+ tn
t1, . . . , tn

)
(−1)n−t1−···−tnzt11 z

t2
2 · · · ztnn .

By applying these lemmas to Theorem 4.1, we obtain an explicit expression for the hyper-
geometric degenerate Bernoulli numbers.

Theorem 5.3. For N,n ≥ 1,

βN,n(λ) = n!
∑

t1+2t2+···+ntn=n

(
t1 + · · ·+ tn
t1, . . . , tn

)
(−1)t1+···+tn

×
(
(1−Nλ)N !

(N + 1)!

)t1 ( (1−Nλ|λ)2N !

(N + 2)!

)t2
· · ·
(
(1−Nλ|λ)nN !

(N + n)!

)tn
.

Theorem 5.4. For N,n ≥ 1,

(−1)n(1−Nλ|λ)nN !

(N + n)!
=

∣∣∣∣∣∣∣∣∣∣∣∣

βN,1(λ) 1 0
βN,2(λ)

2! βN,1(λ)
...

...
. . . 1 0

βN,n−1(λ)
(n−1)!

βN,n−2(λ)
(n−2)! · · · βN,1(λ) 1

βN,n(λ)
n!

βN,n−1(λ)
(n−1)! · · · βN,2(λ)

2! βN,1(λ)

∣∣∣∣∣∣∣∣∣∣∣∣
.

Applying the Trudi’s formula in Lemma 5.1 to Theorem 5.4, we get the inversion rela-
tion of Theorem 5.3.

Theorem 5.5. For N,n ≥ 1,

(1−Nλ|λ)nN !

(N + n)!
=

∑
t1+2t2+···+ntn=n

(
t1 + · · ·+ tn
t1, . . . , tn

)
(−1)t1+···+tn

× (βN,1(λ))
t1

(
βN,2(λ)

2!

)t2
· · ·
(
βN,n(λ)

n!

)tn
.
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6 Coefficients of hypergeometric degenerate Bernoulli numbers
Hypergeometric Cauchy polynomials cN,n(x) ([20]) have similar properties. The generat-
ing function is given by

1

(1 + t)x2F1(1, N ;N + 1;−t)
=

∞∑
n=0

cN,n(x)
tn

n!
. (6.1)

When x = 0 in (6.1), cN,n = cN,n(0) are the hypergeometric Cauchy numbers ([12, 13,
14, 15, 19]). When N = 1 in (6.1), cn(x) = c1,n(x) are the ordinary Cauchy polynomials
(e.g., [9]). When x = 0 andN = 1 in (6.1), cn = c1,n(0) are the classical Cauchy numbers
(see, e.g., [10, Chapter VII]), defined by

t

log(1 + t)
=

∞∑
n=0

cn
tn

n!
. (6.2)

The number cn/n! is sometimes referred to as the Bernoulli number of the second kind
(see, e.g. [16]). A determinant expression of hypergeometric Cauchy numbers ([1, 23]) is
given by

cN,n = n!

∣∣∣∣∣∣∣∣∣∣∣

N
N+1 1 0
N
N+2

N
N+1

...
...

. . . 1 0
N

N+n−1
N

N+n−2 · · · N
N+1 1

N
N+n

N
N+n−1 · · · N

N+2
N
N+1

∣∣∣∣∣∣∣∣∣∣∣
. (6.3)

The determinant expression for the classical Cauchy numbers cn = c1,n was discovered by
Glaisher ([11, p. 50]). A more general case is considered in [21].

From the expression in Theorem 5.3, the hypergeometric degenerate Bernoulli number
βN,n is a polynomial in λ with rational coefficients and degree at most n. Thus, we can
write

βN,n(λ) = dn,nλ
n + dn,n−1λ

n−1 + · · ·+ dn,1λ+ dn,0 . (6.4)

In this section, we give some coefficients explicitly. By this theorem, we can see that
hypergeometric degenerate Bernoulli numbers are closely related with both hypergeometric
Bernoulli numbers and hypergeometric Cauchy numbers.

Theorem 6.1. For N ≥ 1 and n ≥ 0, we have

dn,n = cN,n and dn,0 = BN,n .

Remark 6.2. When N = 1, Theorem 6.1 is reduced to [16, Theorem 3.1]. This implies
that the leading coefficient of βn(λ) is equal to the n-th Cauchy number cn and the constant
term is equal to the n-th Bernoulli number Bn.

Proof of Theorem 6.1. Since

(1−Nλ|λ)n−k = λn−k
n−k∑
l=0

(−1)n−k−l
[
n− k
l

](
1

λ
−N

)l

=

n−k∑
l=0

[
n− k
l

] l∑
i=0

(−1)n−k−i
(
l

i

)
λn−k−iN l−i ,
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by Proposition 2.1 we obtain for n ≥ 1

βN,n(λ)

n!

= −
n−1∑
k=0

(1−Nλ|λ)n−kN !

(N + n− k)!k!
βN,k(λ)

= −
n−1∑
k=0

N !βN,k(λ)

(N + n− k)!k!

n−k∑
l=0

[
n− k
l

] l∑
i=0

(−1)n−k−i
(
l

i

)
λn−k−iN l−i .

(6.5)

Note that βN,0(λ) = 1.
For constant term of the polynomial in λ, as i = n− k in (6.5)

d0,0
n!

= −
n−1∑
k=0

(1−Nλ|λ)n−kN !

(N + n− k)!k!
dk,0(λ)

= −
n−1∑
k=0

N !dk,0
(N + n− k)!k!

n−k∑
l=0

[
n− k
l

](
l

n− k

)
N l−n+k

= −
n−1∑
k=0

N !dk,0
(N + n− k)!k!

.

Hence,
n∑
k=0

(
N + n

k

)
dk,0 = 0

with d0,0 = 1. Since the hypergeometric Bernoulli numbers BN,n satisfies the same recur-
rence relation, namely,

n∑
k=0

(
N + n

k

)
BN,k = 0

with BN,0 = 1 ([2, Proposition 1], [18, (6)]), we can conclude that

dn,0 = BN,n .

For the leading coefficient, that is, the coefficient of λn of the polynomial in λ, as i = 0
in (6.5)

dn,n
n!

= −
n−1∑
k=0

(−1)n−kN !dk,k
(N + n− k)!k!

n−k∑
l=0

[
n− k
l

]
N l

= −
n−1∑
k=0

(−1)n−kN !(N)(n−k)

(N + n− k)!k!
dk,k

= −
n−1∑
k=0

(−1)n−kN
(N + n− k)k!

dk,k .

Thus, for n ≥ 1
n∑
k=0

(−1)n−kN
(N + n− k)k!

dk,k = 0
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or
n∑
k=0

(−1)k

(N + n− k)k!
dk,k = 0

with d0,0 = 1. Since the hypergeometric Cauchy numbers cN,n satisfies the same recur-
rence relation, namely,

n∑
k=0

(−1)k

(N + n− k)k!
cN,k = 0

with cN,0 = 1 ([20, Proposition 1]), we can conclude that

dn,n = cN,n .

6.1 Another method

Howard [16] found explicit formulas for all the coefficients by proving the following. For
n ≥ 2

βn(λ) = cnλ
n +

n∑
j=1

(−1)n−j n
j
Bj

[
n− 1

j − 1

]
λn−j , (6.6)

where
[
n
k

]
are the Stirling numbers of the first kind, determined by

x(x− 1) · · · (x− n+ 1) =

n∑
k=0

(−1)n−k
[n
k

]
xk . (6.7)

and cn are the Cauchy numbers (of the firs kind), defined by the generating function

t

log(1 + t)
=

∞∑
n=0

cn
tn

n!
. (6.8)

We have another expression of the coefficients of βN,n(λ) directly from Theorem 2.2.
Since by (6.7)

(1−Nλ|λ)i =
i∑

j=0

(−1)i−j
i∑
l=1

[
i

l

](
l

j

)
N l−j · λi−j

=

i∑
j=0

(−1)i−j
i∑
l=j

[
i

l

](
l

j

)
N l−j · λi−j ,

we have for j = 0, 1, . . . , n

dn,n−j = n!

n∑
k=1

(−N !)k(−1)n−j

j!

∑
i1+···+ik=n

i1,...,ik≥1

1

(N + i1)! · · · (N + ik)!

× dj

dxj

((
i1∑
l1=1

[
i1
l1

]
xl1

)
· · ·

(
ik∑
lk=1

[
ik
lk

]
xlk

))∣∣∣∣∣
x=N

.

(6.9)
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If j = n in (6.9), we get the coefficient of the constant in λ as

dn,0 = n!

n∑
k=1

(−N !)k
∑

i1+···+ik=n

i1,...,ik≥1

n!

n!(N + i1)! · · · (N + ik)!
,

which is equal to BN,n by (2.4). If j = 0 in (6.9), we get the leading coefficient in λ as

dn,n = n!
n∑
k=1

(−N !)k(−1)n
∑

i1+···+ik=n

i1,...,ik≥1

(N)(i1)

(N + i1)!
· · · (N)(ik)

(N + ik)!

= n!

n∑
k=1

(−1)n−k
∑

i1+···+ik=n

i1,...,ik≥1

Nk

(N + i1) · · · (N + ik)
,

which is equal to cN,n in [1, 23].
However, it seems difficult to express other terms of βN,n(λ) in any explicit form,

except the leading coefficient and the constant.
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