1 Key words: Asiago Plateau, Epilobietea angustifolii, Galeopsis sp. pl., Lagorai Range, phytosociology, vegetation dynamic. Ključne besede: plato Asiago, Epilobietea angustifolii, Galeopsis sp. pl., gorska veriga Lagorai, fitocenologija, dinamika vegetacije. Corresponding author: Stefano Tasinazzo E-mail: stefano.tasinazzo@gmail.com Received: 21. 6. 2022 Accepted: 23. 8. 2022 The very early-succession herbaceous vegetation in the ‘Vaia’ windstorm clearings within the Italian southeastern pre-Alpine mountain belt (Veneto and Trentino) Abstract The very early herbaceous vegetation which established in the clearings following 2018 ‘Vaia’ storm was investigated in some pre-Alpine areas of Northeast Italy, on calcareous as well as acidic substrata. Sixty-two original vegetation-plot records were executed in spruce or mixed beech-silver fir-spruce blowdown forests, within two years after the salvage logging had been completed. According to different origin and degree of soil disturbance, different communities were recognised. Galeopsis pubescens and G. tetrahit rich stands develop as ephemeral annual associations at the beginning of the regeneration succession where partially decomposed coniferous needles and twigs have accumulated in the litter. Soils with altered profiles due to forestry machineries harbour dominance of perennial herbaceous species (especially Senecio nemorensis agg., Atropa bella-donna, Epilobium angustifolium) which origin as many already recognised associations or vegetation types we ascribed to community level. All coenoses belong to Epilobietea angustifolii class, with the exception of Calamagrostis arundinacea-rich stands on undisturbed base-rich as well as base-poor soils, whose syntaxonomic positions are unclear. Izvleček Preučevali smo zgodnjo zeliščno vegetacijo na karbonatni in kisli podlagi gozdnih čistin, ki so nastale po neurju ‘Vaia’ leta 2018 v nekaterih območjih Predalp v severovzhodni Italiji. Naredili smo 62 fitocenoloških popisov v mešanih bukovo- jelovo-smrekovih gozdovih po vetrolomu, dve leti po dokončani sanitarni sečnji. Glede na različen izvor in stopnjo motenosti tal, smo opisali različne rastlinske združbe. Sestoji s prevladujočima vrstama Galeopsis pubescens in G. tetrahit se razvijejo kot efemerne enoletne združbe na začetku sukcesije na mestih, kjer se v opadu akumulirajo delno razpadle iglice in vejice iglavcev. Na tleh s spremenjenim talnim profilom zaradi gozdne mehanizacije prevladujejo zelnate trajnice (predvsem Senecio nemorensis agg., Atropa bella-donna, Epilobium angustifolium), ki smo jih uvrstili v že dosedaj opisane asociacije oziroma vegetacijske tipe. Vse združbe uvrščamo v razred Epilobietea angustifolii, z izjemo sestojev s prevladujočo vrsto Calamagrostis arundinacea na nemotenih tleh, tako na bogatih kot siromašnih z bazami, katerih sintaksonomski položaj je še nejasen. Stefano Tasinazzo1 1 Via Gioberti 6, I-36100 Vicenza, Italy DOI: 10.2478/hacq-2023-000323/1 • 2024, 1–34 23/1 • 2024, 1–34 2 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt Introduction The storm event ‘Vaia’ in late October 2018 struck large parts of the Alpine region. In particular, between 29 October and 30 October, the extraordinary event took the form of particularly intense rainfall, but especially of violent gusts of sirocco. In north-eastern Italy the wind exceeded 150-200 km/h causing a substantial damage or the complete destruction of the forest on 42500 hectares and the downing of approximately 8.5·106 m3 of timber (Chirici et al., 2019). These data make Vaia the event with the greatest impact on forest ecosystems ever re- corded to date in Italy, the most affected administrative regions being Trentino-Alto Adige and Veneto (Chirici et al., 2019). The extensive and radical disturbance main- ly disrupted established Picea or Picea-Abies woods (Sit- zia & Campagnaro, 2019; AA.VV, 2020). The arised new conditions at ground level after distur- bance favour (1) pioneer plants starting the colonization of the bare soil and/or (2) species, present before the dis- turbance, invading competition-free space. This implies the ecological concept of succession, i.e. change in species composition and structure of a community through time (Pickett et al, 2013). In particular, from the perspective of vegetation dynamic, the recovery of an entire plant com- munity after an extensive environmental injure represents a case of regeneration succession (Van der Maarel, 1996). The phenomenon develops through seral stages: in the ear- ly phases residual species, remnant vegetative structures, seed bank and inflow of short-lived species with extensive dispersal capacities play an important role in the assembly of temporary communities, whereas environmental fac- tors and inter-specific competition are drivers of late stages of forest regeneration (e.g. Harper, 1977; Halpern, 1989; Verheien et al., 2003; Pickett et al., 2013). It was suggested Figure 1: The upland regions of the study area with the geographical position of the relevés in the context of south-eastern pre-Alps. White star symbol indicates an approximate location of the 4 previously published relevés. Slika 1: Hriboviti predeli preučevanega območja z geografskim položajem popisov v JV Predalpah. Bela zvezda predstavlja približno lokacijo štirih predhodno objavljenih popisov. 23/1 • 2024, 1–34 3 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt that early successional stages in forest recovery relies on both deterministic and also stochastic components (Halp- ern, 1989). Also the size of gaps and clearings are impor- tant in determining the type of developing community because in a large forest-clearing heavy-fruited and shade- tolerant species have lesser dispersal abilities and coloniz- ing facility than light seed and light-demanding species (Grubb, 1977). The consequences of the management practice of recov- ering economically valuable blow down timber, before its deterioration, i.e. the salvage logging or post-disturbance logging, add to the complex of variables that underlie the regeneration succession. The practice interfers with bio- logical legacies, on which the ecosystem recovery depend, impairs natural vegetation recovery, facilitates the coloni- zation of invasive species and alter soil properties and nu- trient levels (Lindenmayer & Noss, 2006). Tree seedling and sapling survival is associated with pit-mound micro- topography, i.e. microsites originating when mature trees are uprooted by a storm (Ulanova, 2000). From the phytosociological point of view, early gap and clearing herbaceous communities belong to Epilobietea angustifolii, whereas late shrubland stages, not covered by the present study, are included in Robinietea (Sambuco- Salicion capreae). The aim of the present contribution is to analyse the very early clearing herbaceous communi- ties which established soon after post-disturbance logging following 2018 ‘Vaia’ storm, i.e. communities included in Epilobietea angustifolii. At the same time it was an op- portunity not to be missed to investigate on a class little or none known in Italy (https://www.prodromo-vegetazi- one-italia.org/scheda/atropion-belladonnae/496; https:// www.prodromo-vegetazione-italia.org/scheda/epilobion- angustifolii/497). Study area The vegetation relevés were mainly executed in the Asiago Plateau (Veneto) and in the Lagorai Range (Trentino); only three relevés were collected outside these territories, particularly two come from the Tonezza Plateau (Veneto) and one from the Grappa Massif (Veneto). According to the SOIUSA classification of the Alps (Marazzi, 2006), Asiago Plateau, Tonezza Plateau and Grappa Massif be- long to the Venetian pre-Alps, whereas the Lagorai Range belongs to the Southern Dolomites of Fiemme. The Asiago Plateau extends over 600 km2, ranging from 600 m to over 2300 m a.s.l at borders between the Veneto Region and the Trento Province in North-East- ern Italy. The vegetation surveys were carried out in the mountain and high-mountain belts of the northern pla- teau, the geomorphological subunit stretching north of the about 1500 m high peaks which separate it from the underlying subunit of the median basin, where the main inhabited centers are located (Pellegrini & Sauro, 1994). The stratigraphic sequence consists of carbonate rocks: outcrops of Main Dolomite, Calcari Grigi Group, Rosso Ammonitico Veronese and Maiolica are widespread in the survey areas (Barbieri & Grandesso, 2007). After the extensive forest destruction caused by the conflicts of the First World War, studied territories were predominantly afforested with Picea abies. Fagus-woods or near-natural mixed Abies-Fagus(-Picea) forests (cf. Dentario pentaphyl- li-Fagetum, Anemono trifoliae-Abietetum) were in this way largely substituted by even-aged Picea abies woods which were hit by the 2018 Vaia windstorm. Tonezza Plateau and Grappa Massif share with Asiago Plateau main geo- logical and vegetational features. The Lagorai mountain chain, extending in south-east- ern Trento Province, culminates at Cima di Cece over 2700 m a.s.l. Relevés involved mountain and sub-alpine belts of the southern part of the chain, in an area bounded on the north by a line joining the Val dei Mocheni, the Val Calamento and the Val Campelle, between 1100 m and 1750 m a.s.l. As regards geological outcrops, Lagorai is mainly constitued of porphyric, acid rocks belonging to the Atesina Porphyric Platform, but in the southern part of the chain metamorphic rocks of the Pre-Permian crystalline basement are widespread (Tomasi, 2019). Veg- etation-plot records were collected on outcrops of Quartz Phyllade, porphyric rocks, granite and vulcanite mo- raine deposits (http://sgi.isprambiente.it/geologia100k/ mostra_foglio.aspx?numero_foglio=21 http://sgi.ispram- biente.it/geologia100k/mostra_foglio.aspx?numero_ foglio=22). At lower altitudes mixed Fagus-Abies-Picea forests oc- cur (cf. Luzulo albidae-Fagetum), whereas Picea abies pure stands prevail at subalpine level (cf. Luzulo nemorosae- Piceetum). Bioclimatic features of the study area were derived from thermopluviometric data of i) Asiago station (1016 m a.s.l.; https://www.arpa.veneto.it) for the Altipiano di Asiago and ii) Telve station (925 m a.s.l.; http://www. climatrentino.it/clima_trentino/ct_clima_dati_grafici) for the Lagorai Range. According to the Worldwide Bi- oclimatic Classification System (Rivas-Martínez et al., 2011), both central basin of the Asiago Plateau and southern mountain sector of the Lagorai chain belong to the temperate-oceanic bioclimate, upper supra-temperate thermotype, but the former has a lower hyperhumid om- brotype, whereas the latter has an upper humid ombro- type (Figure 2). A slight continentalization degree is likely at some relevé sites situated at higher altitude than the meteorological stations. 23/1 • 2024, 1–34 4 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt Materials and Methods The early pioneer herbaceous vegetation evolving on south-eastern pre-alpine clearings following the 2018 windstorm ‘Vaia’ was investigated by means of the stand- ard Central European phytosociological method (Braun- Blanquet, 1964). We performed a total of 62 original relevés, 39 on calcareous substrata and 27 on siliceous ones, to which 4 published relevés coming from a previ- ous minor event occurred in one of the two investigated area (Lagorai Range; Venanzoni, 1989) were added for statistical analyses (Figure 1). Original stands were sur- veyed in the second or third growing season after the 2018 autumn storm event, in 2020 and 2021 summers, i.e. within two years after the salvage logging had been completed. Species cover data, collected taking into ac- count the 2-value modifications (2a and 2b) proposed by Barkman et al. (1964), were converted in the correspond- ing average percentage values according to Gigante et al. (2012; see Figure 1: Braun Blanquet modified by Bark- man et al., 1964) and, finally, these latter were square root transformed. First we proceeded with the classification of the 66 relevés, then the synthetic tables we obtained from the identified clusters were put in comparison with syn- thetic tables of similar Epilobietea coenoses from Central Europe. In this respect, the following associations were selected (in brackets the acronym used in the analysis re- sults is also given): Arctietum nemorosi (Tab. 132: column 6, in Oberdorfer, 1993; Arc n_G) Arctietum nemorosi (Tab. 5: ass. B.2.1.2, in Dengler et al., 2007; Arc n_G*) Arunco vulgaris-Lunarietum redivivae (Tab. 8: column XDC03, in Petrik et al. (2009); Aru-L_Cz) Atropetum bellae-donnae (Tab. 132: column 5c, in Ober- dorfer (1993); Atr b_G) Atropo-Digitalietum luteae (Tab. 130: column 4, in Ober- dorfer (1993); Atr-D_G) Calamagrostio arundinaceae-Digitalietum grandiflorae (Tab. 130: column 3, in Oberdorfer (1993); Cal-D_G) Cirsium-Ges. (Tab. 132: column 5a, in Oberdorfer (1993); Cir_G) Corydalido claviculatae-Epilobietum angustifolii (Tab. 4: ass. B.1.1.2, in Dengler et al. (2007); Cor-E_G*) Digitali purpureae-Epilobietum angustifolii (Tab. 130: col- umn 1, in Oberdorfer (1993); Dig-E_G) Digitali purpureae-Epilobietum angustifolii (Tab. 10: col- umn XEA02, in Petrik et al. (2009); Dig-E_Cz) Digitali-Senecionetum ovati (Tab. 10: column XEA05, in Petrik et al. (2009); Dig-S_Cz) Epilobio montani-Geranietum robertiani (Tab. 8: column XDC02, in Petrik et al. (2009); Epi-G_Cz) Epilobio montani-Geranietum robertiani (Tab. 169: col- umn 23, in Oberdorfer (1993); Epi-G_G) Fragaria vesca-Festuca gigantea-Ges. (Tab. 5: ass. B.2.1.1, in Dengler et al. (2007); Fra_G*) Galeopsio pubescentis-Impatientum parviflorae (Tab. 1: col- umn e, in Passarge (1997); Gal-I_G) Gymnocarpio dryopteridis-Athyrietum filicis-feminae (Tab. 10: column XEA07, in Petrik et al. (2009); Gym-A_Cz) Figure 2: Climograms of Asiago (Asiago Plateau) and Telve (Lagorai Range) thermopluviometric stations. Slika 2: Klimadiagram meteoroloških postaj Asiago (planota Asiago) in Telve (gorska veriga Lagorai).                                                                                                23/1 • 2024, 1–34 5 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt Junco effusi-Calamagrostietum villosae (Tab. 10: column XEA04, in Petrik et al. (2009); Rub-C_Cz) Pteridietum aquilini (Tab. 10: column XEA06, in Petrik et al. (2009); Pte a_Cz) Rubo idaei-Calamagrostietum (Tab. 10: column XEA03, in Petrik et al. (2009); Rub-C_Cz) Senecioni-Epilobietum angustifolii (Tab. 130: column 2, in Oberdorfer (1993); Sen-E_G) Senecioni-Epilobietum angustifolii (Tab. 4: ass. B.1.1.1, in Dengler et al. (2007); Sen-E_G*) Senecioni fuchsii-Galeopsietum tetrahit (Tab. 2: column r, in Passarge (1981); Sen_G) Senecionetum fuchsii (Tab. 134: column 7, in Oberdorfer (1993); Dig-S_G) Senecioni-Epilobietum angustifolii (Tab. 10: column XEA01, in Petrik et al. (2009); Sen-E_Cz) Stachyo sylvaticae-Impatientetum noli-tangere (Tab. 8: co- lumn XDC01, in Petrik et al. (2009); Sta-I_Cz) In the comparisons with the European communities, relationships of our synthetic tables were individually tested, otherwise the common territorial floristic ma- trix resulted in returning misleading clusters, with the original synthetic tables grouping all together and sepa- rating from the block of European ones. The same case occurred with the here used synthetic tables of Dengler et al. (2007) which team up each other excluding rela- tionships with synthetic data representing at national level the same coenosis (i.e. Oberdorfer, 1993) (Figure 5). Since Passarge’s synthetic table data (1981; 1997) are giv- en through frequency classes, in the analyses we entered the central value of each range; in the same tables ‘D’ or ‘d’ indicating differential species of subassociation or variant, occurring without frequency values, were arbi- trarily replaced with a 5% (i.e. the central value of the lowest frequency class). The nomenclature source for the names of species are prevalently Bartolucci et al. (2018) for native ones and Galasso et al. (2018) for alien species. The sociol- ogy of the species was derived from crosschecking of data in Oberdorfer (1993), Mucina (1993), Theurillat et al. (1995), Dengler et al. (2007), de Foucault & Cat- teau (2015) and Mucina et al. (2016). The synecology of the surveyed communities was partially investigated through the recently published ecological indicator values at European level (Dengler et al., 2023) using not square root-transformed cover weighted values. With the same data, the biological and chorological spectra of the new described association were calculated, using information given in Pignatti (2005). Analyses were carried out with the program package Syn-Tax 2000 (Podani, 2001). Results and Discussion The classification of the 66 relevés (62 original plus 4 previously published) resulted in the dendrogram of Fig- ure 3. The recognised communities differ in structure due to rate and coverage of annual and biennial species vs. herbaceous perennial plants. Hence, the communities are presented according to the predominance of therophytes rather than perennial species. Therophyte-rich communities Two main coenoses with largely predominating Galeopsis sp. pl. were detected. Galeopsis L. includes typical summer annual species. Due to the invasive behaviour of Galeopsis pubescens and G. tetrahit, in the second and third sum- mer after the autumn windstorm, almost pure stands arise on poorly-humified organic horizon conserving partially decomposed coniferous organic matter. Both species give rise to a therophyte vegetation with ephemeral features. The two Galeopsis species are mostly mutually exclu- sive in predominating the different coenoses they form on nutrient-rich or nutrient-poor substrates. According to cluster analysis therophyte-rich stands dominated by Galeopsis sp. pl. separate in two clusters: G. pubescens-rich relevés group in cluster A, whereas G. tetrahit-rich relevés join in cluster H (Figure 3). Contrary to what may be expected, the different lithological matrices do not affect the aggregation of G. pubescens-dominating relevés: veg- etation plots mix and aggregate together regardless they come from calcareous or acidic areas. Galeopsis seeds have no adaptation to long-distance dis- persal; the genus produces heavy, great-size nutlets which are dispersed by animals (zoochory) or man (hemerocory) (Kleyer et al., 2008), so the early establishment of dense populations is likely due to seed banks formed, at least in the Asiago Plateau, before the afforestation following the end of the Great War I. In 2–3 year old clear-cut areas in northern Europe spruce forests it was suggested that the extensive colonization of Galeopsis bifida was based on a persistent seed bank in soil (Hintikka, 1987). Galeopsis tetrahit has proved to exhibit a long-term persistent seed bank, with buried seeds capable of germinating 40 years after the conversion of arable land into pasture (Chippin- dale & Milton, 1934). As germination in species form- ing persistent seed bank is inhibited by darkness (Grime, 2001), it is probable that the large light availability pro- duced by the 2018 wide windstorm clearings resulted in suitable growing conditions for Galeopsis species dor- mant seeds. Nitrification processes produced considerable amounts of nitrate useful for the summer rapid growth of seedlings and establishment of mature specimens. The 23/1 • 2024, 1–34 6 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt high cover values of G. pubescens or G. tetrahit typically culminates in the second-third season after disturbance, as observed also in Bohemian Fagus (Slavíková, 1958: G. pubescens) and Picea abies woods (Hintikka, 1987: G. bifida). In conifer forests, also Halpern (1989) found that annuals like Senecio sylvaticus and Conyza canaden- sis peak in abundance 2 years after heavy disturbance. Galeopsis tetrahit, which is treated also as a Papaveretea rhoeadis characteristic species (Mucina et al., 2016), and G. speciosa are considered as differential species of Galeop- sio tetrahit-Galinsogetum parviflorae sensu Poldini et al., a weed coenosis thriving in potato and bean fields in the montane belt of Carnic and Julian Alps (Poldini et al., 1998; Šilc & Čušin, 2005). In the same way, G. pubescens occurs sometimes abundant in potato fields, after harvest- ing, in the calcareous Asiago Plateau (Tasinazzo, 2023). Clinopodio grandiflori-Galeopsietum pubescentis ass. nova hoc loco (cluster A in Table 1) Differential species. Galeopsis pubescens (dom) Floristic composition. The physiognomy of the com- munity arises from the overwhelming dominance of Galeopsis pubescens which may be accompanied by a rarely abundant Galeopsis tetrahit. In the area where the study was carried out, G. pubescens is represented by the form with corolla of pale yellow colour, often with little violet spots, resulting in a coenosis from distance recognizable at blooming time. (Figure 4). The therophyte component includes also Moehringia trinervia (IV frequency class), Geranium robertianum and Cardamine impatiens (II). Herbaceous perennials are often represented by immature individuals and are scattered and of marginal importance at this time, with only Epilobium montanum, Fragaria vesca (V frequency class) and Urtica dioica (IV) occur- ring with a certain constancy degree. Rubus idaeus is here represented by only juvenile specimens. According to a known framework (e.g. Aichinger, 1933; Passarge, 1981; Foucault & Catteau, 2015), studied large Figure 3: Dendrogram of relevés of early successional herbaceous stages of windstorm forest clearings in the study areas of south-eastern Italian pre-Alps (A – Clinopodio grandiflori-Galeopsietum pubescentis, B – Athyrio filicis-feminae-Senecionetum glabrati, C – Atropetum bellae-donnae, D1 – Eupatorium cannabinum comm. and Impatiens glanduliferae comm., E+F – Calamagrostis arundinacea communities, G – Avenula flexuosa var., H – Senecioni fuchsii-Galeopsietum tetrahit, I – Epilobium angustifolium comm., D2 – Sambucus ebulus comm.). UPGMA-Bray-Curtis. _a: acidic substratum, _c: basic substratum, *: published relevè (Venanzoni, 1989). Slika 3: Dendrogram fitocenoloških popisov zgodnjih sukcesijskih zeliščnih stadijev na gozdnih čistinah, nastalih v preučevanih območjih v JV italijsnakih Predalpah. (A – Clinopodio grandiflori-Galeopsietum pubescentis, B – Athyrio filicis-feminae-Senecionetum glabrati, C – Atropetum bellae- donnae, D1 – združba z vrsto Eupatorium cannabinum in združba z vrsto Impatiens glanduliferae, E+F – združbe z vrsto Calamagrostis arundinacea, G – Avenula flexuosa var., H – Senecioni fuchsii-Galeopsietum tetrahit, I – združba z vrsto Epilobium angustifolium, D2 – združba z vrsto Sambucus ebulus). UPGMA-koeficient Bray-Curtis. _a: kisla podlaga, _c: bazična podlaga, *: objavljeni vegetacijski popisi (Venanzoni, 1989). C-Gal_a C-Gal_a C-Gal_a C-Gal_c C-Gal_c C-Gal_c C-Gal_c C-Gal_a C-Gal_c C-Gal_c C-Gal_c C-Gal_c C-Gal_a C-Gal_c C-Gal_c C-Gal_c C-Gal_c C-Gal_c C-Gal_c At-Sen_c At-Sen_c At-Sen_c At-Sen_c At-Sen_a At-Sen_c At-Sen_c Atr_c Atr_c Atr_c Atr_c Atr_c Atr_c Atr_c Atr_c Eup_c Imp_c Cal_a Cal_a Cal_a Cal_a Cal_a* Cal_a Cal_a Cal_a Cal_c Cal_c Cal_c Cal_c Cal_c Cal_c Cal_c Ave_a Ave_a Se-Gal_a Se-Gal_a Se-Gal_a Se-Gal_a Se-Gal_a Se-Gal_a Se-Gal_a Se-Gal_a Epi_a* Epi_a* Epi_a* Epi_a Samb_c 0.90.80.70.60.50.40.30.20.10 Dissimilarity 23/1 • 2024, 1–34 7 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt forest blowdown resulted in the mixture of species com- ing from various phytosociological classes. Expected char- acter species of clearing vegetation (Epilobietea) and seral forest-clearing successional communities (Robinietea) are accompanied by several understory forest legacies (Carpino-Fagetea, Vaccinio-Piceetea) that persist through the initiating disturbance: more frequently, Moehringia trinervia, Hieracium murorum, Oxalis acetosella, Mycelis muralis, Dryopteris filix-mas. Meadow and pasture species (Veronica chamaedrys, Veronica officinalis), eutrophic tall- herb indicators (Senecio cacaliaster) and, less frequently, short-lived perennial ruderal (Artemisietea) also occur. The form on acidic substrate is differentiated by acido- philous components, more frequently Luzula luzuloides, Calamagrostis arundinacea, Atocion rupestre. The average species number per stand is 28.2. Biological and chorological spectra. Life forms (%). Thero- phytes 68.4, hemicryptophytes 15.2, nanophanerophytes 9.3, geophytes 4.1, phanerophytes 2.5, chamaephytes 0.5. Chorological spectrum (%). Eurasiatic 83.1, Boreal 9.2, orophytes 4.0, Cosmopolitan 2.3, Mediterranean 1.1, alien 0.2, Atlantic 0.1, endemic 0.1 Syntaxonomy. The phytosociological framing of this community has caused some uncertainty, starting from the highest syntaxonomical level. Epilobietea angustifolii class encompasses tall-herb perennial – not therophyte- rich (a/n) – vegetation in forest clearings in the temperate zones of Eurasia (Mucina et al., 2016). Due to ecological reasons, floristic similarities and plant life forms, Passarge (1981) had previously suggested to include pioneer thero- phyte-dominating associations of forest clearings in a new class with the provisional name Galeopsio-Senecionietea sylvatici, which included various described communities. According to Passarge’s idea, in the same way initial Sis- ymbrion ruderal vegetations (now Sisymbrietea class) were distinguished from Artemisietea perennial communities they introduce, as well therophyte-rich vegetation, con- stituting an early dynamic step towards perennial com- munities in forest clearings, could have find a formal typification inside an autonomous class. Since the class was published as provisional, later de Foucault (2011) formally described Galeopsio tetrahit-Senecionietea sylvat- ici. Nowadays this class is only recognized by a minority part of researchers (https://www.e-veg.net/app/16206), whereas most of national synopsis do not consider it. Re- Figure 4: Stand of Clinopodio grandiflori-Galeopsietum pubescentis in Val d’Assa (Asiago Plateau). Slika 4: Sestoja asociacije Clinopodio grandiflori-Galeopsietum pubescentis v Val d’Assa (plato Asiago). 23/1 • 2024, 1–34 8 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt cent European classification system still considers it as not validly published and includes it in Epilobietea angustifolii (Mucina et al., 2016). Despite it appears incosistent to attribute communities formed by therophytes to a class including ‘tall-herb perennial vegetation’ (Mucina et al., 2016), we adapt to the predominant formulation and as- cribe the Clinopodio grandiflori-Galeopsietum pubescentis to Epilobietea, awaiting for future clarifications on this issue. Galeopsis pubescens, Myosotis sylvatica, Galeopsis tet- rahit, Geranium robertianum, Senecio nemorensis/glabratus and Moehringia trinervia, as differential, enable classifica- tion within the Epilobietea class. The source of a second problem was the mixing of relevés independently from geological bedrock where surveys were performed. Vegetation plots on base-rich soils do not separate from those on acidic, poor soils. To overcome the possibility that the high Galeopsis cover can affect resemblance more than the small group of acidophilous species, our data from different geological matrices were separately treated, together with synthetic tables of some central European communities belonging to basophilous Fragarion vescae or acidophilous Epilo- bion angustifolii alliances. Resulting dendrograms show that both relevé groups independently join the group of communities attributed to Fragarion (Figure 5). The classification of the relevés to the same community, as hypothesised by Figure 3, was indirectly proved. The rel- evés were arranged in Table 1 according to their geologi- cal provenance to highlight floristic differences existing between the two substrates. Stands from acidic Lagorai exibit Epilobion angustifolii characteristic or differential species such as Luzula luzuloides, Calamagrostis arundi- nacea, Senecio sylvaticus. Fragaria vesca and Veronica chamaedrys are the only fre- quently occurring Fragarion differential species; alliance character species are under-represented (Atropa bella-don- na, Stachys alpina). Described communities with largely dominant Galeopsis pubescens are very limited in number in literature. Galeopsio pubescentis-Impatientum parviflo- rae was reported as fringe association in Central European Fagus wood, with G. pubescens cover increasing over the years (Passarge, 1997). It merges with other associations belonging to Impatienti noli-tangere-Stachyion sylvaticae (Figure 2a, 2b). The Galeopsis pubescens community from Lower Austria (Forstner, 1983) differs for the occurrence of many weed segetal and ruderal species revealing an an- thropogenic, ruderal origin which points to the concept of Galio-Urticetea class. Finally, Passarge (1981) refers to a W-Carpathians subcontinental “Galeopsis pubescens- Rasse” of Senecioni fuchsii-Galeopsietum tetrahit within Epilobion angustifolii, without giving any material or oth- er information. Original floristic and ecological features lead us to describe the new association Clinopodio gran- diflori-Galeopsietum pubescentis with a largely dominating Galeopsis pubescens as differential species (holotypus rel. 9 in Table 1). Clinopodium grandiflorum assumes the role of dynamic link with the Fagus forest natural potential vegetation. Synecology. The community develops under blowdown Picea or Picea-silver fir stands or patches, inside Fagus- silver fir-Norway spruce mixed woods, after logging, in soils where undecomposed or partially decomposed nee- dles, twigs and cone scales have accumulated in the litter. It was detected in mountain belt, on basic to acidic geo- logical substrata. Norway spruce contributes to lower the pH of topsoils naturally occurring on calcareous rocks, diminishing the differences between the soils originat- ing from different matrices. The occurrence of acidocline species, such as Agrostis capillaris, Veronica officinalis, Hypericum maculatum, Oxalis acetosella, reveals poor- nutrient conditions. In the whole of coenosis reaction is at lowest level among the described Fragarion communi- ties (Figure 6). The initial lack of competition by perennial species, which colonize later the bare soil, ensures a luxuriant growth of annuals, in particular Galeopsis pubescens. In early colonizing phase, anemochorous species – Epilo- bium montanum above all – are frequent in the study area but negligible as far as coverage. The absolute absence of Galeopsis specimens in the herbaceous layer of relevés in neighbouring forests and their sporadic nature in the mantle stands in the study area (pers. unpublished data) is an indicator that seed banks locally play an important role in earlier forest regeneration process where a sterile litter prevails. In the Asiago Plateau, the Galeopsis-explosion in studied clearings at least partly might be subordinated to a previously agricultural-pastoral land use. Syndynamic. The annual community represents the very initial stage of vegetation dynamics on partially-decom- posed coniferous needle litter in the area of Fagus and mixed fir-beech forests: Aremonio-Fagion as regards com- munities on nutrient-rich substrates, Luzulo-Fagion in nutrient-poor ones. It has to be considered a community with an ephemeral life-history, capable to rapidly exploit mineral supplies which became available in the short pe- riod after disturbance. The occurrence of all differential species of Atropetum suggests to consider the Clinopodio grandiflori-Galeopsietum pubescentis as ‘Vorstufe’ (english translation: early stage) of Atropetum bellae-donnae itself, according to the interpretation that in Germany Ober- dorfer (1993) gave in this sense to the described Cirsium- Gesellshaft. Rubus idaeus, here represented by juvenile 23/1 • 2024, 1–34 9 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt Senecioni fuchsii-Galeopsietum tetrahit Passarge 1981 (cluster H in Table 2) Differential species. Galeopsis tetrahit (dom. or subdom.), Senecio sylvaticus Floristic composition. As the previous, also this annual cenosis appears prevalently as a pure Galeopsis-stand, but here G. tetrahit predominates (Figure 8). The occurring therophytes include also Senecio sylvaticus, Moehringia trinervia and Galeopsis pubescens. Senecio sylvaticus is a good differential, acidocline species of the coenosis, very rare in the studied territories – lacking from Veneto (Ar- genti et al., 2019) and very localised in the siliceous sub- strata of Lagorai Range in Trento province (Prosser et al., 2019) – the only one strictly depending on clearings due to catastrophic events or forestry practices, whereas the other elements also thrive in fringe communities or in the forest floor; the same is true in Central Europe (Passarge, 1981). Low-covering, frequent, perennial forbs include species related to regenerative processes post-disturbance (Verbascum thapsus subsp. thapsus, Senecio nemorensis sub- sp. glabratus, Sambucus racemosa juv., Rubus idaeus juv.), predisturbance forest understory species (Hieracium mu- rorum agg., Solidago virgaurea, Poa nemoralis) and sward hemicryptophytes taking advantage of increased light availability (Veronica officinalis, Ajuga pyramidalis). The average species number per stand (19.3) is lower than as- sociation Clinopodio grandiflori-Galeopsietum pubescentis. Syntaxonomy. The same difficulties encountered for the framing of Clinopodio grandiflori-Galeopsietum pubescentis also arise for this annual coenosis, given the formal decla- C- Ga l_a Ci r_G At r b _G Di g-S _G Ar c n _G Di g-E _G Di g-E _C z Se n-E _G Se n-E _C z Di g-S _C z Ru b-C _C z Ju n-C _C z Gy m- A_ Cz Se n-G _C E Ca l-D _G At r-D _G Pt e-a _C z Se n-E _G * Co r-E _G * Fr a_ G* Ar c n _G * Ga l-I_ G Ep i-G _C z Ep i-G _G St a-I _C z Ar u-L _C z 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 D is si m ila rit y C- Ga l_c Ci r_G At r b _G Di g-S _G Ar c n _G Di g-E _G Di g-E _C z Se n-E _G Se n-E _C z Di g-S _C z Ru b-C _C z Ju n-C _C z Gy m- A_ Cz Se n-G _C E Ca l-D _G At r-D _G Pt e-a _C z Se n-E _G * Co r-E _G * Fr a_ G* Ar c n _G * Ga l-I_ G Ep i-G _C z Ep i-G _G St a-I _C z Ar u-L _C z 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 D is si m ila rit y Figure 5: Classification of synthetic tables of Clinopodio grandiflori- Galeopsietum pubescentis and some European Epilobietea angustifolii vegetation units. Original data are separately analysed according to the different substrate type: acidic (C-Gal_a) or calcareous (C-Gal_c) soils. UPGMA-similarity ratio. For the other acronyms see Materials and methods. Slika 5: Klasifikacija sintetskih tabel asociacije Clinopodio grandiflori- Galeopsietum pubescentis in nekaterih vegetacijskih tipov razreda Epilobietea angustifolii iz Evrope. UPGMA-koeficient podobnosti. Izvorni popisi so ločeno analizirani glede na različne podlage: kisla (C-Gal_a) ali karbonatna (C-Gal_c) tla. UPGMA-koeficient podobnosti. Za ostale okrajšave glej poglavje Material in metode. Figure 6: Ordination of main found communities according to weighted values of moisture (M), soil nitrogen (N), soil reaction (R) and temperature (T). C-Gal: Clinopodio grandiflori-Galeopsietum pubescentis (total relevés); At-Sen: Athyrio filicis-feminae-Senecionetum glabrati (total relevés). For the other acronims see Figure 3. Slika 6: Ordinacija glavnih preučevanih združb in tehtane vrednosti indikatorjev za vlažnost (M), dušik v tleh (N), reakcijo tal (R) in temperaturo (T). C-Gal: Clinopodio grandiflori-Galeopsietum pubescentis (vsi popisi); At-Sen: Athyrio filicis-feminae-Senecionetum glabrati (vsi popisi). Za okrajšave glej Sliko 3. specimens, is the major contributor to secondary seres; as a reliable alternative, in some cases it is possible that its over- whelming dominance can take over the short-lived domi- nance of Galeopsis species, to form the prevalent initial shrubby stage of the regeneration succession (pers. obs.). Synchorology. In the mountain and high-mountain belts of the studied area, it was the most widespread commu- nity in the recolonization process within 2–3 years after windstorm. It was also observed outside the investigated areas in common ash forest clearings.                        23/1 • 2024, 1–34 10 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt ration of Epilobietea, i.e. a class including perennial com- munities. The classification of Figure 7 shows the close similarity between Senecioni fuchsii-Galeopsietum tetrahit described by Passarge (1981) from Central Europe and our relevés with a high proportion of  therophytes from high-mountain nutrient-poor bedrock of Lagorai chain. In the table of the original diagnosis Passarge (1981) reported ‘Galeopsis tetrahit, bifida’ but in the text he ex- plicitly mentioned Galeopsis tetrahit (pag. 281), thereby Senecioni-Galeopsietum tetrahit is validly published. It is confident to refer our Galeopsis tetrahit-rich vegetation type to the quoted association. The previously provided arguments about Clinopodio-Galeopsietum pubescentis ap- ply in this case, therefore the association initially ascribed to Galeopsio-Senecionetea sylvaticae by Passarge (1981) belongs to Epilobietea. Unlike Clinopodio-Galeopsietum pubescentis, many differential and characteristic Fragarion species lack, namely Fragaria vesca, Veronica chamaedrys, Atropa bella-donna. Our original synthetic table clusters with most of the other selected coenoses belonging to Epilobion angustifolii (Figure 7), by virtue of the differen- tial, high frequently occurring species Luzula luzuloides, Calamagrostis arundinacea, Avenella flexuosa. Many other acidocline species ingressive from Nardetea swards and rocky siliceous outcrops (Atocion rupestre) contribute to highlight the acidophilous feature of the coenosis. the absence of a previous forest understory and increased light availability. In nutrient-poor soils of Lagorai chain, Galeopsis pubescens is largely dominant in the mountaine- ous belt, G. tetrahit prevails in the subalpine one, where monospecific natural Picea forest occurs. Accordingly, Senecioni-Galeopsietum tetrahit grows at higher altitudes than Clinopodio grandiflori-Galeopsietum pubescentis ( Figure 9). Syndynamic. As Clinopodio-Galeopsietum pubescentis community in regards to Fagion s.l. woods, Senecioni- Galeopsietum represents the very early successional stage in the regeneration sere leading to Picea forest provision- ally ascribed to Luzulo nemorosae-Piceetum by Pedrotti (2010). Rubus idaeus, here also represented by juvenile specimens, is the major shrub-like contributor to second- ary seres following the pioneer Galeopsis-phase. In Czech Republic Senecio sylvaticus and Galeopsis tetrahit are inter- preted, respectively, as representatives of xero-acidophil- ous and nitrophilous conditions prevailing in the very initial stage in the succession sere leading to Senecioni- Epilobietum (Petřík et al., 2009). In the same way, in the part of studied area falling within acidic substrata, the as- sociation can precede the Epilobium angustifolium com- munity, but also the Rubus idaeus stage. Synchorology. Initially described from Central Europe without any further more detailed scale information, the original data here reported seem to be the only ones since Passarge’s work (1981). Se -G al_ a Se n-G _C E Ep i-D _G Di g-E _C z Se n-E _G Se n-E _C z Di g-S _C z Ru b-C _C z Ju n-C _C z Gy m- A_ Cz Ca l-D _G At r-D _G Ci r_G At r b _G Di g-S _G Ar c n _G Pt e a _C z Se n-E _G * Co r-E _G * Fr a_ G* Ar c n _G * Ga l-I_ G Ep i-G _C z Ep i-G _G St a-I _C z Ar u-L _C z 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 D is si m ila rit y Figure 7: Classification of synthetic tables of original stands of Senecioni-Galeopsietum tetrahit (Se-Gal_a) and some European Epilobietea angustifolii vegetation units. UPGMA-similarity ratio. For the other acronyms see Materials and methods. Slika 7: Klasifikacija sintetskih tabel izvornih sestojev asociacije Senecioni-Galeopsietum tetrahit (Se-Gal_a) in nekaterih vegetacijskih tipov razreda Epilobietea angustifolii iz Evrope. UPGMA-koeficient podobnosti. Za ostale okrajšave glej poglavje Material in metode. Synecology. Also this coenosis develops in windthrow area clearings where spruce needles and twigs had accu- mulated in the Oi horizon of the soil, consisting of unde- composed organic material. Galeopsis tetrahit benefits of Figure 9: Box-plot of altitudinal occurrence of Clinopodio grandiflori- Galeopsietum pubescentis and Senecioni-Galeopsietum tetrahit on acidic bedrock. Slika 9: Škatla z brki višin pojavljanja asocacij Clinopodio grandiflori- Galeopsietum pubescentis in Senecioni-Galeopsietum tetrahit na kisli matični podlagi. 23/1 • 2024, 1–34 11 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt Impatiens glandulifera community (rel. 24 in Table 1) The Asian neophyte Impatiens glandulifera is invasive in disturbed, nutrient-rich, mesic soils occurring in the Asi- ago Plateau. The species can occasionaly become largely dominant in the studied clearings and the relevé intends to demonstrate this eventuality. The alien is known to ag- gressively compete with indigenous plants in anthropo- genic nitrophilous communities in wet and forest fringe habitat of central European plains where it constitutes the association Calystegio-Impatientetum glanduliferae (e.g. Láníková et al., 2009; https://www.e-veg.net/en/ app/16236). Our relevé cannot be referred to the latter because of ecological and floristic differences. Perennial herbaceous communities A number of perennial herbaceous communities are widespread, whereas some other less common are repre- sented through a single relevé. Our vegetation types from calcareous substrata join Central European communities included in basiphilous Fragarion, relevés from base-poor soils merge with communities which are attribuibuted to Epilobion angustifolii (Figure 10). Despite the previous analyses of original relevés might suggest a strong simi- larity between Calamagrostis arundinacea-rich stands on base-rich and base-poor soils, when they are compared with the selected European vegetation units evident dif- ferences emerge. At r_ c At _ S en Ci r_ G At r b _G Di g-S _G Ar c n _G Ca l_a Av e_ a Ep i_a Ep i-D _G Di g-E _C z Sa n-E _G Sa n-E _C z Di g-S _C z Ru b-C _C z Ju n-C _C z Cy m- A_ Cz Se n_ G Ca l-D _G At r-D _G Pt e a _C z Se n-E _G * Co r-E _G * Fr a_ G* Ar c n _G * Ga l-I_ G Ep i-G _C z Ep i-G _G St a-I _C z Ar u-L _C z Ca l_c 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 D is si m ila rit y Figure 8: Stand of Senecioni-Galeopsietum tetrahit in Val Campelle (Lagorai Range). Slika 8: Sestoj asocacije Senecioni-Galeopsietum tetrahit v Val Campelle (gorska veriga Lagorai). Figure 10: Classification of synthetic tables of original perennial herbaceous communities (in bold) and some European Epilobietea angustifolii vegetation units. UPGMA-similarity ratio. For the other acronyms see Materials and methods. Slika 10: Klasifikacija sintetskih tabel izvornih trajnih zeliščnih združb (krepko) in nekaterih evropskih vegetacijskih tipov razreda Epilobietea angustifolii. UPGMA-koeficient podobnosti. Za ostale okrajšave glej poglavje Material in metode. 23/1 • 2024, 1–34 12 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt Atropetum bellae-donnae (Br.-Bl. 1930) Tx. 1950 (cluster C in Table 1) Differential species. All the association characteristic spe- cies included in the Tüxen’s (1950) original diagnosis oc- cur: Atropa bella-donna, Verbascum thapsus, Senecio nemo- rensis agg. and Stachys alpina. In the investigated areas, Atropa bella-donna, Verbascum thapsus subsp. thapsus, Cir- sium arvense and Cirsium vulgare act as differential species against the other established clearing communities. Floristic composition. With its branching habitus reach- ing a height of 1.5–2 m, Atropa bella-donna also physi- ognomically charatcterises this two-layered community which shows a rich lower herbaceous layer where frequent species encompass: Galeopsis pubescens, Fragaria vesca, Ru- bus idaeus juv., Agrostis capillaris (V frequency class). Cir- sium spp. and Verbascum thapsus also reaching important height contribute to connote this tall coenosis. Several Carpino-Fagetea species remaining from the previous un- disturbed forest, short-lived perennial ruderal ingressive from Artemisietea and Molinio-Arrhenatheretea meadow plants, such as frequently occurring Galium mollugo agg., raise the mean species number per relevé which attains the value of 42.4. Syntaxonomy. The high-frequency occurrence of Atropa bella-donna, Verbascum thapsus, Fragaria vesca and Cir- sium vulgare (Fragarion), Epilobium montanum and Gera- nium robertianum (Circaeo-Stachyetalia) assure its strong framing in the base-rich syntaxonomic levels within Epi- lobietea class. Synecology. The association is known to colonize basic, well-nitrified, humic and mesic soils under mild weather conditions (Oberdorfer, 1993; Mucina, 1993; https:// www.e-veg.net/app/16476). It generally avoids open, extensive clearings determined by windstorm, prefering moderately shading areas. The occurrence of Cirsium spp. involves the off-site wind-dispersed species initial estab- lishment post-disturbance. In the growing sites, uprooted coniferous stumps after the salvage logging exposed min- eral soil pockets interspersed with remaining understory microplots and with parental material originating from the limestone bedrock. Mean ecological indicator value for re- action was the highest amongst all communities (Figure 6). Syndynamic. Atropetum constitutes a fringe community and an initial phase of regenerative process in the area of potential mixed Fagus-Abies alba forests. It may fol- low the Clinopodio grandiflori-Galeopsietum pubescentis on base-rich soils. Synchorology. The association is widespread throughout Europe: Central Europe (e.g. Aichinger, 1933; Tüxen, 1950; Mucina, 1993; Oberdorfer, 1993; https://www.e- veg.net/en/app/16476), Balkan (Ratknić et al. 2013) and Iberian Peninsula (Ninot et al., 2012), Italian mainland (Allegrezza, 2003). Despite its widely occurrence, original data shown here are the first documenting the presence of the association in Northern Italy. Athyrio filicis-feminae-Senecionetum glabrati ass. nova hoc loco (cluster B in Table 1) Differential species. Senecio nemorensis subsp. glabratus (dom.) or Senecio cacaliaster (dom.), Deschampsia cespitosa (loc.) Floristic composition. Stands of association are three- layered. Upper level is physiognomically dominated by megaforb species Senecio nemorensis subsp. glabratus or Senecio cacaliaster, the former highly covering in the mountain belt whereas the latter prevailing at higher al- titudes within the high mountain belt. The patches of bright, deep yellow flowers of S. nemorensis /glabratus are a clear indicator of the occurrence of the coenosis (Fig- ure 11). In the southeastern prealpine investigated ter- ritories the Senecio nemorensis aggregatum is represented by S. nemorensis /glabratus replacing Senecio ovatus (syn. S. fuchsii) which lacks (Argenti et al., 2019; Prosser et al., 2019). In the middle stratum Rubus idaeus is particularly abundant, but also constantly occurring species include Athyrium filix-foemina, Epilobium montanum, Agrostis capillaris, Urtica dioica and, with a lesser degree, Galium mollugo s.l., Deschampsia cespitosa, Dryopteris filix-mas and Myosotis sylvatica. The ground layer hosts mainly Fra- garia vesca, Oxalis acetosella and Stellaria nemorum. The recorded mean species number is slightly lower than in Atropetum: 35.1. Biological and chorological spectra. Life forms (%). Hemicryptophytes 63.6, nanophanerophytes 23.3, geo- phytes 5.8, therophytes 4.1, phanerophytes 2.9, chamae- phytes 0.3. Chorological spectrum (%). Eurasiatic 36.9, Boreal 34.0, orophytes 22.9, Cosmopolitan 5.5, Mediterranean 0.7, alien 0.1, Atlantic 0.1, endemic 0 Syntaxonomy. Within the Senecio nemorensis aggregate the species S. ovatus is considered characterist or diagnos- tic species of the association Digitali-Senecionetum ovati spreading in Central Europe (e.g. Oberdorfer, 1993; Mu- cina, 1993; Petřík et al., 2009). In the study area, the oc- currence of S. nemorensis subsp. glabratus in place of S. 23/1 • 2024, 1–34 13 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt ovatus do not permit to refere our relevés to the quoted as- sociation, despite evident common ecological features. At usually little higher altitude Senecio cacaliaster can locally replace S. nemorensis /glabratus in dominating the coeno- sis, as in Czech Republic Senecio hercynicus can do with S. ovatus (Petřík et al., 2009). In addition to S. nemorensis /glabratus and S. cacaliaster, Galeopsis pubescens, Myoso- tis sylvatica, Petasites albus, Elymus caninus and Solanum dulcamara also contribute to differentiate the southeast- ern pre-Alpine coenosis from Digitali-Senecionetum. Lo- cally, Deschampia cespitosa act as differential species vs. the other found Fragarion communities. It is proposed the name Athyrio filicis-feminae-Senecionetum glabrati for the typification of the new association (holotypus rel. 14 in Table 1), where Athyrium filix-femina remarks the dy- namic relationship with Fagion s.l. forest potential veg- etation. Comparison with other synthetic tables shows a higher similarity with Atropetum coming from the same study area and with German communities belonging to Fragarion. They include Senecionetum fuchsii (= Digitali- Senecionetum) that Oberdorfer (1993) and Mucina (1993) put into Sambuco-Salicion, alliance encompassing elder, willow and hazel scrub communities within Robinietea. This interpretation does not take into consideration that Digitali-Senecionetum ovati is an herbaceous community, to the extent that Czech authors place it in acidic Epilo- bion angustifolii (Petřík et al., 2009) and Preising et al. (1993) inside base-rich Fragarion, anyway within Epilo- bietea. Despite Czech authors (Petřík et al., 2009) attrib- ute the association to Epilobion, they argue that it also occurs on soils rich in nutrients. Eventually, the framing of Athyrio-Senecionetum into Fragarion alliance appears well-founded. The attribution to Epilobietea is assured by Fragaria vesca, Stachys sylvatica and Veronica chamaedrys (Fragarion), Epilobium montanum and Geranium rober- tianum (Circaeo lutetianae-Stachyetalia sylvaticae), Senecio nemorensis subsp. glabratus, Galeopsis pubescens and Myo- sotis sylvatica (Epilobietea). Synecology. The community thrives in full sunlight clearings after salvage logging. After timber harvesting completion, forestry machineries leave behind soils with altered profiles and various coarse woody debris: limbs, not commercial trunk pieces, coniferae tops. Mineraliza- tion of organic matter releases large N amounts favour- ishing nitrophilous Senecio nemorensis agg. which rapidly takes advantage from these new site ecological conditions ( Figure 6). The community is very frequent in early suc- cession stages in forest clearings in the studied area on base-rich soils and on acidic substrata as well. Syndynamic. The community colonizes clearings and margins of fir-beech forests, especially where prior nuclei or plantations of Picea were present. It is followed by the Rubus idaeus stage (Rubetum idaei according to person- al relevés), as the great cover of young raspberry shoots clearly suggests. Synchorology. The occurrence of Athyrio-Senecionetum is documented for the first time through our origi- nal relevés. It expands over wide areas affected by Vaia windthrow in southeastern pre-Alps. The complexity of the Senecio nemorensis aggregate and the very limited relevé material available do not yet allow to hypothesize the boundaries of its distribution range, also in relation to the occurrence of its similar (vicarious) vegetation unit Digitali-Senecionetum. If it is a fact that the latter is widespread across the Europe (e.g. Oberdorfer, 1993; Mucina, 1993; Petřík et al., 2009), it remains to estab- lish its distribution within Italian territories, where data Figure 11: Stand of Athyrio filicis-feminae-Senecionetum glabrati on slope of M. Badenecche (Asiago Plateau). Slika 11: Sestoj asociacije Athyrio filicis-feminae-Senecionetum glabrati na pobočju M. Badenecche (plato Asiago). 23/1 • 2024, 1–34 14 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt are quite poor. Its occurrence is proposed without docu- mented material for Ortles-Cevedale Massif in Central Alps ( Pedrotti, 2021), as ‘Senecio fuchsii community’ for Central Apennines on the basis of only one relevé (Allegrezza, 2003), as Senecionetum fuchsii through one relevé (Oberdorfer & Hofmann, 1967) and by means of a synthetic table (5 relevés) from Northern Apennines (Mercurio & Spampinato, 2001). Epilobium angustifolium community (cluster I in Table 2) Differential species. Epilobium angustifolium (dom.) Floristic composition. In the vegetation patches Epilo- bium angustifolium increases in cover due to the rhizome vegetative propagation. In lower layer Rubus idaeus, as ju- veniles specimens, Solidago virgaurea and Luzula nivea are frequent companions. Syntaxonomy. Three of the four relevés in cluster I of Ta- ble 2 were published by Venanzoni (1989) from Lagorai Range, where also our original stand was collected. The author refered them to Senecioni sylvatici-Epilobietum an- gustifolii on the basis of Epilobium angustifolium domi- nating occurrence, but taking up Oberdorfer’s suggestion (1993) he underlines its weakness as association charac- teristic species, just like Senecio sylvaticus which however lacks in the relevés. Indeed, Senecioni-Epilobietum is con- sidered the central association of Epilobion angustifolii alliance (Oberdorfer, 1993; Dengler et al., 2007; Petrik et al., 2009), and only the large amount of acidophil- ous species such as Carex pilulifera, Holcus mollis and Rumex acetosella or also Carex leporina, Carex pallescens and Calamagrostis epigejos, as regards typified subassocia- tions, contributes to distinguish it from other associa- tions belonging to Epilobion (Oberdorfer, 1993). Since i) all these species practically lack in the stands, ii) Senecio sylvaticus is absent too, iii) Epilobium angustifolium attains high cover values in several communities on acidic as well on base-rich soils also in the study area, it appears more consistent to attribute these relevés to an ‘Epilobium an- gustifolium community’. Synecology. The community develops on sunny exposed sites, on disturbed, granitic weathering soil with a coexist- ence of mineralized organic matter and high rate of rock fragments. It is the surveyed community with the high- est nutrient soil content (Figure 6). Initial recruitment of Epilobium angustifolium is likely from off-side wind- dispersed seed, but subsequent increase in cover depends on vegetative propagation (Halpern, 1989). Syndynamic. In the same way as the Atropetum bellae- donnae can be introduced by the Galeopsis pubescens-phase in the Fagion s.l. belt, at least in base-rich soils, tall forbs with prevailing Epilobium angustifolium can represent a slightly advanced dynamic stage in acidic soils of the sub- alpine area after Galeopsis tetrahit initial invasion. Calamagrostis arundinacea communities (including Avenella flexuosa variant; clusters E-F-G in Table 3) Differential species. Calamagrostis arundinacea (dom), Avenella flexuosa (dom; acidic substrata), Vaccinium myr- tillus (subdom.) Floristic composition. Calamagrostis arundinacea on base- rich and acidic soils and Avenella flexuosa only on acidic ones can form almost monospecific stands on deforested sites. Constant companions are Vaccinium myrtillus and young shoots of Rubus idaeus. On these undisturbed or moderately disturbed sites, predisturbance forest under- story remains, giving some residual species the possibility to expand dramatically. Relevés on calcareous substrata maintain the wide range of nemoral species which accom- panied Fagus-Abies-Picea forests before the windstorm, above all Hieracium murorum, Luzula nivea, Polygona- tum verticillatum, Rubus saxatilis, Rosa pendulina. Acidic stands differ by the occurrence of the differential species of Epilobion angustifolii (Avenella flexuosa, Luzula luzu- loides, Epilobium angustifolium) and, on the contrary, the lower rate of understory species belonging to the mesic deciduous woods (Carpino-Fagetea). Syntaxonomy. Calamagrostis arundinacea-dominated clearings or natural forest-free areas were reported from many Central European territories (i.e. Oberdorfer, 1993; Mucina, 1993; Kliment & Jarolímek, 2003; Petrik et al., 2009). Communities belong to Epilobietea or Mulgedio-Aconitetea class of which Calamagrostis arundi- nacea is considered as characteristic species (Mucina et al., 2016). Our relevés dominated by C. arundinacea grouped together in the classification, but they separate accord- ing to the geological substrata of origin (Figure 3). Their respective synthetic tables split when put in comparison with selected Central European communities: stands from acidic soils join synthetic data included in Epilo- bion angustifolii and in particular show a strong similar- ity with Avenella flexuosa-rich relevés, whereas vegetation plots performed in base-rich soils form a well separated cluster (Figure 10). Despite an ecological affinity and a common dominating C. arundinacea, it is impossible to refer the relevés from acidic Lagorai chain to Rubo idaei- 23/1 • 2024, 1–34 15 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt Calamagrostietum arundinaceae (Epilobion angustifolii), as the differential species (with the exception of the wide- spread Epilobium angustifolium and the very common eponymous species) are almost entirely lacking. These stands may not either be ascribed to any association of the Calamagrostion arundinaceae alliance because of the different ecology and, consequently, the little significance of Mulgedio-Aconitetea class. Therefore, also Digitali ambiguae-Calamagrostietum arundinaceae sensu Sillinger reported from nearby Countries can be excluded on the basis of the evident floristic diversity resulting from the fact that it is a natural coenosis thriving in steep rocky slopes near the timberline (Kliment & Jarolímek, 2003). Despite Digitali-Calamagrostietum was also used to de- scribe clearing relevés (e.g. Čarni & Hrovat, 2002), Kli- ment (1995) argumented on the opportunity to reserve the association name to natural subxerothermophilous stands. Our vegetation plots on base-rich soils differ for the high frequency rate of species belonging to the mesic deciduous forests (Carpino-Fagetea), with the occurrence, in particular, of characteristic species of Eastern beech and mixed fir-beech forests (Aremonio-Fagion): Euphor- bia carniolica, Aremonia agrimonoides, Cardamine trifolia. Here herbs of Vaccinio-Piceetea are also common. Epilobietea class is generally underrepresented and the ab- solute defect of Artemisietea species highlights the absence of heavy disturbance at soil level in these stands. Eventual- ly, both relevé types on base-poor and base-rich soils result hard-to-place within the syntaxonomical scheme. Synecology. Calamagrostis arundinacea is well known in silviculture because of its expansive growth, able to ham- per the recruitment of forest species but also to protect dis- turbed areas against soil erosion, after selective cutting or in newly formed deforested sites within mixed forests. The community develops in undisturbed soil patches, where the canopy destruction involves higher light availability but the soil profile was not disrupted by tree uprooting. Picea snags and stumps created by harvesting without the use of forest- ry machineries left behind unaltered soil profile, permitting lower mineralization processes with respect to the other sampled communities (Figure 6). The values of the soil re- action attain low levels in comparison with the other com- munities, also in calcareous sites, maybe as consequence of the prolonged coniferous needle accumulation in the litter (Figure 6). The Avenella flexuosa variant replaces the expan- sive grass Calamagrostis arundinacea where more xeric and sunny conditions prevail in undisturbed acidic soils. Syndynamic. The recruitment of the main tree species able to rebuilding the silver fir-beech and the Norway spruce forests following the forest blowdown appears pos- sible without intermediate dynamic stages represented by Rubus idaeus or elder-willow scrubs (Sambuco-Salicion). Therefore, the Calamagrostis arundinacea community may be considered a slightly late step in basiphilous Are- monio-Fagion or acidophilous Luzulo nemorosae-Piceetum regeneration process. Sambucus ebulus community (rel. 46 in Table 1) – Eupatorium cannabinum community (rel. 59 in Table 1) Sambucus ebulus is a forest clearing or forest fringe species with an apophytic behaviour enabling it to colonize vari- ous anthropogenic ruderal habitats where this geophyte can be also more frequent. This tall herb rarely forms veg- etation patches in the studied forest clearings so that we have been able to collect only one relevé on calcareous soil. The stand is paucispecific as the possible reference to the association Sambucetum ebuli (e.g. Mucina & Popma, 1982). Due to the extremely small sample size, we prefer to attribute the only vegetation-plot record at the Sambu- cus ebulus community rank. For the same reason the Eupatorium cannabinum-rich stand was provisionally considered at the community level. Eupatorietum cannabini was described by Tüxen (1937) from northern Germany Alnus glutinosus for- est clear cut, whereas Čarni & Hrovat (2001) reported it from Dinaric Karst in Omphalodo-Fagetum clearings. Our stand was collected from outer pre-Alpine range in Grappa Massif, within an Ostryo-Fagetum clearing as highlighted by Ostrya and other termophilous species such as Clematis vitalba, Buphthalmum salicifolium. Syntaxonomic scheme Epilobietea angustifolii Tx. et Preising ex von Rochow 1951 Galeopsio-Senecionetalia sylvatici Passarge 1981 Epilobion angustifolii Oberd. 1957 Senecioni sylvatici-Galeopsietum tetrahit Passarge 1981 Epilobium angustifolium community Rumex acetosella community (see Appendix 1) Circaeo lutetianae-Stachyetalia sylvaticae Passarge 1967 Fragarion vescae Tx. ex von Rochow 1951 Clinopodio grandiflori-Galeopsietum pubescentis ass. nova hoc loco Atropetum bellae-donnae (Br.-Bl. 1930) Tx. 1950 Athyrio filicis-feminae-Senecionetum glabrati ass. nova hoc loco Eupatorium cannabinum community Impatiens glandulifera community Sambucus ebulus community Incertae sedis Calamagrostis arundinacea communities (with Avenella flexuosa variant) 23/1 • 2024, 1–34 16 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt Other syntaxa quoted in the text Anemono trifoliae-Abietetum Exner in Poldini et Bressan 2007 Arctietum nemorosi Tx. (1931) 1950 Arunco vulgaris-Lunarietum redivivae Sádlo et Petřík in Chytrý 2009 Atropo-Digitalietum luteae Oberd. 1957 Calamagrostio arundinaceae-Digitalietum grandiflorae (Sil- linger 1933) Oberd. 1957 Calystegio sepium-Impatientetum glanduliferae Hilbig 1972 Corydalido claviculatae-Epilobietum angustifolii Hülbusch & Tx. 1968 Dentario pentaphylli-Fagetum Mayer et Hofmann 1969 Digitali ambiguae-Calamagrostietum arundinaceae Sillin- ger 1933 Digitali purpureae-Epilobietum angustifolii Schwickerath 1944 Digitali-Senecionetum ovati Pfeiffer 1936 Epilobio montani-Geranietum robertiani Lohmeyer ex Görs & Th. Müll. 1969 Galeopsio pubescentis-Impatientum parviflorae Passarge 1997 Galeopsio tetrahit-Galinsogetum parviflorae Poldini, Oriolo et Mazzolini 1998 Gymnocarpio dryopteridis-Athyrietum filicis-feminae Sádlo et Petřík in Chytrý 2009 Junco effusi-Calamagrostietum villosae Sýkora 1983 Luzulo albidae-Fagetum Meus. 1937 Luzulo nemorosae-Piceetum Br.-Bl. et Siss. 1939 Omphalodo-Fagetum (Tregubov 1957) Marinček et al. 1993 Ostryo-Fagetum M. Wraber ex Trinajstić 1972 Pteridietum aquilini Jouanne et Chouard 1929 Rubo idaei-Calamagrostietum Fajmonová 1986 Sambucetum ebuli Felföldy 1942 Senecionetum fuchsii (Kaiser 26) Pfeiffer 1936 em. Oberd. 1973 Senecioni-Epilobietum angustifolii Hueck 1931 Stachyo sylvaticae-Impatientetum noli-tangere Hilbig 1972 Acknowledgements I am indebted to dr. F. Ferrarese for the Figure 1. Two anonymous referees gave useful comments to improve the manuscript. The journal editor team took charge of the translation into Slovenian. Stefano Tasinazzo  https://orcid.org/0000-0002-5829-0456 References AA. VV., (2020). Piano d’azione Vaia in Trentino. L’evento, gli inter- venti, i risultati. Sherwood, 248, suppl. 2, 1–72. Aichinger, E. (1933). Vegetationskunde der Karawanken. G. Fischer Verlag. Allegrezza, M. (2003). Vegetazione e paesaggio vegetale della dorsale del Monte San Vicino (Appennino centrale). Fitosociologia, 40(1), suppl. 1, 3–118. Argenti, C., Masin, R., Pellegrini, B., Perazza, G., Prosser, F., Scortegagna, S., & Tasinazzo, S. (2019). Flora del Veneto. Cierre Edizioni. Barbieri, G., & Grandesso, P. (2007). Carta Geologica d’Italia alla scala 1:50.000 con note illustrative: Foglio 082 Asiago. APAT, Regione Veneto. S.EL.CA. Barkman, J.J., Doing, H., & Segal, S. (1964). Kritische Bemerkungen und Vorschlage zur quantitativen Vegetationsanalyse. Acta Bot. Neerlandica, 13, 394–419. https://doi.org/10.1111/j.1438-8677.1964. tb00164.x Bartolucci, F., Peruzzi, L., Galasso, G., Albano, A., Alessandrini, A., Ardenghi, N.M.G., Astuti, G., Bacchetta, G., Ballelli, S., Banfi, E., Barberis, G., Bernardo, L., Bouvet, D., Bovio, M., Cecchi, L., Di Pietro, R., Domina, G., Fascetti, S., Fenu, G., Festi, F., Foggi, B., Gallo, L., Gottschlich, G., Gubellini, L., Iamonico, D., Iberite, M., Jiménez-Mejías, P., Lattanzi, E., Marchetti, D., Martinetto, E., Masin, R.R., Medagli, P., Passalacqua, N.G., Peccenini, S., Pennesi, R., Pierini, B., Poldini, L., Prosser, F., Raimondo, F.M., Roma-Marzio, F., Rosati, L., Santangelo, A., Scoppola, A., Scortegagna, S., Selvaggi, A., Selvi, F., Soldano, A., Stinca, A., Wagensommer, R.P., Wilhalm, T., & Conti, F. (2018). An updated checklist of the vascular flora native to Italy. Plant Biosystems – An International Journal Dealing with all Aspects of Plant Biology, 152(2), 179-303. https://doi.org/10.1080/112 63504.2017.1419996 Braun-Blanquet, J. (1964). Pflanzensoziologie – Grundzüge der Vegetati- onskunde. Springer Verlag. Čarni, A., & Hrovat, T. (2001). Vegetacija gozdnih posek na dinarskem visokem krasu. Hladnikia, 12-13, 57–65. Čarni, A., & Hrovat, T. (2002). Vegetacija gozdnih posek na nekarbonatni podlagi na območju Ratitovca. Hladnikia, 14, 5–11. Chippindale, H.G., & Milton, W.E.J. (1934). On the viable seeds present in the soil beneath pastures. J. Ecol., 22(2), 508-531. http:// www.jstor.org/stable/2256187 Chirici, G., Giannetti, F., Travaglini, D., Nocentini, S., Francini, S., D’Amico, G., Calvo, E., Fasolini, D., Broll, M., Maistrelli, F., Tonner, J., Pietrogiovanna, M., Oberlechner, K., Andriolo, A., Comino, R., Faidiga, A., Pasutto, I., Carraro, G., Zen, S., Contarin, F., Alfonsi, L., Wolynski, A., Zanin, M., Gagliano, C., Tonolli, S., Zoanetti, R., Tonetti, R., Cavalli, R., Lingua, E., Pirotti, F., Grigolato, S., Bellingeri, D., Zini, E., Gianelle, D., Dalponte, M., Pompei, E., Stefani, A., Motta, R., Morresi, D., Garbarino, M., Alberti, G., Valdevit, F., Tomelleri, E., Torresani, M., Tonon, G., Marchi, M., Corona, P., & Marchetti, M. (2019). Stima dei danni della tempesta “Vaia” alle foreste in Italia. Forest@, 16, 3-9. http://doi.10.3832/efor3070-016 Dengler, J., Eisenberg, M., & Schröder, J. (2007). Die grundwasserfer- nen Saumgesellschaften 23/1 • 2024, 1–34 17 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt Nordostniedersachsens im europäischen Kontext – Teil II: Säume nährstoffreicher Standorte (Artemisietea vulgaris) und vergleichende Betrachtung der Saumgesellschaften insgesamt. Tuexenia, 27, 91–136. Dengler, J., Jansen, F., Chusova O., Hüllbusch H., Nobis M.P., Van Meerbeek, K., Axmanová, I., Bruun, H.H., Chytrý M., Guarino, R., Karrer, G., Moeys, K., Raus T., Steinbauer,M.J., Tichý, L., Tyler, T., Batsatsashvili, K., Bita-Nicolae, C., Didukh, Y., Diekmann, M., Englisch, T., Fernández-Pascual, E., Frank, D., Graf, U., Hájek, M., Jelaska, S.D., Jiménez-Alfaro, B., Julve, Ph., Nakhutsrishvili, G., Ozinga, W.A., Ruprecht, E.-K., Šilc, U., Theurillat, J.-P., & Gillet, F. (2023). Ecological Indicator Values for Europe (EIVE) 1.0. Vegetation Classification and Survey, 4, 7–29. https://doi.org/10.3897/VCS.98324 Forstner, W. (1983). Ruderale Vegetation in Ost-Österreich. Teil 1. Wiss. Mitt. Niederösterr. Landesmus. Wien, 2, 19-133. Foucault, B. (de) (2011). Synthèse phytosociologique sur la végétation observée lors de la 146e session de la SBF dans les Ardennes. Bull. Soc. Hist. Nat. Ardennes, 101, 33-50. Foucault, B. (de), & Catteau, E. (2015). Contribution au prodrome des végétations de France : les Epilobietea angustifolii Tüxen & Preising in Tüxen 1950. Journal de botanique de la Société botanique de France, 70, 1–26. Galasso, G., Conti, F., Peruzzi, L., Ardenghi, N.M.G., Banfi, E., Celesti-Grapow, L., Albano, A., Alessandrini, A., Bacchetta, G., Ballelli, S., Bandini Mazzanti, M., Barberis, G., Bernardo, L., Blasi, C., Bouvet, D., Bovio, M., Cecchi, L., Del Guacchio, E., Domina, G., Fascetti, S., Gallo, L., Gubellini, L., Guiggi, A., Iamonico, D., Iberite, M., Jiménez-Mejías, P., Lattanzi, E., Marchetti, D., Martinetto, E., Masin, R.R., Medagli, P., Passalacqua, N.G., Peccenini, S., Pennesi, R., Pierini, B., Podda, L., Poldini, L., Prosser, F., Raimondo, F.M., Roma- Marzio, F., Rosati, L., Santangelo, A., Scoppola, A., Scortegagna, S., Selvaggi, A., Selvi, F., Soldano, A., Stinca, A., Wagensommer, R.P., Wilhalm, T., & Bartolucci, F. (2018). An updated checklist of the vascular flora alien to Italy. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology. 152(3), 556–572. https://doi. org/10.1080/11263504.2018.1441197 Gigante, D., Acosta, A.T.R., Agrillo, E., Attorre, F., Cambria, V.E., Casavecchia, S., Chiarucci, A., Del Vico, E., De Sanctis, M., Facioni, L., Geri, F., Guarino, R., Landi, S., Landucci, F., Lucarini, D., Panfili, E., Pesaresi, S., Prisco, I., Rosati, L., Spada, F., & Venanzoni, R. (2012). VegItaly: Technical features, crucial issues and some solutions. Plant Sociology, 49(2), 71–79. https://doi.org/10.7338/pls2012492/05 Grime, J. Ph. (2001). Plant strategies, vegetation processes, and ecosystem properties. Wiley & Sons Ltd. Grubb, P.J. (1977). The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Rev., 52, 107–145. Halpern, C.B. (1989). Early successional patterns of forest species: interactions of life history traits and disturbance. Ecology, 70(3), 704–720. Harper, J.L. (1977). Population biology of plants. Academic Press. Hintikka, V. (1987). Germination ecology of Galeopsis bifida (Lamiaceae) as a pioneer species in forest succession. Silva Fennica, 21(3), 301–313. Kleyer, M., Bekker, R.M., Knevel, I.C., Bakker, J.P, Thompson, K., Sonnenschein, M., Poschold, P., Van Groenendael, J.M., Klimes, L., Klimesová, J., Klotz, S., Rusch, G.M., Hermy, M., Adriaens, D., Boedeltje, G., Bossuyt, B., Dannemann, A., Endels, P., Götzenberger, L., Hodgson, J.G., Jackel, A-K., Kühn, I., Kunzmann, D., Ozinga, W.A., Römermann, C., Stadler, M., Schlegelmilch, J., Steendam, H.J., Tackenberg, O., Wilmann, B., Cornelissen, J.H.C., Eriksson, O., Garnier, E., & Peco, B. (2008). The LEDA Traitbase: A database of life-history traits of Northwest European flora. J. Ecol., 96, 1266- 1274. https://doi.org/10.1111/j.1365-2745.2008.01430.x (accessed 15/1/2023) Kliment, J. (1995). Digitali ambiguae-Calamagrostietum arundinaceae Sill. 1933 - eine Hochgras- oder Schlagflur-Gesellschaft?. Preslia, 67, 55–70. Kliment, J., & Jarolímek, I. (2003). Syntaxonomical revision of the plant communities dominated by Calamagrostis arundinacea (alliance Calamagrostion arundinaceae) in Slovakia. Thaiszia, 13, 135–158. Láníková, D., Kočí, M., Sádlo, J., Šumberová, K., Hájková, P., Hájek, M., & Petřík, P. (2009). Galio-Urticetea Passarge ex Kopecký 1969. In: M. Chytry (Ed.), Vegetace České republiky 2. Ruderální, plevelová, skalní a suťová vegetace (pp. 289–378) [Vegetation of the Czech Republic 2. Ruderal, weed, rock and scree vegetation]. Nakladatelstvi Academia. Lyndenmayer, D.B., & Noss, R.F. (2006). Salvage logging, ecosystem processes, and biodiversity conservation. Conservation Biology, 20(4), 949–958. Marazzi, S. (2006). Atlante orografico delle Alpi. SOIUSA. Priuli & Verlucca editori. Mercurio, R., & Spampinato, G. (2001). Dinamiche della vegetazione in tagli a buche nelle abetine del Parco Nazionale delle Foreste Casentinesi. Informatore Botanico Italiano, 33(1), 215–218. Mietto, P., & Sauro, U. (2000). Grotte del Veneto. Paesaggi carsici e grotte del Veneto. Regione Veneto, La Grafica ed. Mucina, L. (1993). Epilobietea angustifolii. In: L. Mucina, G. Grabherr & T. Ellmauer (eds.), Die Pflanzengesellschaften Österreichs. Teil 1. Anthropogene Vegetation (pp. 252–270). Gustav Fisher Verlag. Mucina, L., Bultmann, H., Diersen, K., Theurillat, J.-P., Raus, T., Čarni, A., Šumberova, K., Willner, W., Dengler, J. Garcia, R.G., Chytry, M., Hajek, M., Di Pietro, R., Iakushenko, D., Pallas, J., Daniels, F.J.A., Bergmeier, E., Santos Guerra, A., Ermakov, N., Valachovič, M., Schaminee, J.H.J., Lysenko, T., Didukh, Y.P., Pignatti, S., Rodwell, J.S., Capelo, J., Weber, H.E., Solomeshch, A., Dimopoulos, P., Aguiar, C., Hennekens, S.M., & Tichy, L. (2016). Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl Veg Sci, 19(suppl. 1), 3–264. https://doi.org/10.1111/avsc.12257 Mucina, L., & Popma, J. (1982). Sambucetum ebuli in the Netherlands. Acta Bot. Neerl., 31(1/2), 59–63. Ninot, J.M., Font, X., Masalles, R.M., & Vigo, J. (2012). Syntaxonomic conspectus of the vegetation of Catalonia and Andorra. II: Ruderal communities. Acta Bot. Barc., 53, 113–189. Oberdorfer, E. (1993). Süddeutsche Pflanzengesellschaften, Teill II, Sand- und Trockenrasen, Heide- und Borgstgras-Gesellschaften, alpine Magerrasen, Saum- Gesellschaften, Schlag- und Hochstauden-Fluren. Gustav Fisher Verlag. Oberdorfer, E., & Hofmann, A. (1967). Beitrag zur Kenntnis der Vegetation des Nordapennin. Beitr. naturk. Forsch. Südw.-Dtl., 26(1), 83–139. Passarge, H. (1981). Zur Gliederung mitteleuropäischer Epilobietea angustifolii. Folia Geobot. Phytotax., 16, 265–291. 23/1 • 2024, 1–34 18 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt Passarge, H. (1997). Veränderte Saumgesellschaften im märkischen Fagion-Areal. Tuexenia, 17, 239–249. Pedrotti, F. (2010). Le serie di vegetazione della regione Trentino-Alto Adige. In: C. Blasi (Ed.), La vegetazione d’Italia (pp. 83–110). Palombi & Partner s.r.l. Pedrotti, F. (2021). Vegetation geoseries of the Ortles-Cevedale massif (central Alps, Italy) and their phytogeographic significance. Bocconea, 29, 245–261. https://doi.org/10.7320/Bocc29.245 Pellegrini, G.B., & Sauro, U. (1994). Lineamenti geomorfologici. In: AA.VV., Storia dell’Altipiano dei Sette Comuni, vol. 1, Territorio e Istituzioni (pp. 33–42). Neri Pozza Ed. Petřík, P., Jiří Sádlo, J., & Zdenka Neuhäuslová, Z. (2009). Epilobietea angustifolii Tüxen et Preising ex von Rochow 1951. In: M. Chytry (Ed.), Vegetace České republiky 2. Ruderální, plevelová, skalní a suťová vegetace (pp. 379–405) [Vegetation of the Czech Republic 2. Ruderal, weed, rock and scree vegetation]. Nakladatelstvi Academia. Pickett, S.T.A., Cadenasso, M.L., & Meiners, S.J. (2013). Vegetation Dynamics. In: E. Van der Maarel & J. Franklin (Eds.), Vegetation Ecology, 2nd edition (pp. 107–140). Wiley-Blackwell. Pignatti, S. (2005). Valori di bioindicazione delle piante vascolari della flora d’Italia. Braun-Blanquetia, 39, 3–97. Podani, J. (2001). Syn-Tax 2000. Computer program for data analysis in ecology and systematics. User’s manual. Scientia Publishing. Poldini, L., Oriolo, G., & Mazzolini, G. (1998). The segetal vegetation of vineyards and crop fields in Friuli-Venezia Giulia (NE Italy). Studia Geobotanica, 16, 5–32. Preising, E., Vahle, H.C., Brandes, D., Hofmeister, H., Tüxen, J., & Weber, H.E. (1993). Die Pflanzengesellschaften Niedersachsens – Bestandsentwicklung, Gefährdung und Schutzprobleme – Ruderale Staudenfluren und Saumgesellschaften. Naturschutz Landschaftspflege Niedersachsen. Hannover Prosser, F., Bertolli, A., Festi, F., & Perazza, G. (2019). Flora del Trentino. Edizioni Osiride. Ratknić, M., Ratknić, T., Miletić, Z., Čokeša, V., Stajić, S., Braunović, S., & Ćirković-Mitrović, T. (2013). Changes of forest habitats destroyed by fire and the rate of natural revitalisation of damaged ecosystems. Sustainable Forestry, 67-68, 117–132. Rivas-Martínez, S., Rivas-Sáenz, S., & Penas, A. (2011). Worldwide Bioclimatic Classification System. Global Geobotany, 1, 1–634. http:// dx.doi.org/10.5616/gg110001 Šilc, U., & Čušin, B. (2005). Galeopsido-Galinsogetum Poldini & al. 1998 in NW Slovenia. Thaiszia, 15, 63–83. Sitzia, T., & Campagnaro, T. (2019). La tempesta “Vaia” nei boschi del Veneto: dei tipi forestali, di Natura 2000 e della pianificazione. Preprint pubblicato online il 6 febbraio 2019. Slavíková, J. (1958). Einfluss der Buche (Fagus silvatica L.) als Edifikator auf die Entwicklung der Krautschicht in den Buchenphytozönosen. Preslia, 30, 19–42. Tasinazzo, S. (2023). Post-harvesting late summer-autumn weed vegetation in small size arable fields in Veneto: new insights into root crop communities in North East Italy. Hacquetia, 22(1), 47–80. https://doi.org/10.2478/hacq- 2022-0009 Theurillat, J.-P., Aeschimann, D., Küpfer Ph., & Spichiger, R. (1995). The higher vegetation units of the Alps. Colloques Phytosogiologiques, 23, 189–239. Tomasi, G. (2019). Inquadramento territoriale. In: F. Prosser, A. Bertolli, F. Festi & G. Perazza, Flora del Trentino (pp. 17–26). Edizioni Osiride. Tuxen, R. (1937). Die Pflanzengesellschaften Nordwestdeutschlands. Mitt. Flor.-soz. Arbeitsgem, 3, 3–170. Tüxen, R. (1950). Grundriß einer Systematik der nitrophilen Unkrautgesellschaften in der Eurosibirischen Region Europas. Mitt. Florist.-Soziol. Arbeitsgem. N.F., 2, 94–175. Ulanova, N.G. (2000). The effects of windthrow on forests at different spatial scales: a review. Forest Ecology and Management, 135, 155–167. Van der Maarel, E. (1996). Vegetation dynamics and dynamic vegetation science. Acta Bot. Neerl., 45(4), 421–442. Venanzoni, R. (1989). La vegetazione di alcune radure formatesi in seguito a schianti provocati dal vento in Valsugana (Trentino). Inf. Bot. Ital., 21(1-3), 123–130. Verheyen, K., Guntenspergen, G.R., Biesbrouck, B., & Hermy, M. (2003). An integrated analysis of the effects of past land use on forest herb colonization at the landscape scale. J. Ecol., 91, 731–742. Appendix 1 During the peer-review evaluation process, another acido- philic community with largely dominant Rumex acetosella was discovered along the Col Visentin Ridge in the east- ernmost Venetian pre-Alps. Two relevés were gathered in clearings within a potential Fagus forest after the logging following the Picea nuclei blowdown. Calcareous strata with flint come to surface in the area. The two relevés are given in Table 4. The classification analysis (not reported) of the resulting synthetic table and those coming from the ‘Rumex acetosella-Fluren’ in Passarge (1981) resulted in the impossibility to recognize any of the described coe- noses. Pending the collection of further data, the original relevés are treated at community level. 23/1 • 2024, 1–34 19 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt Ta bl e 1: R el ev és o f t he a lli an ce F ra ga rio n ve sca e i n w in ds to rm ‘V ai a’ fo re st cl ea rin gs fr om S E Ita lia n pr e- Al ps . Ta be la 1 : F ito ce no lo šk i p op isi zv ez e Fr ag ar io n ve sca e n a go zd ni h či sti na h, n as ta lih p o ve tro lo m u ‘V ai a’ v JV it al ija ns ki h Pr ed al pa h. re le vé n um be r 1 8 16 27 2 12 5 47 28 9 3 7 21 25 58 36 32 42 31 6 22 48 14 26 52 57 10 11 13 23 49 60 62 61 24 59 46 lo ca lit y Puntara del Lom Spiazzo Garibaldi M. Sbarbatal C.ra Tombal Puntara del Lom M.Badenecche M. Brustolac C.ra Tombal C.ra Tombal V. d’Assa V. Campomulo M. Brustolac M.ga Buson M.ga Erch V. Calamento M. Panarotta V. Campelle Pra Serà V. Campelle M. Brustolac Marcesina C.ra Col del Lupo M.Badenecche C.ra Tombal V. d’Assa V. Calamento Po. del Giamolo V. d’Assa M.ga Fratte M.ga Erch C. di Remi Baitle M. Tormeno M. Tormeno M.ga Erch Campo Solagna M.ga Erch co or di na te N 45° 54.928’ 45° 53.130’ 45° 56.388’ 45° 56.868’ 45° 55.117’ 45° 54.702’ 45° 56.919’ 45° 56.658’ 45° 56.758’ 45° 55.621’ 45° 54.846’ 45° 56.806’ 45° 58.227’ 45° 56.059’ 46° 144912 46° 02.523’ 46° 08.045’ 46° 05.375’ 46° 07.872’ 45° 56.840’ 45° 57.460’ 45° 57.738’ 45° 54.847’ 45° 56.865’ 45° 56.776’ 46° 09.007’ 45° 55.115’ 45° 55.839’ 45° 55.258’ 45° 55.958’ 45° 50.542’ 45° 57.429’ 45° 51.328’ 45° 51.083’ 45° 56.054’ 45° 50.745’ 45° 56.015’ co or di na te E 11°31.440’ 11°24.416’ 11°34.959’ 11°40.682’ 11°31.527’ 11°39.008’ 11°37.423’ 11°40.695’ 11°40.938’ 11°26.932’ 11°34.010’ 11°37.301’ 11°34.530’ 11°41.045’ 11°464241 11°19.489’ 11°30.141’ 11°35.542’ 11°30.050’ 11°37.532’ 11°34.868’ 11°38.684’ 11°38.196’ 11°40.682’ 11°24.427’ 11°27.234’ 11°27.302’ 11°26.802’ 11°38.619’ 11°41.001’ 11°38.124’ 11°25.149’ 11°18.311’ 11°18.752’ 11°41.183’ 11°45.106’ 11°41.242’ da te 3/8/20 12/8/20 19/8/20 15/9/20 3/8/20 19/8/20 7/8/20 5/8/21 15/9/20 12/8/20 3/8/20 7/8/20 5/9/20 12/9/20 20/8/21 29/7/21 26/9/20 2/8/21 26/9/20 7/8/20 5/9/20 5/8/21 19/8/20 15/9/20 11/8/21 20/8/21 12/8/20 12/8/20 19/8/20 12/9/20 5/8/21 20/9/21 24/9/21 24/9/21 12/9/20 12/9/21 5/8/21 el ev at io n (m ) 1395 1500 1480 1295 1430 1180 1360 1280 1250 1120 1410 1340 1440 1195 1325 1565 1180 1235 1120 1405 1460 1480 1375 1300 1270 1380 1080 1140 1365 1130 1210 1490 1125 1250 1160 940 1130 as pe ct ESE E S NE E E WSW ENE E ENE ENE W ESE S SSW SE WSW SE W W E WNW SE NE ESE SSW SW SW SSE SSW W SE E W SE SSE SE slo pe (° ) 1 17 10 17 25 30 22 12 19 23 25 8 16 27 31 38 25 23 40 20 6 15 10 18 14 24 20 18 27 28 12 22 26 29 15 38 20 re le vé a re a (m 2) 60 25 30 25 40 80 10 01 00 10 01 00 20 30 25 50 20 25 40 80 40 10 0 40 60 80 50 40 50 10 01 00 10 0 40 40 30 40 30 50 25 25 he rb la ye r ( c) c ov er (% ) 90 90 90 70 80 10 0 90 90 10 01 00 90 70 60 90 75 75 75 90 70 10 0 90 95 10 01 00 95 90 80 70 60 95 10 0 80 80 80 10 0 75 10 0 lo w er sh ru b lay er (B 2) co ve r ( % ) - - - - - 10 - - - - <5 - - - - - - - - - - <5 - - 15 - <5 - 15 <5 5 - 5 - <5 - - sp ec ie s n um be r 43 26 38 18 37 44 23 25 23 37 34 18 26 15 34 10 34 16 34 33 22 20 29 54 39 49 53 64 59 46 32 34 33 18 43 40 6 cl us te r i n Fi gu re 3 A B C D 1 D 2 m ou nt ai n ar ea AP AP AP AP AP AP AP AP AP AP AP AP AP AP LR LR LR LR LR AP AP AP AP AP AP LR AP AP AP AP AP AP TP TP AP G M AP ca lc ar eo us b ed ro ck (c b) ac id ic b ed ro ck (a b) Ass1 cb Ass1 ab Ass1 Ass2 Ass3C 1 C 2 C 3 As s1 C lin op od io g ra nd ifl or i-G al eo ps iet um p ub esc en tis G al eo ps is pu be sce ns (C l) 4 4 4 4 4 4 5 5 5 5 4 3 3 4 4 4 4 5 3 1 2b 2a 1 + 2b 1 2a 2b + 1 2b 1003-5 1003-5 1003-5 71+-2b 88+-2b 1 + + As s2 D ig ita li- Se ne cio ne tu m o va ti Se ne cio n em or en sis /g la br at us (C l) + r + + 1 + + 2a 2b 4 4 4 3 + 2a + + 1 1 21 80 37 86 75 + + Se ne cio ca ca lia ste r 1 + + + 2a + + 4 3 3 + 1 1 + + + 50 37 10 0 25 D esc ha m ps ia ce sp ito sa + + + + 1 1 + + + + 14 11 86 25 23/1 • 2024, 1–34 20 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt re le vé n um be r 1 8 16 27 2 12 5 47 28 9 3 7 21 25 58 36 32 42 31 6 22 48 14 26 52 57 10 11 13 23 49 60 62 61 24 59 46 As s3 A tro pe tu m b ell ae -d on na e C irs iu m a rv en se + + + r r + + + 2a 2b 3 2b 2b 1 29 21 43 88 + Ve rb as cu m th ap su s/t ha ps us (A ll1 ) 1 + 1 + + 1 1 1 2b + + + 21 20 21 14 88 + At ro pa b ell a- do nn a (A ll1 ) + + 1 2a 2a 3 3 3 3 14 11 88 C irs iu m v ul ga re (A ll1 ) + + r 1 + 2a + + 14 20 16 63 + C 1 Im pa tie ns g la nd ul ife ra c om m un ity Im pa tie ns g la nd ul ife ra (C l) r + 14 11 5 C 2 Eu pa to riu m ca nn ab in um c om m un ity Eu pa to riu m ca nn ab in um (A ll1 ) + 1 + + + 20 5 50 + 3 C 3 Sa m bu cu s e bu lu s c om m un ity Sa m bu cu s e bu lu s ( Al l1 ) + 2a + 1 14 11 14 13 + 5 ch ar , d iff sp F ra ga rio n ve sca e ( Al l1 ) Fr ag ar ia v esc a + + 1 + + 1 + 1 + + + 1 + + + + 1 + + 2a 2a 1 2b 1 1 1 2a 1 2a 2a 86 80 84 10 0 88 2a 1 Ve ro ni ca ch am ae dr ys + + + + + + + + + r + + + + + + 1 + + 1 57 40 53 57 75 St ac hy s s ylv at ica + + + + 1 + + + 40 11 57 25 Vi ol a re ich en ba ch ia na + 1 + + + + + + + 14 40 21 14 50 + Po a ne m or al is + + + r + + + + 7 40 16 14 50 H yp er icu m p er fo ra tu m + + + + + + + + 21 20 21 14 38 r Aj ug a re pt an s + 1 + + + 14 50 C irs iu m o ler ac eu m + + + 2a + 14 11 14 25 St ac hy s a lp in a + + + 1 1 14 11 14 25 Ve rb as cu m ly ch ni tis + + + + 7 5 38 + M ili um eff us um + 1 14 13 D ig ita lis lu te a 2b + 25 Br om op sis b en ek en ii + + 7 5 13 Ve rb as cu m n ig ru m + 7 5 An ge lic a sy lv est ris + 20 5 ch ar , d iff sp C irc ae o lu te tia na e- St ac hy et al ia sy lv at ica e Ep ilo bi um m on ta nu m + 1 + 1 + + + + 1 1 1 + + + + + + + + 1 1 1 + 1 + + + + 86 60 79 10 0 75 G er an iu m ro be rt ia nu m 1 + r 1 + + + + + + 1 + 1 + + 2a 29 60 37 43 75 1 M yc eli s m ur al is + r + + r + + + 1 + + + + + + 1 1 + 64 40 58 43 50 + + Sc ro ph ul ar ia n od os a 1 + + + + 1 2a 2a + + 21 60 32 50 1 C ar ex sy lv at ica 1 + + + 7 5 14 25 C ar da m in e fl ex uo sa + + + 7 5 29 La ps an a co m m un is + + + 7 20 11 13 + Ae go po di um p od ag ra ria + + 7 5 13 23/1 • 2024, 1–34 21 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt re le vé n um be r 1 8 16 27 2 12 5 47 28 9 3 7 21 25 58 36 32 42 31 6 22 48 14 26 52 57 10 11 13 23 49 60 62 61 24 59 46 ch ar , d iff sp E pi lo bi on a ng us tif ol ii C al am ag ro sti s a ru nd in ac ea + + + + + + 1 + 7 80 26 29 13 Lu zu la lu zu lo id es + + + r + + 10 0 26 14 Av en ell a fle xu os a + + 20 5 14 At oc io n ru pe str e + 1 + 60 16 Va cc in iu m m yr til lu s + + + 21 16 Se ne cio sy lv at icu s + 20 5 C al lu na v ul ga ris r 20 5 ch ar , d iff sp E pi lo bi et ea a ng us tif ol ii (C l) M yo so tis sy lv at ica 1 + 1 + 2a 1 2a + 1 + 1 + + + + + + 2a 57 40 53 71 38 Pe ta sit es al bu s + 1 + 2b 1 + + 2b 1 + 2a 2a + 36 40 37 57 25 + G al eo ps is te tra hi t 2a + + 2a 2a + + + 1 + 1 2a 29 40 32 43 38 M oe hr in gi a tri ne rv ia + + + 1 1 + + 1 1 + 2a + + + + 57 80 63 38 Si len e d io ica + + + + 2a + + + + 1 21 60 32 50 + G al eo ps is sp ec io sa + + + + + 14 20 16 14 13 G na ph al iu m sy lv at icu m + + r 20 5 14 13 C ha er op hy llu m a ur eu m + + + + 21 16 13 Ve rb as cu m a lp in um + 1 20 5 13 Ep ilo bi um a ng us tif ol iu m + 14 G al iu m a pa rin e + 20 5 Ba rb ar ea b ra cte os a 1 7 5 Ep ilo bi um h irs ut um r 7 5 Im pa tie ns n ol i-t an ge re 2a 20 5 Al lia ria p et io la ta + Fa llo pi a du m et or um + ch ar sp A rt em isi et ea v ul ga ris Tu ssi la go fa rfa ra + + + + + + 1 + + 14 11 43 50 + Se ne cio in ae qu id en s + + + + + 3 14 11 14 38 C irs iu m er io ph or um + r + + 7 5 14 25 Ve rb as cu m th ap su s/m on ta nu s + + + 38 Er ig er on a nn uu s + + + 7 5 25 Ar cti um m in us + + 25 Ar cti um la pp a + 13 Po a co m pr ess a + 13 El ym us re pe ns 1 + 14 11 Si len e l at ifo lia + 23/1 • 2024, 1–34 22 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt re le vé n um be r 1 8 16 27 2 12 5 47 28 9 3 7 21 25 58 36 32 42 31 6 22 48 14 26 52 57 10 11 13 23 49 60 62 61 24 59 46 ch ar sp M ul ge di o- Ac on ite te a C ha er op hy llu m h irs ut um + + 2a + 40 11 29 M yr rh is od or at a + + + 7 5 29 C ar du us p er so na ta 1 + 14 13 C irs iu m er isi th al es + + + 14 11 13 1 G eu m ri va le + + 7 5 13 Be to ni ca a lo pe cu ru s + 14 G er an iu m sy lv at icu m + 14 Ru m ex a rif ol iu s + 14 Ac on itu m ly co cto nu m a gg + 13 Te lek ia sp ec io sa + 13 ch ar sp R ob in iet ea Ru bu s i da eu s j uv . + 2a 1 + + + 1 2a + 1 2b 2b 1 1 1 1 1 + 1 4 4 3 3 2a + 2b + + 1 1 2b + + 10 01 00 10 01 00 88 2a 1 Sa m bu cu s n ig ra (B 2+ c) + 2a + + 2b r + 1 + 2b 1 + r 43 20 37 75 Sa m bu cu s r ac em os a (B 2+ c) 1 + + 1 + + + + 1 14 80 32 29 13 Sa lix ca pr ea (c ) + + r + + + + + 14 40 21 14 38 + + ch ar sp C ar pi no -F ag et ea D ry op te ris fi lix -m as + + + + + + + + + + + + 1 + + + + + r + 57 60 58 71 50 + + At hy riu m fi lix -fe m in a + + + + + + + + + 2b 1 1 + + r + 36 60 42 10 0 13 H ier ac iu m m ur or um p .m ax .p . + + + + 1 + + + + 1 + + + 50 40 47 14 38 Lu zu la n iv ea 1 + + 1 + 1 2b + + + 29 20 26 14 50 + C ar da m in e i m pa tie ns + + 2a + 1 1 + + + + + 43 20 37 14 38 C ar ex d ig ita ta + 2a + + + + + + 14 20 16 14 50 + La m iu m g al eo bd ol on + + + + + + + + + 29 40 32 29 13 C ar ex a lb a + + + + 2a 2b 7 5 63 D ry op te ris d ila ta ta + + + 2a + 1 14 11 57 St ell ar ia n em or um /n em or um 1 + + 1 + + 40 11 43 13 Fa gu s s ylv at ica (p l) + + + 1 1 7 5 14 38 Ar em on ia a gr im on oi de s + + + r + + 21 16 29 13 Cy cla m en p ur pu ra sce ns r r + 1 1 r 21 16 38 G ym no ca rp iu m d ry op te ris + + 1 + + 40 11 29 13 Po lyg on at um v er tic ill at um + + r + + 21 16 14 13 Lo ni ce ra x ylo ste um (B 2+ c) + + + + 14 11 14 13 + Sa ni cu la eu ro pa ea + + r 7 5 29 r Vi ol a riv in ia na + + + 20 5 14 13 H ell eb or us v iri di s + + + 7 5 25 r C ar da m in e t rif ol ia + 1 1 2b 21 16 14 23/1 • 2024, 1–34 23 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt re le vé n um be r 1 8 16 27 2 12 5 47 28 9 3 7 21 25 58 36 32 42 31 6 22 48 14 26 52 57 10 11 13 23 49 60 62 61 24 59 46 D ap hn e m ez er eu m + + 14 13 + + Pr en an th es pu rp ur ea r + 14 13 + C am pa nu la tr ac he liu m 1 + 25 Ap os er is fo et id a + + + 14 11 14 C lin op od iu m g ra nd ifl or um r + + + 14 40 21 Ac ta ea sp ica ta + r 7 5 13 H ed er a he lix + + 7 5 13 + Ep ip ac tis h ell eb or in e r + + 21 16 Lu zu la p ilo sa + 14 Pr un us a vi um (c ) + 14 Ra nu nc ul us n em or os us + 14 Br ac hy po di um sy lv at icu m + 13 1 La bu rn um a lp in um (p l) r 13 Sa lv ia g lu tin os a + 13 1 3 + G al iu m o do ra tu m 1 r 14 11 Pa ris q ua dr ifo lia + 7 5 Ph eg op te ris co nn ec til is + 20 5 An em on oi de s t rif ol ia + 7 5 Po lys tic hu m a cu lea tu m + 7 5 + Ad ox a m os ch at ell in a + 7 5 La m iu m o rv al a + 7 5 M er cu ria lis p er en ni s + 7 5 As ar um eu ro pa eu m + Kn au tia d ry m eia + Pu lm on ar ia o ffi cin al is + ch ar sp V ac cin io -P ice et ea O xa lis a ce to sel la + + + r 1 + 1 + 1 1 r + + + + + 57 40 53 57 25 + Lo ni ce ra n ig ra (B 2+ c) + 1 + 2b + + 14 11 29 25 Pi ce a ab ies (p l+ c) + + + 20 5 29 Lu zu la sy lv at ica /si eb er i + r 14 13 C irc ae a al pi na 1 + + 7 20 11 14 Ve ro ni ca u rt ici fo lia + + + 7 40 16 H om og yn e a lp in a + 14 La rix d ec id ua (c ) + 14 M ai an th em um b ifo liu m + + 14 11 M ela m py ru m sy lv at icu m r 7 5 O rt hi lia se cu nd a + 7 5 23/1 • 2024, 1–34 24 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt re le vé n um be r 1 8 16 27 2 12 5 47 28 9 3 7 21 25 58 36 32 42 31 6 22 48 14 26 52 57 10 11 13 23 49 60 62 61 24 59 46 ch ar sp M ol in io -A rr he na th er et ea G al iu m m ol lu go a gg + 1 + + + + + + + 1 + + + + + + + + 1 1 1 64 47 86 75 + Tr ifo liu m p ra te ns e r + + + + + r 14 11 29 38 La th yr us p ra te ns is + + + + + r 14 11 50 Vi cia se pi um + + + + + 14 11 38 + Tr ise ta ria fl av esc en s + r r 43 Sc he do no ru s p ra te ns is + + + 14 25 St ell ar ia g ra m in ea + + + r 14 11 29 Po a pr at en sis + + + 7 5 14 13 Tr ifo liu m re pe ns + + 14 13 Le uc an th em um v ul ga re a gg + r 25 C er as tiu m h ol os te oi de s + + + 7 20 11 13 Po a tri vi al is 1 + + 14 11 13 + Ra nu nc ul us a cr is r 1 r 14 11 13 Vi cia cr ac ca + + 7 5 14 Ph leu m p ra te ns e r + 7 5 13 + Ag ro sti s s to lo ni fer a + 14 Bi sto rt a offi cin al is + 14 C ar ex sp ica ta r 14 Pr un ell a vu lg ar is + 14 Lo tu s c or ni cu la tu s + 13 Cy no su ru s c ris ta tu s r 13 Ep ilo bi um te tra go nu m /te tra go nu m + 13 C en ta ur ea n ig re sce ns /tr an sa lp in a + + 14 11 r Po a su pi na r 20 5 Vi ol a tri co lo r/s ax at ili s 1 7 5 An th ris cu s s ylv est ris + 7 5 C ar ex h irt a 1 7 5 C ar um ca rv i + 7 5 M en th a lo ng ifo lia + 7 5 ch ar sp N ar de te a str ict ae Ag ro sti s c ap ill ar is + + + + + + + + 1 + + + 2a + 2a + + + + + r 50 20 42 10 0 75 + Ve ro ni ca o ffi cin al is + + + + 1 + + + + 1 + 2b 1 1 2a 43 40 42 29 63 + H yp er icu m m ac ul at um 1 + 1 1 + 1 + 1 + + 36 26 57 13 Po te nt ill a er ec ta + + + + 14 20 16 14 C ar ex le po rin a + 14 ch ar sp F est uc o- Br om et ea Br ac hy po di um ru pe str e + + + + 2b + 14 11 14 38 + Eu ph or bi a cy pa ris sia s + + + + + + + 29 21 14 25 + 23/1 • 2024, 1–34 25 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt re le vé n um be r 1 8 16 27 2 12 5 47 28 9 3 7 21 25 58 36 32 42 31 6 22 48 14 26 52 57 10 11 13 23 49 60 62 61 24 59 46 M ed ica go lu pu lin a + r + + + + 21 16 38 Ar ab is hi rsu ta + r 25 ch ar sp T rif ol io -G er an iet ea C ar ex p ai ra e + + 1 + 1 14 11 38 + C ru cia ta g la br a + + + + 7 5 29 13 + C lin op od iu m v ul ga re + 13 In ul a co ny za e + 13 Tr ifo liu m a ur eu m + 13 Bu ph th al m um sa lic ifo liu m + ot he r U rt ica d io ica 1 + 1 + 1 + + 1 + 1 + + 1 1 + 1 1 + 1 + 1 + + 2b 1 + 71 60 68 10 0 75 + + 1 So la nu m d ul ca m ar a + 2b 1 r + r + 2a 1 + + 1 + 1 1 1 + 43 40 42 43 75 1 So lid ag o vi rg au re a + + 1 + + + + + 1 14 40 21 43 25 2a + D ac ty lis g lo m er at a s.l . + + + + + + + + + 36 26 43 13 + Ta ra xa cu m se ct. R ud er al ia + r r + r + + + 21 16 14 50 So rb us a uc up ar ia (B 2+ c) + + + + + 1 + 14 11 57 13 + El ym us ca ni nu s + + r + 1 + + + 29 21 43 13 + Fe stu ca ru br a ag g + + + + + 1 + 29 21 43 Ru bu s s er . G la nd ul os i j uv . 4 + + + + + 7 40 16 14 25 3 2a Ad en os ty les a lp in a + + + + + + 21 16 14 25 C al am ag ro sti s v ar ia + 1 + + 14 38 + Ac hi lle a m ill efo liu m a gg + + + + 7 5 29 13 Ac er p seu do pl at an us (p l) r + r + 7 5 14 25 Al ch em ill a vu lg ar is ag g + + + + + 21 16 29 So nc hu s o ler ac eu s + + r 7 5 25 G er an iu m p ha eu m + 1 29 C ar du us d efl or at us s. l. + + 14 13 C ar lin a ac au lis r + 14 13 Va ler ia na o ffi cin al is ag g + + 14 13 Va ler ia na tr ip te ris + r 14 13 Er ig er on ca na de ns is + + 25 r Ar en ar ia se rp yll ifo lia + + 25 Er ig er on su m at re ns is + r + 14 11 13 G ym no ca rp iu m ro be rt ia nu m + + + 14 11 13 Pe ta sit es pa ra do xu s + + 7 5 13 Po lyg on um a vi cu la re + + 7 5 13 An th ox an th um o do ra tu m + 14 H er ac leu m sp ho nd yli um s. l. + 14 + 23/1 • 2024, 1–34 26 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt re le vé n um be r 1 8 16 27 2 12 5 47 28 9 3 7 21 25 58 36 32 42 31 6 22 48 14 26 52 57 10 11 13 23 49 60 62 61 24 59 46 Ar ab is al pi na + 13 Bu dd lej a da vi di i r 13 Er ica ca rn ea + 13 Ju gl an s r eg ia (p l) + 13 M oe hr in gi a m us co sa + 13 O str ya ca rp in ifo lia (c ) + 13 1 Po te nt ill a ve rn a ag g r 13 Sc ro ph ul ar ia ca ni na + 13 Se ne cio v ul ga ris r 13 So lid ag o ca na de ns is + 13 C or ylu s a ve lla na (p l) r + 7 20 11 Ru bu s s ax at ili s + + 14 11 Sa lix a pp en di cu la ta (c ) + + 14 11 Vi ol a bi flo ra + + 14 11 C am pa nu la w ita sek ia na + 7 5 C ar ex o rn ith op od a r 7 5 C lem at is vi ta lb a + 7 5 + 2a Er ys im um ch eir an to id es + 7 5 Eu ph or bi a am yg da lo id es + 7 5 Fa llo pi a co nv ol vu lu s + 7 5 La ctu ca se rr io la + 7 5 Pe rsi ca ria m ac ul os a r 7 5 Po a an nu a + 7 5 Po lyp od iu m v ul ga re + 7 5 Ro sa ca ni na a gg + 7 5 Ro sa p en du lin a (c ) + 7 5 Ru bu s u lm ifo liu s + 7 5 So ld an ell a al pi na + 7 5 Aq ui leg ia a tra ta + C he no po di um a lb um r C or nu s s an gu in ea (c ) + C ra ta eg us m on og yn a (c ) + Pl an ta go m aj or r So nc hu s a sp er r AP : As ia go P la te au LR : La go ra i R an ge T P: To ne zz a Pl at ea u G M : G ra pp a M as sif pl : pl an tu la eh 23/1 • 2024, 1–34 27 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt relevé number 29 53 30 55 44 41 54 50 37 63 65 64 locality M .g a C on se ria M .g a C on se ria M .g a C on se ria Va lso le ro D og he tto de S pi ad o Bu sa G ra nd e Va lso le ro M .g a C on se ria M . Pa na ro tta Bi en o Bi en o Bi en o coordinate N 46 ° 09 .9 42 ’ 46 ° 10 .0 78 ’ 46 ° 10 .0 50 ’ 46 ° 09 .3 54 ’ 46 ° 05 .7 98 ’ 46 ° 02 .1 97 ’ 46 ° 09 .3 18 ’ 46 ° 16 66 98 46 ° 02 .5 46 ’ - - - coordinate E 11 ° 32 .0 49 ’ 11 ° 32 .0 92 ’ 11 ° 32 .0 28 ’ 11 ° 25 .6 73 ’ 11 ° 35 .6 62 ’ 11 ° 18 .1 34 ’ 11 ° 25 .6 38 ’ 11 ° 53 10 22 11 ° 19 .6 48 ’ - - - date 17 /8 /2 1 17 /8 /2 1 20 /9 /2 0 20 /8 /2 1 2/ 8/ 21 29 /7 /2 1 20 /8 /2 1 3/ 10 /2 1 29 /7 /2 1 1/ 9/ 85 1/ 9/ 85 1/ 9/ 85 elevation (m) 1735 1740 1580 1585 1580 1335 1550 1700 1605 1250 1250 1250 aspect SE SE SE SSE SSE ENE SE SE S - - - slope (°) 35 35 35 35 35 35 25 34 37 - - - relevé area (m2) 80 30 40 12 30 50 8 40 15 10 8 8 herb layer (c) cover (%) 85 85 70 70 90 90 65 50 100 100 100 100 lower shrub layer (B2) cover (%) - - - <5 - <5 10 - - - - - species number 16 11 24 21 10 32 18 22 17 8 7 11 cluster in Figure 3 H I mountain area LR LR LR LR LR LR LR LR LR LR LR LR Ass1 C1 Ass1 Senecioni-Galeopsietum tetrahit Galeopsis tetrahit 5 5 4 4 4 4 3 1 100 Senecio sylvaticus (All) 1 1 + 2b 50 C1 Epilobium angustifolium community Epilobium angustifolium (All) + + + 5 4 4 4 38 100 diff sp Epilobion angustifolii (All) Calamagrostis arundinacea + + + 1 2a + + + + 1 100 50 Atocion rupestre + + + + + + + + + 1 100 50 Luzula luzuloides + 1 1 + + + 1 + 1 100 25 Avenella flexuosa + 1 + + + + + 75 25 Vaccinium myrtillus + + + 38 char, diff sp Epilobietea angustifolii Epilobium montanum + + + + 1 50 25 Verbascum thapsus/thapsus + 1 1 1 50 Moehringia trinervia + + + + 50 Senecio nemorensis/glabratus + r + + 38 25 Cirsium vulgare + + 2b 38 Galeopsis pubescens + 2a 25 Geranium robertianum + + 13 25 Gnaphalium sylvaticum + + 13 25 Fragaria vesca + + 50 Eupatorium cannabinum + 13 Chaerophyllum aureum + 13 Galeopsis speciosa + 25 char sp Nardetea strictae Veronica officinalis + 1 + + + + 63 25 Ajuga pyramidalis + + + + 50 Table 2: Relevés of the alliance Epilobion angustifolii in windstorm ‘Vaia’ forest clearings from SE Italian pre-Alps. Tabela 2: Fitocenološki popisi zveze Epilobion angustifolii na gozdnih čistinah, nastalih po vetrolomu ‘Vaia’ v JV italijanskih Predalpah. 23/1 • 2024, 1–34 28 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt relevé number 29 53 30 55 44 41 54 50 37 63 65 64 Carex leporina + + 1 38 Agrostis capillaris + 13 char sp Artemisietea vulgaris Senecio inaequidens + + 25 Tussilago farfara + + 50 Epilobium ciliatum + 13 Verbascum thapsus/montanus 1 13 char sp Robinietea Rubus idaeus juv. 1 + 1 1 + 1 2a 1 2a 1 1 100 75 Sambucus racemosa (B2+c) + + + 1 + + 2a + 100 Sambucus nigra (c) + 13 char sp Carpino-Fagetea Hieracium murorum p.max.p. + + 1 + + 1 + + 88 25 Luzula nivea 1 + 1 + 2 1 38 75 Poa nemoralis + + + 2a + 38 50 Athyrium filix-femina + + + 13 50 Viola reichenbachiana + r 25 Prenanthes purpurea + + 13 25 Mycelis muralis + 13 Carex digitata + 13 Dryopteris dilatata + 13 Laburnum alpinum (pl) r 13 Cardamine impatiens + 25 Dryopteris filix-mas 1 25 char sp Vaccinio-Piceetea Oxalis acetosella 1 + 25 Veronica urticifolia r + 13 25 char sp Molinio-Arrhenatheretea Carex spicata + 13 Viola tricolor/saxatilis + 13 Deschampsia cespitosa + 13 Juncus effusus + 13 other Solidago virgaurea + + + + + + 1 50 75 Senecio cacaliaster + + r + 38 25 Urtica dioica + + + + 2a 50 25 Abies alba (B2+c) 1 13 Anthoxanthum odoratum + 13 Cirsium arvense + 13 Cytisus hirsutus + 25 Epilobium collinum + 13 Glechoma hederacea + 25 Hypericum perforatum + 13 Silene dioica + 25 Silene nutans s.l. + 13 Solanum dulcamara + 13 Sorbus aucuparia juv. + 13 Taraxacum sect. Ruderalia r 13 AP: Asiago Plateau TP: Tonezza Plateau pl: plantulae GM: Grappa Massif LR: Lagorai Range 23/1 • 2024, 1–34 29 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt re le vé n um be r 4 19 51 15 17 18 20 43 45 34 66 39 33 35 56 38 40 lo ca lit y Fratton del Conte M. Castellier Grande V. d’Assa Marcesina Bosco Pergola M. Agro M.ga Buson Doghetto de Spiado Doghetto de Spiado M.ga Conseria Bieno M. Panarotta M.ga Conseria M. Panarotta Valsolero M. Panarotta M. Panarotta co or di na te N 45° 56.365’ 45° 58.724’ 45° 56.977’ 45° 56.252’ 45° 53.531’ 45° 905539 45° 58.375’ 46° 05.715’ 46° 05.899’ 46° 09.976’ - 46° 02.553’ 46° 09.931’ 46° 02.525’ 46° 09.351’ 46° 02.600’ 46° 02.550’ co or di na te E 11°35.394’ 11°34.027’ 11°24.818’ 11°37.652’ 11°23.707’ 11°395938 11°34.713’ 11°35.426’ 11°35.961’ 11°31.824’ - 11°19.533’ 11°31.829’ 11°19.474’ 11°25.685’ 11°19.690’ 11°19.371’ da te 7/8/20 5/9/20 11/8/21 19/8/20 1/9/20 1/9/20 5/9/20 2/8/21 2/8/21 26/9/20 1/9/85 29/7/21 26/9/20 29/7/21 20/8/21 29/7/21 29/7/21 el ev at io n (m ) 14 40 15 55 12 40 13 80 16 20 16 50 14 40 15 05 15 05 17 05 12 60 16 35 16 60 15 65 15 70 16 35 15 75 as pe ct N N W ES E N W N N E SE E S SE SS E S SS E SS E ES E SE SE S slo pe (° ) 19 26 24 24 25 25 28 36 23 45 40 17 30 23 40 25 16 re le vé a re a (m 2) 80 40 40 60 50 80 25 25 25 25 20 30 20 50 25 30 30 he rb la ye r ( c) c ov er (% ) 10 0 90 10 0 90 10 0 95 10 0 95 10 0 10 0 10 0 10 0 10 0 10 0 10 0 95 90 sh ru b la ye r ( B1 +B 2) c ov er (% ) 10 - 10 5 <5 <5 - 5 <5 <5 - 5 - <5 - - - sp ec ie s n um be r 41 36 45 44 38 24 32 20 10 22 18 19 25 13 16 15 10 cl us te r i n Fi gu re 3 F E G m ou nt ai n ar ea AP AP AP AP AP AP AP LR LR LR LR LR LR LR LR LR LR ca lc ar eo us b ed ro ck (C 1) ac id ic b ed ro ck (C 2) C 1 C 2 C 2_ v C 1+ C 2 C al am ag ro sti s a ru nd in ac ea c om m un iti es C al am ag ro sti s a ru nd in ac ea 4 4 4 4 5 5 5 4 4 5 5 5 5 5 5 + 1 10 0 10 0 2 C 2_ v Av en ne lla fl ex uo sa v ar ia nt Av en ell a fle xu os a 2b 2a + + + + 2b 5 4 88 2 Ta bl e 3: C al am ag ro sti s a ru nd in ac ea -r ic h re le vé s o n ba se -r ic h an d ba se -p oo r s oi ls in w in ds to rm ‘V ai a’ fo re st cl ea rin gs fr om S E Ita lia n pr e- Al ps . Ta be la 3 : P op isi z vr sto C al am ag ro sti s a ru nd in ac ea n a z b az am i b og at ih in si ro m aš ni h tle h na g oz dn ih č ist in ah , n as ta lih p o ve tro lo m u ‘V ai a’ v JV it al ija ns ki h Pr ed al pa h. 23/1 • 2024, 1–34 30 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt re le vé n um be r 4 19 51 15 17 18 20 43 45 34 66 39 33 35 56 38 40 ch ar sp M ul ge di o- Ac on ite te a Se ne cio ca ca lia ste r + 1 + 2a + + + 29 63 C irs iu m er isi th al es + + + + 43 13 G er an iu m sy lv at icu m + + + + 57 Ph yt eu m a sp ica tu m +o va tu m + + + 43 G eu m ri va le + + 29 Ra nu nc ul us p la ta ni fo liu s + + 29 Ac on itu m ly co cto nu m a gg + 14 Ad en os ty les a lli ar ia e 1 14 M yr rh is od or at a 1 14 C al am ag ro sti s v ill os a 1 13 C ar du us p er so na ta + 13 Ep ilo bi um a lp est re + 13 ch ar , d iff sp E pi lo bi et ea a ng us tif ol ii Fr ag ar ia v esc a + 1 1 + 1 + + + + 71 50 Pe ta sit es al bu s + + + 43 G al eo ps is te tra hi t + + + + + 38 2 Ep ilo bi um m on ta nu m + + + 14 25 G al eo ps is pu be sce ns r r + 14 25 Ep ilo bi um a ng us tif ol iu m 2 1 + 38 G al eo ps is sp ec io sa r 14 Se ne cio n em or en sis /g la br at us + 13 G al iu m a pa rin e r 13 ch ar sp N ar de te a str ict ae Ag ro sti s c ap ill ar is + + + 2a 29 25 Po te nt ill a er ec ta + + + 43 Ve ro ni ca o ffi cin al is + + + 29 13 C al lu na v ul ga ris + + + + 38 1 H yp er icu m m ac ul at um r + 29 Vi ol a ca ni na + r 25 Aj ug a py ra m id al is + 13 ch ar sp R ob in iet ea Ru bu s i da eu s j uv . 2a + + + + + 2b 2a + 1 + 1 2a + + 1 86 10 0 2 Sa m bu cu s r ac em os a (B 2+ c) + + + + r + + 14 75 23/1 • 2024, 1–34 31 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt re le vé n um be r 4 19 51 15 17 18 20 43 45 34 66 39 33 35 56 38 40 Sa lix ca pr ae a (B 2+ c) + 1 + + 14 38 Sa m bu cu s n ig ra (c ) r 14 ch ar sp C ar pi no -F ag et ea H ier ac iu m m ur or um p .m ax .p . + 1 + + 1 + + 1 r + + 1 + 10 0 50 2 Pr en an th es pu rp ur ea + + + 2a 2b + + + 1 + + 86 63 Lu zu la n iv ea 2a 1 1 2b 1 + + 1 + 2a 10 0 38 At hy riu m fi lix -fe m in a + + + r + + + 1 + + 71 63 Po lyg on at um v er tic ill at um + + + 1 1 1 + 10 0 Ap os er is fo et id a + + + + + + 86 Eu ph or bi a ca rn io lic a 1 1 + + + + 86 C ar ex d ig ita ta + + + + + 71 Lo ni ce ra a lp ig en a + + + + 57 Pa ris q ua dr ifo lia + + r + 57 D ry op te ris fi lix -m as + + + + 43 13 Ar em on ia a gr im on oi de s + + + 43 La m iu m g al eo bd ol on + + 1 43 M eli ca n ut an s + + 1 43 Ph eg op te ris co nn ec til is + 2a + 43 Vi ol a re ich en ba ch ia na + + + 29 13 D ry op te ris d ila ta ta + + + 29 13 Ar un cu s d io icu s + + 29 G ym no ca rp iu m d ry op te ris + + 29 Ac ta ea sp ica ta + 14 An em on oi de s t rif ol ia + 14 C ar da m in e p en ta ph yll os + 14 C ar da m in e t rif ol ia 2a 14 C ar ex a lb a + 14 C ar ex sy lv at ica + 14 D ap hn e m ez er eu m + 14 D ry m oc hl oa sy lv at ica + 14 Fa gu s s ylv at ica (p l) + 14 Li liu m m ar ta go n + 14 Po lys tic hu m a cu lea tu m + 14 Pu lm on ar ia o ffi cin al is + 14 Ra nu nc ul us n em or os us + 14 Po a ne m or al is + 13 Po pu lu s t re m ul a (B 2) + 13 23/1 • 2024, 1–34 32 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt re le vé n um be r 4 19 51 15 17 18 20 43 45 34 66 39 33 35 56 38 40 ch ar sp V ac cin io -P ice et ea O xa lis a ce to sel la + + 1 1 + + + + 86 25 M ai an th em um b ifo liu m + + + + + + + 86 13 Va cc in iu m v iti s-i da ea + 1 1 + + r + 1 57 38 1 H om og yn e a lp in a 1 + + + + + + 71 13 1 Pi ce a ab ies (B 2+ c) + r r 1 + + + 43 38 1 Ve ro ni ca u rt ici fo lia + 1 1 + + 71 Lu zu la sy lv at ica /si eb er i 1 2a + + 57 Lo ni ce ra n ig ra (B 2) + + + 43 M ela m py ru m sy lv at icu m + + 29 C lem at is al pi na + 14 H up er zi a sel ag o + 14 Lo ni ce ra n ig ra (c ) + 14 Ly co po di um a nn ot in um 2a 14 La rix d ec id ua (p l) + 13 ot he r Va cc in iu m m yr til lu s 2a 2a 1 2a + + 1 1 1 1 + + 1 3 1 10 0 75 2 So lid ag o vi rg au re a + + + + + + + + 1 + + 1 1 43 10 0 2 So rb us a uc up ar ia (c ) 2a r 1 + + + + + + + + 86 38 2 Ru bu s s ax at ili s 2a 1 1 1 + + 1 10 0 Ro sa p en du lin a (B 2+ c) 1 r 1 + + + + 10 0 Lu zu la lu zu lo id es 2a 1 1 1 1 3 + 2b 75 2 Ab ies a lb a (p l) + r + r r 71 Va ler ia na tr ip te ris 1 + + + + 71 C ar ex a us tro al pi na + + + + 57 Sa lix a pp en di cu la ta (c ) + r + 29 13 So rb us a uc up ar ia (B 1+ B2 ) 1 + + 29 13 Al ch em ill a vu lg ar is ag g r + 29 As pl en iu m v iri de + + 29 C ru cia ta g la br a + + 29 Vi ol a bi flo ra + + 29 G al iu m m ol lu go a gg + + 14 13 Lo tu s c or ni cu la tu s + + 25 Cy tis us h irs ut us + + 25 Pt er id iu m a qu ili nu m + 1 25 Aj ug a re pt an s + 14 Tr ol liu s e ur op ae us + 14 23/1 • 2024, 1–34 33 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt re le vé n um be r 4 19 51 15 17 18 20 43 45 34 66 39 33 35 56 38 40 Ve ro ni ca ch am ae dr ys + 14 Ac er p seu do pl at an us (p l) + 14 Ad en os ty les a lp in a + 14 An th ox an th um o do ra tu m r 14 Er ica ca rn ea + 14 C al am ag ro sti s v ar ia + 14 C ar ex m on ta na 2a 14 Fe stu ca ru br a ag g r 14 G ym no ca rp iu m ro be rt ia nu m + 14 H ell eb or us n ig er + 14 Pa rn as sia p al us tri s + 14 C am pa nu la w ita sek ia na + + 13 1 C ar ex o rn ith op od a + 13 Ep ip ac tis a tro ru be ns 1 13 Be tu la p en du la (B 2+ c) + + 13 C am pa nu la b ar ba ta + 13 C irs iu m a rv en se + 13 C or ylu s a ve lla na (B 2) + 13 D ac ty lo rh iz a m ac ul at a/ fu ch sii + 13 M ol in ia a ru nd in ac ea + 13 Ph yt eu m a be to ni cif ol iu m +z ah lb ru ck ne ri + 13 Ta ra xa cu m se ct. R ud er al ia r 13 Va ler ia na o ffi cin al is ag g + 13 M ela m py ru m p ra te ns e + 1 AP : As ia go P la te au LR : La go ra i R an ge T P: To ne zz a Pl at ea u G M : G ra pp a M as sif pl : pl an tu la e 23/1 • 2024, 1–34 34 Tasinazzo The early-succession herbaceous vegetation in the windstorm clearings within the Italian southeastern pre-Alpine mountain belt relevé A B locality Le Crosere Le Crosere coordinate N 46° 00.582’ 46° 00.562’ coordinate E 12° 13.432’ 12° 13.422’ date 14/7/23 14/7/23 elevation (m) 1135 1130 aspect SE SSE slope (°) 29 26 relevé area (m2) 25 25 herb layer (c) cover (%) 100 95 shrub layer (B1+B2) cover (%) - - species number 11 15 mountain area VR VR C1 Rumex acetosella community Rumex acetosella (All) 5 5 diff sp Epilobion angustifolii (All) Calluna vulgaris + Carex pilulifera + char, diff sp Epilobietea angustifolii Agrostis capillaris 1 1 Hypericum perforatum 1 1 Dryopteris carthusiana + + Epilobium montanum + r Fragaria vesca + char sp Nardetea strictae Veronica officinalis 1 1 Potentilla erecta + + Carex pallescens + + other Rubus idaeus juv. + + Carex pairae + Athyrium filix-femina + Betula pendula juv. + Luzula nivea + Dryopteris filix-mas + VR: Col Visentin Ridge Table 4: Rumex acetosella-dominated relevés coming from ‘Vaia’ windstorm clearings in a Fagus forest afforested with Picea abies in the easternmost Venetian pre-Alps. Tabela 4: Popisi z dominantno vrsto Rumex acetosella na gozd- nih čistinah v najbolj vzhodnih Beneških Predalpah, nastalih po vetrolomu ‘Vaia’ na bukovih rastiščih in pogozdenih s smreko..