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Abstract

Demographic bias in face recognition systems is an in-
creasing concern as these systems become more and more
prevalent in society. Additionally, due to the COVID-
19 pandemic, face masks have shown to be troublesome
for many such systems. In this paper we focus on how
masked faces influence the demographic bias of such sys-
tems. We took a pretrained convolutional neural network
(VGGFace2) and used it for feature encoding of faces
Jfrom a demographically balanced dataset. We generated
a new dataset of masked faces based on the original one.
For each of the two datasets, we performed verification
by constructing matches and non-matches and comput-
ing similarity scores between pairs of faces’ feature vec-
tors. We compared the results for groups based on gender
(male, female) and ethnicity (white, black, indian, asian),
and discovered that our system is biased towards some
demographic groups. Due to the imbalanced data used
to train our neural network, our system performs the best
on images corresponding to male and white subjects. We
found that masking the faces does not in any significant
manner change those biases, but the verification rates,
however, drop significantly.

1 Introduction

With increasing importance of artificial intelligence solu-
tions that are being used on a daily basis, more and more
ethical and legal concerns are being raised regarding the
transparency, accountability, explainability and fairness
of such systems [1]. When it comes to different demo-
graphic groups of individuals (e.g. differences in gender,
ethnicity), the concern of the bias of such intelligent sys-
tems is often raised, especially in relation to biometric
pipelines such as face recognition.

These and similar concerns might have especially be-
en amplified recently, where face masks have been fre-
quently worn due to the global COVID-19 pandemic. Ma-
ny studies have reported that face recognition systems
have trouble with recognition of individuals with masks,
with their accuracy dropping noticeably when compared
to non-masked individuals [2]. These issues can then
be addressed by either using recognition system robust
to occlusions or combining face recognition with other
modalities, such as ears [3, 4], eyes [5], etc.
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For face recognition specifically, more and more sys-
tems are adopting Convolutional Neural Networks (CNN)
as the algorithmic backbone in decision-making, due to
their increasing accuracy and decreasing computational
cost. Such systems require massive amounts of training
data and employ large numbers of local, non-linear com-
putations.

This paper focuses on evaluating the differences in
bias when recognizing masked and non-masked individ-
uals of different demographic groups. Individuals are
grouped based on two, arguably most controversial de-
mographic properties — ethnicity and gender. We use
established bias estimation approaches on a CNN-based
system for the above mentioned groups in order to depict
the situation in modern systems.

1.1 Nomenclature

We acknowledge the terms used to describe demographic
groups and concepts, such as gender and ethnicity can be
very diverse and bear different cultural, social or political
implications. We do not wish to redefine the terms, but
we have observed some patterns in the use of these terms
in cited papers. Terms sex and gender are used inter-
changeably. Similarly, little distinction is made between
race and ethnicity. In this paper, we therefore decided
to use the terms gender and ethnicity. More importantly,
however, the terms gender and sex are usually used in a
binary manner and we regard them in that way in our pa-
per as well, but merely due to the statistical prevalence of
binary genders.

1.2 Background & related work

Over the last few years, many concerns have been raised
regarding the fairness of various automated systems. Ma-
ny studies of risk assessment tools have found the issue
of systemic bias against some demographic groups (e.g.
dark-skinned people). The consequences of the decisions
of such systems can be detrimental, with subjects expe-
riencing difficulties, such as being denied bail or wel-
fare payments [6]. While arguably being mostly uninten-
tional, bias is a common occurrence in automated com-
puter algorithms and machine learning.

In this context, many causes of bias exist. The most
prominent cause originates from the training data, which
can be imbalanced, incomplete, outdated, or of varying



quality [7]. All of these factors are detrimental to the
training our algorithm and propagate the present biases.
Another cause of bias can be in the implementation of
the chosen algorithm, which can be flawed due to poor
design or data preprocessing steps [7].

Many studies have already been conducted in the field
of demographic bias of face recognition systems. Gar-
cia et. al. [8] have discovered that when evaluating the
FaceNet deep learning based model, evaluated on the Mul-
tiPIE dataset, the model produces the most errors on im-
ages of Asian female subjects, performing best on images
of Caucasian male subjects. On the other hand, Beveridge
et. al. [9] have achieved better performance on Asian
male subjects than on Caucasian males. When it comes
to the age covariate, Michalski et. al. [10] achieved better
performance on older subjects and with larger variation
in performance for children.

Similarly, due to the COVID-19 pandemic, many stud-
ies have already been conducted in the field of assessment
and mitigation of the impact of wearing face masks on fa-
cial recognition systems. Damer et. al. [11] have noted
a large drop in the verification performance and the sig-
nificant effect on the genuine and imposter score distribu-
tions when wearing masks. Anwar & Raychowdhury [12]
propose retraining the models on masked sets, generated
from original training data, seeing a significant improve-
ment in recognition performance.

However, to the best of our knowledge no studies
have yet explored how, if at all, masked faces impact
the inherent demographic biases of facial recognition sys-
tems. We will explore this issue in the scope of this paper.

CNNss are inherently biased due to the data they are
trained on [13]. Aside from the quality and diversity
of the data, the balance of the dataset in regards to im-
portant distinguishing properties proves to be a big fac-
tor, especially with smaller datasets. As a result, some
systems which for example originate from Asia and are
trained predominantly on Asian subjects, will have an
easier time distinguishing between and consequently rec-
ognizing Asian subjects than Caucasians. The opposite
may hold for a system trained on Caucasians [14], etc.
This fact and the fact that CNN-based approaches are the
most used approaches in face recognition by a large mar-
gin, makes them the ideal candidate for our analysis.

2 Method

For our study, we use a model based on the popular Res-
Net architecture. The model is trained on the VGGFace2
dataset, which consists of over 3 million faces and promi-
ses large variations in pose, age, illumination, ethnicity
and profession [15]. The actual distribution of ethnic-
ity seems to however heavily favor the Caucasian Latin
group at around 79%, with the other three groups (African
American, East Asian and Asian Indian) distributed rela-
tively equally over the remainder. When it comes to gen-
ders, the dataset consists of approximately 62% male and
38% female subjects [16].

The ResNet-50 architecture is designed to output a
128-dimensional feature vector, encoding the relevant face
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attributes. The result of encoding two images, which be-
long to the same subject is therefore hopefully two simi-
larly sized and oriented vectors and vice versa.

We choose the ResNet architecture due to its residual
connections, which mitigate the vanishing gradient prob-
lem and consequently improve performance in deep net-
works. The 50-layer pretrained version presents a good
trade-off between speed and performance [17] and is
more than deep enough for our purposes.

3 Experimental Setup

In the case of evaluating bias in face recognition, the most
useful approach proves to be verification, which begins
with comparing a chosen image (probe) against a specific
reference image [14]. We therefore base our bias anal-
ysis on verification in our experiments. The similarity
score between the two images is computed, and based on
a set threshold, we either evaluate the pair of images to
be a match (belong to the same subjects) or non-match.
The purpose of the CNN in this case is essential, as it
takes care of encoding the high dimensional images to a
low dimensional vector of discriminating features. Such
vectors can then easily and more reliably be compared to
one another.
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When we choose a specific threshold for the similarity
score, errors will inevitably be made in regards to our
match decision. We may recognize two different subjects
as one and the same (false positive, FP), or not recognize
the same subject in both images (false negative, FN), as
seen in Figure 1. Depending on where we set the thresh-
old, the sizes of these errors will vary. The metrics which
quantify these errors are the false positive rate or FPR
(also FAR, FMR):

Metrics

FP FP
FPR=—=————=1-1TNR (1)
N FP+TN
and the false negative rate or FNR (also FRR, FNMR):
FN FN
FNR= — =———=1-TPR, )
P FN+ TP

where TPR and TNR represent the true positive rate
and true negative rate [18]. We may also report the equal
error rate or EER, which is achieved by setting the thresh-
old in such a way, that both of the above mentioned error
rates are equal.

3.2 Similarity score

In order to measure the similarity of the feature vectors u
and v, we resort to the standard cosine similarity, which
proves to be a good similarity measure in high-dimension-
al settings and especially for face verification [19]. It is
defined as:

u-v

similarity = cos ¢ =
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Figure 1: Similarity score distribution in verification. The red
area represents FP, the blue FN. FPR can be calculated as the
ratio between the red area and the area under the curve marked
by (d). The FNR is the ratio between the blue area and the area
under the curve marked by (g).

3.3 Evaluation dataset and matching

In order to gather reliable results, our dataset for evalua-
tion would have to be balanced in terms of the chosen de-
mographic properties. For this reason we chose the Bal-
anced Faces in the Wild (BFW) dataset, which consists
of 8 subgroups, composed of individuals with different
combinations of gender (male vs. female) and ethnicity
(white vs. asian vs. indian vs. black). For each sub-
group, there are 100 distinct subjects, described by 25
(non-masked) images each [13]. This totals to 2500 im-
ages per subgroup and 20000 total images. From this we
are able to construct 22324 x 800 = 240000 (genuine)
matches. We then produced the same amount of non-
matches (impostor matches) for each subject by sampling
the probe image uniformly at random from the rest of the
population. When we group results by the ethnicity or
gender of the reference images, we end up with the same
amount of matches as well as non-matches which simpli-
fies the analysis.

The images in the dataset vary noticeably in resolu-
tion, illumination and aspect.

3.4 Masked dataset

To perform unbiased comparisons of performance bet-
ween masked and non-masked individuals, we need to
have a dataset of masked faces, equivalent to BFW. We
do this by generating a masked version of the dataset us-
ing a deep learning tool [12]. The generated faces wore a
generic and popular blue surgical mask. This tool is not
perfect, as it sometimes misaligns the mask, and in some
extreme cases where the input face is captured from an
off angle (e.g. profile) the tool is unable to generate a
masked face.

We managed to produce a masked dataset which con-
sists of 16911 out of the original 20000 faces. Generated
images can be seen in Figure 2. We repeated the match
and non-match generation for this dataset as well, which
this time resulted in a little over 174000 matches and the
same number of non-matches.
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Figure 2: Examples of masked (generated) and original faces
from BFW.

4 Results and Discussion

We first compared distributions of similarity scores be-
tween masked and non-masked datasets. The distribu-
tions across all demographic groups can be seen in Fig-
ure 3. It is evident that the distributions of true and false
matches for non-masked individuals have a smaller inter-
section than those of masked individuals, which implies
lower error rates for the non-masked population. This re-
sult is expected, as masking individuals obstructs an im-
portant part of their faces and prevents extraction of dis-
criminating features. However, we might have expected
a noticeable shift to the right of both genuine and impos-
tor distributions when it comes to masked faces, due to
the features extracted from the masked part of faces be-
ing similar across all matches. This is however not the
case, implying that our neural network could capable of
detecting and ignoring similarities due to face masks.

match
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Figure 3: Distribution of masked and non-masked matches vs.
non-matches. From the areas under the intersection of the match
and non-match distributions (indicated by the colored areas), it
is apparent that the equal error rate is noticeably lower for non-
masked individuals.

Next, we take a look at true positive rates (verifica-
tion rates) at different values of FPR across different de-
mographic groups. This gives us an insight of how well



different demographic groups perform at the face verifi-
cation task. In Figure 4 the two groups based on gender
are compared, whereas in Figure 5, four groups are com-
pared based on ethnicity.

We immediately notice that the drop in TPR when
using masked faces as opposed to non-masked ones is
quite large across all demographic groups, especially at
lower FPR (10~* to 1073). This would render such a
basic system using no error mitigation strategies useless
in practice for verification of masked faces.

When it comes to gender, males clearly achieve bet-
ter verification rate than females regardless of masking.
At FPR 0.1%, the TPR for males and females is 0.82
and 0.79 respectively (non-masked), or 0.62 and 0.49 re-
spectively (masked). This disparity between genders can
be attributed to the imbalance of training data based on
gender. We do not observe any meaningful shifts in bias
based on gender when comparing masked and non-mask-
ed performance.
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Figure 4: True positive rate at different false positive rates based
on gender, showing a better verification rate of males than fe-
males.

When it comes to ethnicity, we observe a similar pat-
tern, with whites achieving the best result across both
datasets. When comparing indians and blacks, indians
seem to perform noticeably better than blacks when mask-
ed, and about the same as blacks when not wearing masks
at higher FPR. The impostor and genuine distributions
for non-masked faces are similar for blacks and indians,
however the genuine distribution of indians on masked
faces is significantly more skewed to the right with smaller
variance than the one of blacks. The genuine distribu-
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Figure 5: True positive rate at different false positive rates based
on ethnicity, showing the best verification rate of whites, fol-
lowed by indians, blacks and finally asians.

tion of black faces might have changed significantly when
dropping images to create the masked dataset. However,
we cannot disregard the possibility that the facial features
covered by the mask are more discriminative when com-
paring faces of black subjects as opposed to indian sub-
jects. However, the drops in TPR when comparing non-
masked and masked faces at different FPR are more or
less proportional to the biases observed for each ethnic-
ity group (see Table 1). Therefore, we cannot with con-
fidence conclude that the discriminating features of the
masked area might be more important for verification of
one ethnicity group than another.

The disparity in performance for different ethnicity
groups is again most likely due to the mentioned imbal-
ance of the training data used for our neural network.
As we initially believed, masking the faces does not in
any significant manner change these biases. We were un-
able to confirm the hypothesis that the influence of wear-
ing face masks on face recognition models differs signif-
icantly for different demographic groups. This would re-
quire more extensive experiments to be conducted. Aside
from that theory, we found no real reason for biases to
change significantly when the lower face region is masked.
In practice, this means such models generally do not need
to be additionally corrected for demographic bias due to
masking the mouth and nose area, however the biases be-
tween demographic groups might become more apparent
due to the significant drops in verification performance.
Generally, we would in practice consider one of the pos-



sible error mitigation strategies due to face concealment
if we wished to use such a system in a production envi-
ronment.

. TPR TPR TPR drop

FPR Ethnicity (Original) (Masked) TPR drop (%)
white 0.81 0.52 0.29 35.80
0.01% .bla.ck 0.65 0.28 0.37 56.92
indian 0.71 0.31 0.40 56.34
asian 0.59 0.26 0.33 55.93
white 0.91 0.68 0.23 25.27
0.1% .bla.ck 0.81 0.51 0.30 37.04
’ indian 0.82 0.59 0.23 28.05
asian 0.73 0.45 0.28 38.36
white 0.97 0.85 0.12 12.37
1% black 0.93 0.75 0.18 19.35
indian 0.92 0.77 0.15 16.30
asian 0.88 0.72 0.16 18.18

Table 1: True positive rate drop at different false positive rates
based on ethnicity.

5 Conclusion

To summarize, we have analyzed and compared the re-
sults of face verification between masked and non-masked
faces, for demographic groups based on two different co-
variates (gender, ethnicity). We used a single CNN, pre-
trained on millions of faces but somewhat imbalanced in
the demographic groups we are interested in. We have
observed differences in verification rates for different eth-
nicities and genders, but proportionally to the imbalance
of the training data. We found that masking the faces does
not in any significant manner change those biases.

In order to solidify our findings, additional testing
should be performed on other face recognition models,
trained on differently balanced datasets. The procedure of
generating masked images, generating matches and non-
matches for evaluation could be further looked into and
improved to make the results more reliable and their in-
terpretations more conclusive.

References

[1] J. G. Cavazos, P. Phillips, C. D. Castillo, and A. O’Toole,
“Accuracy comparison across face recognition algorithms:
Where are we on measuring race bias?” ArXiv, vol.
abs/1912.07398, 2019.

Z. Wang, G. Wang, B. Huang, Z. Xiong, Q. Hong, H. Wu,
P. Yi, K. Jiang, N. Wang, Y. Pei, H. Chen, Y. Miao,
Z. Huang, and J. Liang, “Masked face recognition dataset
and application,” 2020.

(2]

[3] Z.Emersi¢ et al., “The unconstrained ear recognition chal-
lenge 2019,” in 2019 International Conference on Biomet-

rics (ICB), 2019, pp. 1-15.

7. Emersi¢, J. Krizaj, V. gtruc, and P. Peer, Deep Ear
Recognition Pipeline. Cham: Springer International Pub-
lishing, 2019, pp. 333-362.

P. Rot, M. Vitek, K. Grm, Z. Emersi¢, P. Peer, and V. Struc,
“Deep sclera segmentation and recognition,” in Handbook
of vascular biometrics. Springer, Cham, 2020, pp. 395—
432.

(4]

(5]

364

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(7]

(18]

(19]

J. Beveridge, G. Givens, P. J. Phillips, and B. Draper,
“Factors that influence algorithm performance in the face
recognition grand challenge,” Computer Vision and Image
Understanding, vol. 113, pp. 750-762, 2009.

C. Castelluccia, D. Métayer, E. P. D.-G. for Par-
liamentary Research Services, and E. P. E. P. R.
S. S. F. Unit, Understanding Algorithmic Decision-
making: Opportunities and Challenges. Publications
Office of the European Union, 2019. [Online]. Available:
https://books.google.si/books?id=L4WTwwEACAAJ

R. V. Garcia, L. Wandzik, L. Grabner, and J. Krueger,
“The harms of demographic bias in deep face recognition
research,” in 2019 International Conference on Biometrics
(ICB), 2019, pp. 1-6.

J. Beveridge, H. Zhang, B. Draper, P. Flynn, Z. Feng,
P. Huber, J. Kittler, Z. Huang, S. Li, Y. Li, M. Kan,
R. Wang, S. Shan, X. Chen, H. Li, V. Struc, J. Krizaj,
C. Ding, and P. J. Phillips, “Report on the fg 2015 video
person recognition evaluation,” 2015.

D. Michalski, S. Y. Yiu, and C. Malec, “The impact of
age and threshold variation on facial recognition algorithm
performance using images of children,” in 2018 Interna-
tional Conference on Biometrics (ICB), 2018, pp. 217-
224.

N. Damer, J. H. Grebe, C. Chen, F. Boutros, F. Kirchbuch-
ner, and A. Kuijper, “The effect of wearing a mask on face
recognition performance: an exploratory study,” 2020.

A. Anwar and A. Raychowdhury, “Masked face recogni-
tion for secure authentication,” 2020.

J. P. Robinson, G. Livitz, Y. Henon, C. Qin, Y. Fu, and
S. Timoner, “Face recognition: Too bias, or not too bias?”
in 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), 2020, pp. 1-
10.

P. Drozdowski, C. Rathgeb, A. Dantcheva, N. Damer, and
C. Busch, “Demographic bias in biometrics: A survey on
an emerging challenge,” IEEE Transactions on Technol-
ogy and Society, vol. 1, no. 2, pp. 89-103, 2020.

Q. Cao, L. Shen, W. Xie, O. Parkhi, and A. Zisserman,
“Vggface2: A dataset for recognising faces across pose
and age,” 2018, pp. 67-74.

A. Greco, G. Percannella, M. Vento, and V. Vigilante,
“Benchmarking deep network architectures for ethnicity
recognition using a new large face dataset,” Machine Vi-
sion and Applications, vol. 31, p. 67, 2020.

A. Canziani, A. Paszke, and E. Culurciello, “An analysis
of deep neural network models for practical applications,”
2017.

A. Tharwat, “Classification assessment methods: a de-
tailed tutorial,” 2018.

H. Nguyen and L. Bai, “Cosine similarity metric learning
for face verification,” vol. 6493, 2010, pp. 709-720.



