NATURA SLOVENIAE Revija za terensko biologijo • Journal of Field Biology Letnik • Volume 26 Številka • Number 2 Ljubljana 2024 NATURA SLOVENIAE Revija za terensko biologijo • Journal of Field Biology Letnik/Volume 26 • Številka/Issue 2 • 2024 Založila • Published by Založba Univerze v Ljubljani/University of Ljubljana Press Za založbo/For the Publisher: Gregor Majdic, rektor Univerze v Ljubljani/the Rector of the University of Ljubljana Izdajata • Issued jointly by Biotehniška fakulteta, Univerza v Ljubljani Jamnikarjeva 101, SI-1000 Ljubljana Tel.: (0)1 320 30 00; Telefax: (0)1 256 57 82 https://www.bf.uni-lj.si Za izdajatelja/For the Issuer: Marina Pintar, dekanja Biotehniške fakultete UL/the Dean of the Biotehnical Faculty UL Nacionalni inštitut za biologijo Vecna pot 121, SI-1000 Ljubljana Tel.: (0)59 232 700; Telefax: (0)1 2412 980 https://www.nib.si Za izdajatelja/For the Issuer: Maja Ravnikar, direktorica/director https://journals.uni-lj.si/NaturaSloveniae Odgovorna urednica • Editor in Chief Maja Zagmajster Tehnicni urednik • Technical Editor Jernej Polajnar Uredniški odbor • Editorial Board Matjaž Bedjanic (Slovenia), Nicola Bressi (Italy), Maarten de Groot (Slovenia), Marijan Govedic (Slovenia), Nejc Jogan (Slovenia), Rok Kostanjšek (Slovenia), Borut Mavric (Slovenia), Nataša Mori (Slovenia), Toni Nikolic (Croatia), Nina Šajna (Slovenia), Chris Van Swaay (Netherlands), Peter Trontelj (Slovenia), Rudi Verovnik (Slovenia), Damjan Vinko (Slovenia) Naslov uredništva • Address of the Editorial Office NATURA SLOVENIAE, Vecna pot 111, SI-1111 Ljubljana, Slovenija Izvlecki prispevkov so zavedeni v zbirkah ASFA, AGRIS, Biological Abstracts, Biosis Previews, COBISS in Zoological Records ISSN: 1580-0814 e-ISSN: 1854-3081 UDK: 57/59(051)=863=20 Lektorji • Language Editors Oblikovanje naslovnice • Layout za anglešcino (for English): Henrik Ciglic Daša Simcic akad. slikarka, Atelje T za slovenšcino (for Slovene): Henrik Ciglic Natisnjeno • Printed in Naklada • Circulation 2024 300 izvodov/copies Tisk • Print Publikacija je brezplacna Cicero, Begunje, d.o.o. The publication is free of charge Sofinancira • Cofinanced by Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost RS/Slovenian Research and Innovation Agency Kazalo vsebine ZNANSTVENI CLANEK / SCIENTIFIC PAPER Laura KOLOŠA, Franc JANŽEKOVIC, Tina KLENOVŠEK: Izbira habitata evropskega bobra Castor fiber (Rodentia: Castoridae) na Gorickem (severovzhodna Slovenija). / Habitat selection of European beaver, Castor fiber (Rodentia: Castoridae) in the Goricko region (Northeastern Slovenia). ............... 5 KRATKI ZNANSTVENI VESTI / SHORT COMMUNICATIONS Maj KASTELIC, Behare REXHEPI: First records of two slug species, Limax conemenosi (O. Boettger, 1882) and Limax dacampi (Menegazzi, 1855) (Gastropoda: Limacidae) in Slovenia. / Prvi podatki o dveh vrstah golih polžev, pikastem slinarju Limax conemenosi (O. Boettger, 1882) in rdecem slinarju Limax dacampi (Menegazzi, 1855) (Gastropoda: Limacidae) v Sloveniji. ............................. 21 Cene FIŠER, Teo DELIC, Maja ZAGMAJSTER: Three new species of Niphargidae family added to the list of subterranean amphipods (Crustacea: Amphipoda) in Slovenia. / Tri nove vrste iz družine Niphargidae dodane na seznam podzemnih postranic (Crustacea: Amphipoda) Slovenije. ............... 35 TERENSKI NOTICI / FIELD NOTES Miloš VITTORI: First record of the pill bug Armadillidium arcangelii Strouhal, 1929 (Crustacea: Isopoda) in Slovenia. / Prva najdba pasavcka vrste Armadillidium arcangelii Strouhal, 1929 (Crustacea: Isopoda) v Sloveniji. ................................................................................................. 41 Benjamin SCHWARTZ, Maarten DE GROOT: Tropidia scita (Harris, 1780) (Diptera: Syrphidae), a new hoverfly species for Slovenia. / Tropidia scita (Harris, 1780) (Diptera: Syrphidae), nova vrsta muhe trepetavke za Slovenijo. .................................................................................................... 45 POPRAVKI / ERRATA ...................................................................................................................... 59 Izbira habitata evropskega bobra Castor fiber (Rodentia: Castoridae) na Gorickem (severovzhodna Slovenija) Laura KOLOŠA1, Franc JANŽEKOVIC2, Tina KLENOVŠEK2 1Kupšinci 23, SI-9000 Murska Sobota; E-mail: laura.kolosa@gmail.com 2Univerza v Mariboru, Fakulteta za naravoslovje in matematiko, Koroška cesta 160, SI-2000 Maribor, Slovenija; E-mails: franc.janzekovic@um.si, tina.klenovsek@um.si Izvlecek. Evropski bober je v Sloveniji in vecjem delu Evrope v zacetku 20. stoletja veljal za izumrlo vrsto. Ob koncu 20. stoletja se je po številnih reintrodukcijah in uveljavitvi ohranitvenih ukrepov ponovno razširil. V Sloveniji se je vnovic naselil leta 1998, na Gorickem leta 2016. V zimi 2021/22 smo na Gorickem popisali šest vodnih teles, na katerih je bilo med letoma 2016 in 2020 potrjeno pojavljanje te vrste. Namen popisa je bil ugotoviti znacilnosti bobrovega habitata na Gorickem glede na kljucne okoljske dejavnike, ki mu omogocajo preživetje. Zaradi zgodnje faze naselitve smo domnevali, da je bober za svoj teritorij izbral optimalne habitate. Na izbranih odsekih vodnih teles smo popisali 82 ploskev. Aktivnost bobra je bila potrjena na 71 % ploskev s stojeco in 26 % ploskev s tekoco vodo. Najpogostejši tip kopenskega habitata so bile njive. Gozd je pokrival le 18 % ploskev. Bober je bil najpogosteje zabeležen prav na ploskvah z gozdom (73 %). Brežine vodnih teles so bile v glavnem zelo strme (> 60°). Sledovi bobra so bili najpogosteje najdeni na brežinah z višino do vkljucno 1 m, naklonom 30°–60° in povprecno 500 m oddaljenostjo od naselij. Vodotoki, ki jih je na Gorickem naselil bober, so razmeroma ozki in plitki, a jih bober kljub temu naseljuje. Najpomembnejši okoljski dejavnik za bobre je razpoložljivost ustrezne lesne vegetacije, s katero se hrani predvsem jeseni in pozimi. Poznavanje znacilnosti in izbire habitata je pomembno za varstveno upravljanje in monitoring bobra na Gorickem in v Sloveniji. Kljucne besede: Castor fiber, evropski bober, Goricko, habitat, ekološke spremenljivke Abstract. Habitat selection of European beaver Castor fiber (Rodentia: Castoridae) in the Goricko region (Northeastern Slovenia) – The European beaver was considered an extinct species in Slovenia and much of Europe in the early 20th century. At the end of the 20th century, it expanded again following numerous reintroductions and the implementation of conservation measures. In Slovenia, it has been present again since 1998 and in Goricko since 2016. During the winter of 2021/22, we surveyed six water bodies in the Goricko region, where beaver presence was confirmed between 2016 and 2020. The purpose of the survey was to determine the characteristics of beaver habitat at Goricko based on key environmental factors that enable its survival. Due to the early stage of colonization, we assumed that beavers had chosen optimal habitats for their territory. We surveyed 82 plots in selected sections of the water bodies. Beaver activity was confirmed on 71% of plots with standing water and 26% of plots with flowing water. The commonest types of terrestrial habitats were fields, while forests were present on 18% of the plots. Beavers were most frequently found on plots with forested areas (73%). The banks of the water bodies were generally very steep (> 60°). Signs of beaver activity were most commonly found on banks with a height of up to 1 meter, a slope of 30°–60°, and an average distance of 500 metres from settlements. The watercourses inhabited by beavers at Goricko are relatively narrow and shallow, yet beavers can still be found there. The most important environmental factor for beavers is the availability of suitable woody vegetation, which they primarily feed on in the autumn and winter. Understanding habitat characteristics and selection is essential for conservation management and monitoring of beavers at Goricko and Slovenia. Key words: Castor fiber, European beaver, Goricko, habitat, ecological variables Uvod Evropski bober (Castor fiber Linnaeus, 1758), najvecji evropski glodavec, ki je v preteklosti poseljeval celotno Evrazijo, od Sredozemskega morja na jugu do tundre na severu (Hartman 1996), je bil v 19. stoletju v vecini dežel iztrebljen. Skupaj je ostalo okoli 1300 osebkov, od tega 700 v Evropi (Kryštufek et al. 2006). Po zaslugi ponovnih naselitev in varstvenih ukrepov se je bober po Evropi ponovno razširil in njegove populacije so stabilne ali se povecujejo (Batbold et al. 2021; Halley et al. 2021). V Sloveniji bober ponovno živi od leta 1998, ko je iz Hrvaške po reki Savi dosegel porecje Krke (Kryštufek et al. 2006). Iz Hrvaške je nato naselil še druge reke v vzhodni in severovzhodni Sloveniji. Bober je bil na Gorickem prvic zaznan šele leta 2016 na Hodoškem jezeru (Pecek 2017). Od leta 2017 bobra najdemo še vsaj na Veliki Krki, Mali Krki s Križevskim jezerom, reki Ledavi in Ledavskem jezeru, Dolenskem potoku in Lukaj potoku (Malacic et al. 2018, 2020; BioPortal 2024). Bober lahko živi v vseh tipih sladkih vod, v katerih je voda vse leto in je na voljo dovolj rastlinske hrane (Kryštufek et al. 2006). Vecino casa preživi v vodi. Na kopnem se zadržuje predvsem v obvodnem pasu, vecinoma do 20 m od vode. V tem pasu najdemo najvec sledov njegovega gibanja (steze in stecine) in prehranjevanja (obglodano in podrto lesno vegetacijo). Spomladi in poleti se hrani vecinoma z nelesno vegetacijo, jeseni in pozimi pa predvsem z lubjem grmovnih in drevesnih vrst (Macdonald 2001). Je teritorialna žival, ki v zacetni fazi poselitve novega obmocja izbira optimalne, z narašcanjem velikosti populacije pa tudi suboptimalne habitate (John et al. 2010; Zwolicki et al. 2018). Optimalni habitati so tisti s pocasi tekoco ali stojeco vodo brez velikih nihanj gladine, globino 2–4 m, širino 10–100 m (ce gre za reko), glineno ali ilovnato brežino z višino > 1 m in naklonom < 60°, gosto in visoko zelišcno ter mehkolesno vegetacijo, z majhnim vplivom cloveka (Macdonald et al. 1995; Kryštufek et al. 2006). Bober lahko habitat tudi spremeni, da ga lažje izkorišca (Campbell-Palmer et al. 2016). Na vodah z nestalno gladino zgradi jezove, s cimer zviša gladino vode in upocasni vodni tok. Tako z ustvarjanjem in vzdrževanjem mokrišc zvišuje ekosistemsko in vrstno pestrost naseljenega obmocja (Kryštufek et al. 2006; Law et al. 2019). Zaradi prevelikih nihanj v nivoju vode, izcrpanja vegetacije ali prevelikih antropogenih motenj lahko obmocje tudi zapusti (Campbell-Palmer et al. 2016). V iskanju ugodnejših razmer se lahko seli tudi znotraj svojega teritorija (Fryxell 2001). V skrajnem JV delu Prekmurja, kjer se je bober ponovno pojavil že leta 2003 (Kocjancic 2005), je bil v letih 2020–22 zabeležen že na vecini vodotokov. Naselil je vse optimalne habitate, ki jih je bilo na raziskanem obmocju malo, in se v glavnem naselil na suboptimalnih habitatih, z izrazitim vplivom cloveka v 20-metrskem obvodnem pasu (Vida 2022). Na Gorickem je bil bober prvic ponovno zaznan leta 2016. V zimi 2021/22, kar je najvec pet let po ponovni naselitvi, smo na Gorickem popisali šest vodnih teles, na katerih je bil bober potrjen med letoma 2016 in 2020. Namen popisa, ki ga predstavljamo v tem prispevku, je bil ugotoviti znacilnosti izbranega habitata bobra na Gorickem. Popisali smo znacilnosti habitata, ki veljajo kot kljucne za bobrovo preživetje (Macdonald et al. 1995; Kryštufek et al. 2006). Na izbranih odsekih vodnih teles smo popisali tako dele s sledmi kot tiste brez sledov bobrove aktivnosti. Zaradi zgodnje faze naselitve smo domnevali, da je bober za svoj teritorij izbral optimalne habitate. Poznavanje znacilnosti in izbire habitata je pomembno za varstveno upravljanje in monitoring bobra na Gorickem in v Sloveniji. Raziskava je bila del magistrskega dela Laure Kološa (2023) in v prispevku so predstavljeni izbrani rezultati njenega dela. Materiali in methode Raziskovalno obmocje je zajemalo izbrane odseke vodnih teles v Krajinskem parku Goricko v SV Sloveniji. Izbrali smo šest vodnih teles (Sl. 2; Tab. 2); od tega dve jezeri in štiri potoke. Vodna telesa so bila izbrana, ker je bilo na njih v obdobju 2016–2020 dokumentirano bobrovo pojavljanje (Gregorc & Zavratnik 2017; Pecek 2017; Malacic et al. 2017, 2020). Bober je bil v letih 2017–2020 potrjen tudi na Ledavskem jezeru (Malacic et al. 2017, 2020). V raziskavo ga nismo vkljucili zaradi težke dostopnosti do obmocja s sledmi bobrove aktivnosti, ki so bile zabeležene v vrbovem sestoju severno od jezera. V dostopnem delu jezera v zimi 2021/22 sledov ni bilo. Na vsakem od izbranih potokov smo popisali en odsek, razen na Mali Krki dva odseka. Izbrali smo odseke, za katere smo iz literature in predhodnih lastnih opažanj vedeli, da jih naseljuje bober. Ob Hodoškem jezeru smo v popis vkljucili celotno obrežje. V obmocjih, izbranih za vzorcenje, smo pregledali lesno vegetacijo. Iskali smo znacilne znake bobrovega glodanja na drevesih in grmovnicah ter podrto lesno vegetacijo. Kot znak bobrove aktivnosti na obmocju smo upoštevali samo sveže sledi objedanja vegetacije. Obmocje izbranih odsekov vodnih teles smo razdelili na popisne ploskve dolžine in širine 20×20 metrov. Ploskve smo orientirali pravokotno na vodno telo tako, da je posamezna ploskev obsegala 2 m širok pas vodnega in 18 m kopenskega habitata (Sl. 1). Med hojo vzdolž izbranega odseka potoka ali okrog jezera smo za popis nakljucno izbrali nekaj ploskev brez sledov in s sledmi bobrove aktivnosti (Sl. 2). Z vecjim številom popisnih ploskev smo zajeli vec spreminjajocih se parametrov vzdolž ali okoli vodnega telesa. Popisnim ploskvam smo na terenu dolocili geografske koordinate (Tab. S1). Skupaj smo popisali 82 ploskev, od tega 31 s sledmi bobrove aktivnosti (Tab. 2). Slika 1. Skica popisne ploskve velikosti 20×20 metrov. Popisna ploskev kvadratne oblike z dvo-metrskim pasom v vodnem telesu in 18-metrskim pasom na kopnem. Figure 1. Sketch of sample plot size 20×20 metres. The sample plot was square in shape with a two-metre strip in the waterbody and an 18-metre strip on land. A screenshot of a computer Description automatically generated Slika 2. Satelitski posnetki odsekov vodnih teles, na katerih je potekalo vzorcenje, z vsemi potencialnimi popisnimi ploskvami (prazni kvadratki) in izbranimi ploskvami (polni kvadratki) s sledmi (rdece barve) in brez sledov (bele barve) bobrove aktivnosti. Figure 2. Satellite images of sections of water bodies where sampling was conducted, with all potential sample plots (empty squares) and selected plots (filled squares) with signs of beaver activity (red) and without signs (white). Znotraj izbranih popisnih ploskev smo zbrali podatke o kljucnih abiotskih in biotskih dejavnikih okolja, za katere domnevamo, da vplivajo na izbiro bobrovega habitata, ter se uporabljajo za oceno primernosti habitata za bobra (Macdonald et al. 1995; Kryštufek et al. 2016). Dejavniki okolja, ki so bili osnova za popis znacilnosti habitata bobra, so našteti v Tab. 1. Znotraj izbranih popisnih ploskev smo vodno telo kategorizirali kot tekoco, stojeco ali obcasno vodo. Pripadajoci kopenski habitat smo opredelili kot enega od petih habitatov: antropogeni travnik, naravno zelišcno vegetacijo, gozd, ruderalno zelišcno združbo ali njivo. Ce sta bila v okviru posamezne popisne ploskve dva ali vec tipov kopenskih habitatov, smo zabeležili prevladujocega. Kopenskemu habitatu smo vizualno ocenili delež pokrovnosti z lesno vegetacijo in delež pokrovnosti z zelišcno vegetacijo. Brežino smo kategorizirali glede na nastanek kot naravno ali umetno in dolocili njeno strukturo (trden, sipek ali ilovnat material). Izmerili smo višino brežine na 10 cm natancno in naklon, ki ga brežina opiše, na 5o natancno. Vodnemu telesu smo izmerili širino na pol metra natancno in globino vode na 1 cm natancno na razdalji 1,5 m od vodnega brega. Podatke o oddaljenosti popisne ploskve od infrastrukture (cesta, železnica) in njene oddaljenosti od najbližjega naselja smo pridobili s pomocjo Javnega pregledovalnika graficnih podatkov (MKGP 2022). Vrednosti spremenljivk so za posamezne popisne ploskve navedene v prilogi (Tab. S1). Podatke smo uredili in izracunali parametre opisne statistike za spremenljivke iz Tab. 1. Ploskve s sledmi in brez sledov bobrove dejavnosti smo obravnavali loceno. Popisne ploskve smo nadalje locili tudi glede na tip vodnega objekta, to je na tekoce in stojece vode. Ploskev z obcasno vodo ni bilo. Z opisno statistiko smo predstavili tudi znacilnosti posameznih vodnih teles. Tabela 1. Seznam dejavnikov okolja (spremenljivk; povzeto po Kryštufek et al. 2006), ugotovljenih na 82 popisnih ploskvah. Table 1. List of abiotic and biotic environmental factors (variables; based on Kryštufek et al. 2006) recorded on 82 sample plots. Spremenljivka Nacin vrednotenja Tip vodnega objekta Tekoca voda – 1 Stojeca voda – 2 Obcasna voda – 3 Kopenski habitat Antropogeni travnik – 1 Naravna zelišcna vegetacija – 2 Gozd – 3 Ruderalna zelišcna združba – 4 Njiva – 5 Širina vodnega telesa V metrih Globina vodnega telesa V centimetrih Višina brežine Plitvina (višina < 0,5 m) – 1 Nizka brežina (višina 0,5–1 m) – 2 Srednje visoka brežina (višina 1–2 m) – 3 Visoka brežina (višina 2–4m) – 4 Zelo visoka brežina (vec kot 4m) – 5 Nastanek brežine Protipoplavni nasip – 1 Naravna brežina – 2 Regulacija – 3 Struktura brežine Trden material – 1 Sipek material – 2 Ilovnat material – 3 Naklon brežine Ravnina (ni zaznati naklona) – 1 Rahel naklon (kot med 1° in 15°) – 2 Srednje velik naklon (kot med 15° in 30°) – 3 Velik naklon (kot med 30° in 60°) – 4 Navpicna stena (kot med 60° in 90°) – 5 Pokrovnost z lesno vegetacijo V deležu (%) Pokrovnost z zelišcno vegetacijo V deležu (%) Bližina naselja V metrih Bližina infrastrukture V metrih Spremenljivke, podane v obliki kategorij (tip kopenskega habitata, višina brežine, nastanek brežine, struktura brežine, naklon brežine), smo opisali z deleži pogostosti pojavljanja posameznih kategorij. Spremenljivke, ki so bile ocenjene z deleži (%) (pokrovnost z vegetacijo), smo opisali s srednjo (mediana), minimalno in maksimalno vrednostjo. Spremenljivke, podane v merskih enotah (širina vode, globina vode, bližina naselja, bližina infrastrukture), so bile opisane z aritmeticno sredino, standardnim odklonom, minimalno in maksimalno vrednostjo. Za graficni prikaz frekvence ploskev brez sledov in s sledmi bobrove aktivnosti glede na širino in globino vodnih teles smo uporabili violinske diagrame, loceno za tekoce in stojece vode. Za prikaz frekvence ploskev brez sledov in s sledmi bobra glede na višino in naklon brežine vodnih teles smo uporabili stolpcne diagrame. Za urejanje in analize podatkov smo uporabili orodja programa Microsoft Excel (Microsoft Office, ver 2108). Rezultati Znacilnosti habitata bobra Popisali smo 82 ploskev (Tab. 2). Od tega jih je bilo 61 s tekoco in 21 s stojeco vodo. Sledi bobra so bile zabeležene na 16 ploskvah (26 %) s tekoco vodo in 15 ploskvah (71 %) s stojeco vodo (Tab. 4, 5). Tabela 2. Seznam izbranih vodnih teles, na katerih je potekalo vzorcenje, s krajevnimi imeni, koordinatami (WGS84), številom popisnih ploskev (N) s sledmi in brez sledov bobrove aktivnosti ter datumom vzorcenja. Koordinate oznacujejo sredino vzorcenega odseka na vodnem telesu. Table 2. List of selected water bodies where sampling was conducted, with place names, coordinates (WGS84), the number of sample plots (N) with and without signs of beaver activity, and the date of sampling. The coordinates indicate the centre of the sampled section on the water body. Vodno telo Vrsta vodnega telesa Kraj vzorcenja Koordinate središca vzorcenega odseka Število popisnih ploskev; N (s sledmi + brez sledov) Datum vzorcenja Mala Krka (pri Domanjševcih) potok Domanjševci 46.781019, 16.285581 13 (3 + 10) 21.11.2021 Mala Krka (ob Križevskem jezeru) potok Križevci 46.791675, 16.248178 5 (0 + 5) 21.11.2021 Križevsko jezero akumulacija na Mali Krki Križevci 46.791067, 16.244732 5 (0 + 5) 21.11.2021 Hodoško jezero akumulacija na Dolenskem potoku Hodoš 46.837131, 16.308400 12 (12 + 0) 28.11.2021 Dolenski potok potok Hodoš, Dolenci 46.843107, 16.303642 14 (6 + 8) 28.11.2021 Velika Krka potok Krplivnik 46.818030, 16.317132 22 (5 + 17) 19.12.2021 Potok Lukaj potok Ropoca 46.762792, 16.047679 11 (5 + 6) 16.1.2022 Širina vodnih teles s tekoco vodo je bila od 1 do 7 m, s stojeco pa od 4 do 255 m. Najvecja frekvenca ploskev s sledmi bobra je bila na lokacijah s širino vode 3–6 m na tekocih in 250 m na stojecih vodah (Sl. 3). Globina vodnih teles s tekoco vodo je bila od 0,15 do 1 m, s stojeco pa od 0,4 do 2 m. Sledi bobra smo potrdili na ploskvah s celotnim razponom globin. Na tekocih vodah je bila frekvenca pojavljanja sledov bobra podobna za celoten gradient globin. Na stojecih vodah je bila najvecja frekvenca pojavljanja na lokacijah z 2 m globine. Na ploskvah brez bobrovih sledov je bila na tekocih vodah globina obicajno nižja od 0,4 m. Slika 3. Frekvenca ploskev brez sledov in s sledmi bobrove aktivnosti glede na širino in globino vodnih teles s tekoco ali stojeco vodo. Širina diagrama ponazarja gostoto podatkov, rdece oznake povprecno vrednost in standardni odklon. Figure 3. The frequency of plots with and without signs of beaver activity in relation to the width and depth of water bodies with flowing and standing waters. The width of the diagram represents data density, with red marks indicating the mean value and standard deviation. Kopenski habitat je bila v najvec primerih njiva (54 %), bobrovo pojavljanje pa smo najveckrat potrdili v gozdu, kjer se je zadrževal v 73 % od skupaj 15 ploskev z gozdom. Na ploskvah z njivo (skupaj 44) je bil zabeležen v 23 %, na ploskvah z naravno zelišcno vegetacijo (skupaj 15) pa v 47 %. A graph of different types of data Description automatically generated with medium confidence Slika 4. Frekvenca ploskev brez sledov in s sledmi bobrove aktivnosti glede na višino (A) brežine (1 – < 0,5 m; 2 – 0,5–1 m; 3 – 1–2 m; 4 – 2–4 m; 5 – > 4 m) in naklon (B) brežine (1 – brez naklona; 2 – kot med 1° in 15°; 3 – kot med 15° in 30°; 4 – kot med 30° in 60°; 5 – kot med 60° in 90°). Figure 4. The frequency of plots with and without signs of the beaver activity relative to the shore height (A) (1 – < 0,5 m; 2 – 0,5–1 m; 3 – 1–2 m; 4 – 2–4 m; 5 – > 4 m) and shore slope (B) (1 – no slope; 2 – slope angle between 1° and 15°; 3 – angle between 15° and 30°; 4 – angle between 30° and 60°; 5 – angle between 60° and 90°). Višino brežine smo razdelili v pet kategorij višine od 0,5 m do višine nad 4 m. Sledi bobra smo našli na vseh višinah brežin, najveckrat na obmocjih z višino brežine do vkljucno 1 m (Sl. 4A). Najvecja razlika med številom ploskev brez sledov in s sledmi bobra je bila na zelo visokih brežinah, kjer so bile sledi bobra samo na 18 % od 22 ploskev. Tudi naklone brežin smo razdelili v kategorije. Vecina brežin je imela velik do navpicen naklon (Sl. 4B). Sledi bobra smo zabeležili na brežinah vseh naklonov, tudi najbolj strmih, a najveckrat na brežinah z naklonom med 30° in 60°. Ob vodnem telesu je bila najveckrat zabeležena naravna brežina (95 % ploskev). Vecina brežin (93 %) je bila iz ilovnatega materiala, ostale iz sipkega materiala. Bobrovi sledovi so bili v glavnem zabeleženi na brežinah iz ilovnatega materiala (94 %). Delež pokrovnosti z lesno vegetacijo je bil nizek tako na ploskvah s sledovi kot na tistih brez sledov bobrove aktivnosti. Srednja vrednost je bila v obeh primerih 20 %. Najmanjša oddaljenost ploskev s pojavljanjem bobra od naselja je bila 130 m, od infrastrukture pa 30 m. V povprecju so bile ploskve z bobrom od naselja oddaljene 505 m in brez bobra 334 m. Posamezna vodna telesa Znacilnosti okoljskih spremenljivk na popisnih ploskvah s sledovi in brez sledov aktivnosti bobra so za posamezna vodna telesa loceno za tekoce in stojece vode opisane v Tab. 4 in Tab. 5. Dolenski potok – Popisali smo 14 ploskev. Od tega so bili sledovi bobrove aktivnosti najdeni na 6 ploskvah. Prevladujoc kopenski habitat je bil njiva, tako na ploskvah brez kot na ploskvah s sledmi bobra. Na ploskvah s sledmi bobrove aktivnosti je bil potok širok povprecno 2,8 m in globok 0,7 m. Na teh mestih je bila brežina v glavnem nizka, a z velikim naklonom. Pokrovnost z lesno vegetacijo je bila 20 %. Vzorcena lokacija je bila od vseh najbolj oddaljena od naselij. Potok Lukaj – Sledovi bobra so bili najdeni na 5 od 11 popisanih ploskev. Na popisanih ploskvah ni bilo njiv, ampak le zelišcna ali lesna vegetacija. Povprecna širina potoka na mestih s sledovi bobra je bila 4,5 m in globina 0,6 m. Brežina je bila ponekod sipka, sicer pa nizka do srednje visoka in s srednjim do velikim naklonom. Velika Krka – Sledovi bobra so bili zabeleženi na 5 od 22 popisanih ploskev. Prevladujoc kopenski habitat je bil njiva. Pokrovnost z lesno vegetacijo je bila 20-odstotna. Na ploskvah z najdenimi sledovi bobra je bila reka široka povprecno 5,8 m in globoka 0,2 m. Brežina je bila v glavnem zelo visoka in z velikim do navpicnim naklonom. Na vzorcenem odseku je bila zabeležena naselju najbližja ploskev s sledovi bobra (oddaljena 130 metrov). Mala Krka – Vzorcili smo odseke s tekoco in stojeco vodo. Sledovi bobrove aktivnosti so bili najdeni samo na stojeci vodi pri Domanjševcih s prevladujocim gozdnim in travniškim habitatom. Stojeca voda je bila širine pribl. 30 m in globine 0,8 m. Brežina je bila v glavnem visoka, s srednjim naklonom. V bližini (< 200 m) so bile ceste in naselje. Hodoško jezero – Akumulacija na Dolenskem potoku. Popisali smo 12 ploskev s sledovi bobra. Povprecna širina jezera je bila 234 m in globina 1,9 m. Brežina je bila v glavnem ravna in zelo nizka ter porašcena z lesno in zelišcno vegetacijo. Podobno kot pri Dolenskem potoku so bila infrastruktura in naselja razmeroma oddaljena. Križevsko jezero – Akumulacija na Mali Krki. Na nobeni od pregledanih ploskev nismo zaznali svežih sledov bobrove aktivnosti. Na popisanih ploskvah je prevladovala zelišcna vegetacija, ostalo je bil gozd. Povprecna širina jezera je bila 130 m in globina 1 m. Brežina je bila ponekod nizka, drugod visoka. Naklon brežine je bil velik do navpicen. Tabela 4. Opisna statistika okoljskih spremenljivk za opis habitata bobra na vodnih telesih s tekoco vodo. Table 4. Descriptive statistics of environmental variables for the description of beaver habitat on water bodies with flowing water. Dolenski potok Potok Lukaj Velika Krka Mala Krka sledovi bobra N = 6 brez sledov N = 8 sledovi bobra N = 5 brez sledov N = 6 sledovi bobra N = 5 brez sledi N = 17 brez sledi N = 14 Kopenski habitat: Travnik - 1 Zelišcna vegetacija - 2 Gozd - 3 Ruderalna združba - 4 Njiva - 5 1 – 14,3 % 2 - 0,0 % 3 – 0,0 % 4 – 0,0 % 5 – 87,5 % 1 – 16,6 % 2 – 0,0 % 3 – 0,0 % 4 – 0,0 % 5 – 83,3 % 1 – 20,0 % 2 – 40,0 % 3 – 40,0 % 4 – 0,0 % 5 – 0,0 % 1 – 0,0 % 2 – 16,7 % 3 – 50,0 % 4 – 33,3 % 5 – 0,0 % 1 – 0,0 % 2 – 40,0 % 3 – 0,0 % 4 – 0,0 % 5 – 60,0 % 1 – 0,0 % 2 – 11,8 % 3 – 0,0 % 4 – 0,0 % 5 – 88,2 % 1 – 14,3 % 2 – 0,0 % 3 – 0,0 % 4 – 0,0 % 5 – 85,7 % Širina vodnega telesa (m) ....Ż= 2,8 StD = 0,8 Min = 1,5 Max = 4 ....Ż= 2,7 StD = 1,4 Min = 1 Max = 4 ....Ż= 4,6 StD = 1,5 Min = 3 Max = 6 ....Ż= 3,4 StD = 0,9 Min = 2,5 Max = 5 ....Ż= 5,8 StD = 0,4 Min = 5 Max = 6 ....Ż= 5,6 StD = 1,1 Min = 4 Max = 7 ....Ż= 2 StD = 1,0 Min = 1 Max = 4 Globina vode (cm) ....Ż= 71,7 StD = 7,5 Min = 60 Max = 80 ....Ż= 67,5 StD = 14,9 Min = 40 Max = 80 ....Ż= 61,0 StD = 35,8 Min = 15 Max = 90 ....Ż= 30,8 StD = 24,6 Min = 15 Max = 80 ....Ż= 22,0 StD = 4,5 Min = 20 Max = 30 ....Ż= 29,4 StD = 19,2 Min = 20 Max = 100 ....Ż= 34,0 StD = 23,7 Min = 20 Max = 80 Višina brežine: Plitvina (< 0,5 m) - 1 Nizka (0,5–1 m) - 2 Srednja (1–2 m) - 3 Visoka (2–4m) - 4 Zelo visoka (> 4m) - 5 1 – 0,0 % 2 – 76,9 % 3 – 23,1 % 4 – 0,0 % 5 – 0,0 % 1 – 18,8 % 2 – 25,0 % 3 – 56,3 % 4 – 0,0 % 5 – 0,0 % 1 – 0,0 % 2 – 60,0 % 3 – 40,0 % 4 – 0,0 % 5 – 0,0 % 1 – 0,0 % 2 – 50,0 % 3 – 16,7 % 4 – 16,7 % 5 – 16,7 % 1 – 0,0 % 2 – 0,0 % 3 – 0,0 % 4 – 16,7 % 5 – 83,3 % 1 – 0,0 % 2 – 0,0 % 3 – 0,0 % 4 – 0,0 % 5 – 100 % 1 – 7,1 % 2 – 7,1 % 3 – 50,0 % 4 – 35,7 % 5 – 0,0 % Nastanek brežine: Nasip - 1 Naravna brežina - 2 Regulacija - 3 1 – 0,0 % 2 – 100 % 3 – 0,0 % 1 – 0,0 % 2 – 100 % 3 – 0,0 % 1 – 0,0 % 2 – 100 % 3 – 0,0 % 1 – 0,0 % 2– 100 % 3 – 0,0 % 1 – 0,0 % 2 – 100 % 3 – 0,0 % 1 – 0,0 % 2 – 100 % 3 – 0,0 % 1 – 0,0 % 2 – 100 % 3 – 0,0 % Struktura brežine: Trden material - 1 Sipek material - 2 Ilovnat material - 3 1 – 0,0 % 2 – 0,0 % 3 – 100 % 1 – 0,0 % 2 – 0,0 % 3 – 100 % 1 – 0,0 % 2 – 30,8 % 3 – 69,2 % 1 – 0,0 % 2 – 57,1 % 3 – 42,9 % 1 – 0,0 % 2 – 0,0 % 3 – 100 % 1 – 0,0 % 2 – 0,0 % 3 – 100 % 1 – 0,0 % 2 – 0,0 % 3 – 100 % Naklon brežine: Ravnina - 1 Rahel (1°–15°) - 2 Srednji (15°–30°) - 3 Velik (30°–60°) - 4 Navpicen (60°–90°) - 5 1 – 0,0 % 2 – 0,0 % 3 – 16,7 % 4 – 66,7 % 5 – 16,7 % 1 – 0,0 % 2 – 25,0 % 3 – 0,0 % 4 – 37,5 % 5 – 37,5 % 1 – 0,0 % 2 – 0,0 % 3 – 20,0 % 4 – 80,0 % 5 – 0,0 % 1 – 0,0 % 2 – 0,0 % 3 – 16,7 % 4 – 66,7 % 5 – 16,7 % 1 – 0,0 % 2 – 0,0 % 3 – 0,0 % 4 – 40,0 % 5 – 60,0 % 1 – 0,0 % 2 – 0,0 % 3 – 0,0 % 4 – 41,2 % 5 – 58,8 % 1 – 0,0 % 2 – 0,0 % 3 – 35,7 % 4 – 50,0 % 5 – 14,3 % Pokrovnost z lesno vegetacijo (%) Med = 20 Min = 5 Max = 20 Med = 12,5 Min = 0 Max = 30 Med = 30 Min = 10 Max = 70 Med = 60 Min = 5 Max = 100 Med = 20 Min = 10 Max = 30 Med = 20 Min = 5 Max = 50 Med = 20 Min = 0 Max = 20 Pokrovnost z zelišcno vegetacijo (%) Med = 80 Min = 80 Max = 95 Med = 87,5 Min = 70 Max = 100 Med = 70 Min = 30 Max = 90 Med = 40 Min = 0 Max = 95 Med = 80 Min = 70 Max = 90 Med = 80 Min = 50 Max = 95 Med = 80 Min = 80 Max = 80 Bližina naselja (m) ....Ż= 942 StD = 161,2 Min = 658 Max = 1150 ....Ż= 853 StD = 136,8 Min = 690 Max = 1150 ....Ż= 282 StD = 86,4 Min = 205 Max = 410 ....Ż= 290 StD = 111,0 Min = 190 Max = 1740 ....Ż= 373 StD = 217,8 Min = 130 Max = 590 ....Ż= 254 StD = 162,9 Min = 40 Max = 600 ....Ż= 184 StD = 45,1 Min = 110 Max = 280 Bližina infrastrukture (m) ....Ż= 143 StD = 87,5 Min = 62 Max = 305 ....Ż= 180 StD = 100,3 Min = 60 Max = 310 ....Ż= 113 StD = 50,7 Min = 70 Max = 190 ....Ż= 218 StD = 78,9 Min = 120 Max = 330 ....Ż= 223 StD = 70,9 Min = 145 Max = 300 ....Ż= 216 StD = 85,2 Min = 90 Max = 350 ....Ż= 132 StD = 52,3 Min = 15 Max = 210 Tabela 5. Opisna statistika okoljskih spremenljivk za opis habitata bobra na vodnih telesih s stojeco vodo. Table 5. Descriptive statistics of environmental variables for the description of beaver habitat on water bodies with standing water. Hodoško jezero Mala Krka Križevsko jezero sledovi bobra N = 12 sledovi bobra N = 3 brez sledov N = 1 brez sledov N = 5 Kopenski habitat: Travnik - 1 Zelišcna vegetacija - 2 Gozd - 3 Ruderalna združba - 4 Njiva - 5 1 – 0,0 % 2 - 25,0 % 3 - 58,3 % 4 – 0,0 % 5 - 16,7 % 1 – 33,3 % 2 - 0,0 % 3 – 66,7 % 4 - 0,0 % 5 - 0,0 % 1 – 0,0 % 2 – 0,0 % 3 – 0,0 % 4 – 0,0 % 5 - 100 % 1 – 0,0 % 2 – 80,0 % 3 – 20,0 % 4 – 0,0 % 5 – 0,0 % Širina vodnega telesa (m) ....Ż= 234 StD = 72,5 Min = 4 Max = 255 ....Ż= 33 StD = 20,7 Min = 14 Max = 55 x = 30 ....Ż= 130 StD = 0 Min = 130 Max = 130 Globina vode (cm) ....Ż= 188 StD = 15,2 Min = 40,4 Max = 200 ....Ż= 80 StD = 34,6 Min = 40 Max = 100 x = 60 ....Ż= 100 StD = 0 Min = 100 Max = 100 Višina brežine: Plitvina (< 0,5 m) - 1 Nizka (0,5-1 m) - 2 Srednja (1-2 m) - 3 Visoka (2-4m) - 4 Zelo visoka (> 4m) - 5 1 – 75,0 % 2 – 25,0 % 3 – 0,0 % 4 – 0,0 % 5 – 0,0 % 1 – 33,3 % 2 – 0,0 % 3 – 0,0 % 4 – 66,7 % 5 – 0,0 % 1 – 100 % 2 – 0,0 % 3 – 0,0 % 4 – 0,0 % 5 – 0,0 % 1 – 0,0 % 2 – 60,0 % 3 – 0,0 % 4 – 40,0 % 5 – 0,0 % Nastanek brežine: Nasip - 1 Naravna brežina - 2 Regulacija - 3 1 – 0,0 % 2 – 91,7 % 3 – 8,3 % 1 – 0,0 % 2 – 100 % 3 – 0,0 % 1 – 0,0 % 2 – 100 % 3 – 0,0 % 1 – 80,0 % 2 – 20,0 % 3 – 0,0 % Struktura brežine: Trden material - 1 Sipek material - 2 Ilovnat material - 3 1 – 0,0 % 2 – 0,0 % 3 – 100 % 1 – 0,0 % 2 – 0,0 % 3 – 100 % 1 – 0,0 % 2 – 0,0 % 3 – 100 % 1 – 0,0 % 2 – 0,0 % 3 – 100 % Naklon brežine: Ravnina - 1 Rahel (1° - 15°) - 2 Srednji (15° - 30°) - 3 Velik (30° - 60°) - 4 Navpicen (60° - 90°) - 5 1 – 58,3 % 2 – 16,7 % 3 – 8,3 % 4 – 8,3 % 5 – 8,3 % 1 – 0,0 % 2 – 0,0 % 3 – 100 % 4 – 0,0 % 5 – 0,0 % 1 – 0,0 % 2 – 0,0 % 3 – 100 % 4 – 0,0 % 5 – 0,0 % 1 – 0,0 % 2 – 0,0 % 3 – 0,0 % 4 - 40,0 % 5 – 60,0 % Pokrovnost z lesno vegetacijo (%) Med = 40 Min = 10 Max = 100 Med = 100 Min = 20 Max = 100 x = 20 Med = 60 Min = 40 Max = 100 Pokrovnost z zelišcno vegetacijo (%) Med = 60 Min = 0 Max = 90 Med = 0 Min = 0 Max = 80 x = 80 Med = 40 Min = 0 Max = 60 Bližina naselja (m) ....Ż= 531 StD = 125,0 Min = 310 Max = 670 ....Ż= 192 StD = 22,5 Min = 167 Max = 210 x = 150 ....Ż= 283 StD = 40,2 Min = 240 Max = 340 Bližina infrastrukture (m) ....Ż=274 StD = 172,6 Min = 30 Max = 640 ....Ż= 63 StD = 13,7 Min = 48 Max = 75 x = 100 ....Ż= 223 StD = 72,0 Min = 168 Max = 330 Diskusija Bober je teritorialna žival, ki v zacetni fazi poselitve novega obmocja izbira optimalne, z narašcanjem velikosti populacije pa tudi suboptimalne habitate (John et al. 2010; Zwolickiet al. 2018). V skrajnem JV delu Prekmurja je bil bober po desetih letih od ponovne naselitve v letu 2003 zabeležen že na vecini vodotokov. Naselil je vse maloštevilne optimalne habitate, a se je v glavnem naselil na suboptimalnih habitatih (Vida 2022). Na Gorickem se je bober prvic ponovno pojavil leta 2016 na Hodoškem jezeru in se je že v letu 2017 naselil še vsaj na reki Ledavi, Ledavskem jezeru, Veliki Krki, Lukaj potoku, Mali Krki in Križevskem jezeru. V zimi 2021/22, kar je pet let po prvi naselitvi, smo popisali bobrov habitat na šestih vodnih telesih na Gorickem. Bober ima raje stojeco kot tekoco vodo (Hartman 1996; Nowak 1999). Da bi upocasnil tok reke in obenem dvignil raven vodne gladine, gradi jezove. Hartman (1996) je v študiji pokazal negativno povezanost izbire bobrovega habitata s hitrostjo pretoka vode. Na Gorickem je bober ob vrnitvi takoj naselil Hodoško, Križevsko in Ledavsko jezero. V zimi 2021/22 svežih sledov bobra na Križevskem jezeru nismo našli, medtem ko so bile na Hodoškem jezeru sledovi na vseh popisnih ploskvah. Razen na obali Hodoškega jezera so bile sledovi tudi na odseku Dolenskega potoka, ki se izteka v jezero. Na Mali Krki so bili sledovi bobra najdeni samo na kratkem odseku s stojeco vodo. Vec ploskev smo popisali na tekocih vodah, a delež bobrovih sledov na popisnih ploskvah je bil glede na tip vodnega telesa višji za stojece vode. Na stojecih vodah s sledovi bobra je bila voda glede na druge lokacije najgloblja (vec kot 0,4 m) in najširša (vec kot 4 m). Brežina je bila v glavnem nizka in majhnega do srednjega naklona. Prevladujoc kopenski habitat ob vodnem telesu je bil gozd z vmesnimi sestoji naravne zelišcne vegetacije ali travnika, ki bobru vse leto zagotavljata vir hrane. Na lokalitetah s tekoco vodo, na katerih smo našli sledove bobra, je bila širina vode vecja od 1,5 m (v povprecju 4 m) in globlja od 15 cm (v povprecju 53 cm). V vecini primerov so bile brežine nizke, a z velikimi nakloni. Zelo visoke brežine z navpicnimi nakloni so bile na Veliki Krki. Prevladujoc kopenski habitat je bil njiva, z izjemo Lukaj potoka z gozdom ali naravno zelišcno vegetacijo. Optimalni habitati za bobra so tisti s pocasi tekoco ali stojeco vodo, globino 2–4 m in širino 10–100 m (za reke) (Kryštufek et al. 2006). Voda z globino manj kot 1 m ali vec kot 6 m se šteje kot neustrezna. Z vidika globine in širine vode torej obravnavane tekoce vode za bobra niso bile optimalne. Na nezasedenih ploskvah je bila globina navadno nižja od 0,4 m. Pri tem je treba poudariti, da je bila globina izmerjena na 1,5 m oddaljenosti od brega in ne na sredini vodotoka. Bober je bil najveckrat zabeležen v gozdu, kar se ujema z uvrstitvijo bobra med gozdne živali (Mitchell-Jones et al. 1999). Prevladujoci kopenski habitat na raziskanih odsekih vodnih teles so bile sicer njive, ki so lahko v dolocenem delu leta pomemben vir bobrove prehrane, vendar pa lahko pomanjkanje naravne zarasti, kot sta gozd in naravna zelišcna vegetacija, kljucno vpliva na to, da se bober tam ne bo naselil (Zwolicki et al. 2018). Pinto et al. (2009) so ugotovili, da bobri ne uporabljajo brežin z nakloni, vecjimi od 36°. Dostop do kopnega je za bobra na brežinah z velikimi nakloni omejen. Podobno je pokazal Hartman (1996): izbira habitata je v negativni korelaciji z naklonom. Po Macdonald et al. (1995) ter Kryštufek et al. (2006) so za bobra optimalne brežine z naklonom manj kot 60° in višino vec kot 1 m. Višina brežine je pomembna, ker v brežino bober izkoplje brlog. Visoke brežine za bobra niso ovira, saj so bila obglodana drevesa tudi v naši raziskavi najdena na brežinah, višjih kot 4 m. Vecina brežin je imela velik do navpicen naklon, kar ni ugodno za bobrovo prehajanje iz vode in v njo. Bober je bil najveckrat zabeležen ob vodnih telesih z naklonom brežine med 30° in 60°, na naklonih brežine vec kot 60° pa ga v glavnem ni bilo. Bober se je pojavljal v bližini tako asfaltiranih cest kot železnic, kar kaže na to, da ni obcutljiv za prometni hrup. Pricakovali bi, da je bolj kot za vrsto infrastrukture obcutljiv za njeno bližino, vendar se je izkazalo, da se je bober prehranjeval na brežini, ki je bila od infrastrukture oddaljena le 30 m. Najmanjša oddaljenost ploskev s pojavljanjem bobra od naselja je bila 130 m. Znano je, da bobra clovekova navzocnost in njegove dejavnosti (npr. ribolov) posebej ne motijo (Halley & Rosell 2002; Vochl 2008; Juršic et al. 2017). Vochl (2008) je ocenjevala habitat bobra v nižinskih poplavnih gozdovih Slovenije na odsekih reke Krke, Radulje in Drave. Habitat je ocenjevala v štirih kategorijah: voda, brežina, vegetacija in upravljanje, po metodi ocenjevanja primernosti habitata po Macdonald et al. (1995). Z vidika primernosti habitata je bila najslabše ocenjena naselbina na Radulji. Reka je bila z obeh strani obdana s kmetijskimi površinami, zato je bil vpliv cloveka zelo velik (Vochl 2008). Kot optimalno obmocje je bilo ocenjeno obmocje Dravograjskega jezera. V odseku popisa je bila globina 1–2 m in širina reke 5–10 m. Brežine so bile ponekod navpicne, drugod skoraj položne, visoke približno 1 m. V primerjavi z drugima dvema lokacijama, kjer je bil ob vodi le ozek pas dreves (do 2 m), je bil ob Dravi širši pas z lesno vegetacijo. Tudi Vida (2022) je v raziskavi v skrajnem JV delu Prekmurja ocenjevala primernost habitatov za bobra (po Macdonald et al. 1995, 1997). Ugotovila je, da je 32 od 38 odsekov (84 %) popisanega obvodnega habitata zmerno primernih, 4 (11 %) dobro in 2 (5 %) slabo primernih za bobra. Primernost habitata za bobra se je v 14 letih v 20-metrskem pasu kopnega ob vodnih telesih zmanjšala zaradi spremenjene rabe zemljišc, to je zmanjšanja površine z lesno vegetacijo in povecanja kmetijskih in pozidanih zemljišc. Juršic et al. (2017) so leta 2017 pregledali celoten tok reke Krke s pritoki in popisali 56 bobrišc. Ugotovili so, da sta bila kljucna dejavnika bobrove razširjenosti obrežna vegetacija z velikimi drevesi majhnega premera in bogata zelišcna vegetacija. Bober je gradil tudi jezove in si tako omogocil preživetje tudi na manjših vodotokih. Vecina bobrišc je bila bližje naseljem in njivam od optimalnih oddaljenosti. Populacija bobra na Gorickem se še širi, zato bo bober v prihodnje naseljeval tudi manj ugodne habitate. Vodotoki na Gorickem so v primerjavi z vodotoki iz študij Vochl (2008), Juršic et al. (2017) in Vida (2022) ožji, plitvejši, a bober tam vseeno živi. Bobri so glede habitata prilagodljivi, saj preživijo in se razmnožujejo tudi v suboptimalnih habitatih, znacilnosti habitata pa lahko z graditvijo jezov tudi izboljšajo. Bober lahko naseli tudi mocno urbanizirana in kmetijska obmocja, a se tam dolgorocno ne ustali. Najpomembnejši dejavnik okolja je za bobra razpoložljivost ustreznih virov hrane (Hartman 1996; Zwolicki et al. 2018). To je še posebej pomembno v zgodnejših fazah vzpostavljanja teritorijev, saj mu omogoca preživetje in razmnoževanje (John et al. 2010). Družina bobrov (4–6 clanov) za preživetje potrebuje približno 3 km vodnega toka s 6 m širokim pasom gozda (Kryštufek et al. 2006). V novem okolju je lahko zacetna populacijska rast zelo hitra (20–34 % letno), nato zacne upadati. Ob vecanju populacijske gostote bobri vse bolj zasedajo obrobne habitate. Kljucni dejavnik nosilne kapacitete okolja je lesna vegetacija, ki je na voljo pozimi. Pozimi bober vecino aktivnega casa posveca iskanju hrane in prehranjevanju (Plut 2020). Razen ustreznih habitatov so za širjenje in stabilizacijo populacije pomembne tudi vodne migracijske poti brez vecjih ovir (John et al. 2010). Bober je na rdecem seznamu ogroženih živalskih vrst opredeljen kot prizadeta vrsta (Ur. l. RS 2002). Bober in njegovi habitati so zavarovani na vec nivojih (Ur. l. EU 1992; Ur. l. RS 2004). Je tudi kvalifikacijska vrsta na izbranih obmocjih Nature 2000. Podatki o znacilnostih bobrovega habitata na Gorickem so pomemben prispevek k razumevanju ekologije vrste, potenciala nadaljnjega širjenja populacije in k nacrtovanju naravovarstvenih ukrepov za bobra na Gorickem. Summary The European beaver was considered extinct in Slovenia as well as in the majority of Europe in the early 20th century. After numerous reintroductions and the implementation of conservation measures, the beaver has recolonized Europe, and its populations are stable or increasing (Batbold et al. 2021; Halley et al. 2021). In Slovenia, the beaver has been present again since 1998, when it reached the Krka River basin from Croatia (Kryštufek et al. 2006). In the Goricko region (NE Slovenia), the beaver was first observed in 2016 at Lake Hodoš (Pecek 2017). Since 2017, the beaver has also been present on the Velika Krka, Mala Krka, Lake Križevsko, Ledava River, Ledava Lake, Dolenski potok, and Lukaj potok (Malacic et al. 2018, 2020; BioPortal 2024). In the winter of 2021/22, five years after recolonization, we surveyed six water bodies (4 streams and 2 lakes) at Goricko, where beaver presence was confirmed between 2016 and 2020. The purpose of the survey was to determine the characteristics of selected beaver habitats at Goricko. We recorded habitat features considered key to beaver survival (Macdonald et al. 1995; Kryštufek et al. 2006) on 82 randomly selected sample plots. Descriptive statistics and frequency distributions were used for each variable separately for plots with and without signs of the beaver on standing and flowing waters. The beaver activity was confirmed on 31 plots. Beavers preferred standing water with higher water depth and width. Its presence was confirmed in 71% of plots sampled on the standing and 26% on flowing waters. Fields were the most common habitat type, while forest was found on 15 of 82 plots. Beaver was confirmed in 73% of the forest plots and 23% of the plots with fields. Shores with beaver signs were mostly 1 m high, or lower, and with a slope between 30° in 60°. Shores were in general very steep (> 60°). The nearest infrastructure was 30 m and human settlement 130 m away from the plots with beaver activity. Compared to similar studies in other parts of Slovenia (Kryštufek et al. 2006; Vochl 2008; Juršic et al. 2017; Vida 2022), the watercourses with beaver presence at Goricko are narrower and shallower, yet beavers are still present there. Beavers are adaptable in terms of habitat, as they survive and reproduce even in suboptimal habitats and can improve habitat characteristics by building dams. The most important environmental factor for beavers is the availability of suitable woody vegetation in winter (Hartman 1996; Zwolicki et al. 2018). In the initial phase of colonization, beavers select optimal habitats, but with the increasing population size they also settle in suboptimal habitats (John et al. 2010; Zwolicki et al. 2018; Vida 2022). Due to the early stage of recolonization at Goricko, we assume that beavers have chosen optimal habitats and will settle also in suboptimal habitats in the future. Knowledge of habitat characteristics and selection is important for conservation management and monitoring of the beaver at Goricko and Slovenia. Zahvala Zahvaljujemo se Tatjani Gregorc za ideje in nasvete pri nacrtovanju terenskega dela ter recenzentoma za konstruktivne predloge za izboljšanje prispevka. Raziskava je bila pripravljena s podporo P1-0403 Racunsko intenzivni kompleksni sistemi; financer: ARIS. References Batbold J, Batsaikhan N, Shar S, Hutterer R, Kryštufek B, Yigit N, Mitsainas G, Palomo L. 2021. Castor fiber (amended version of 2016 assessment). The IUCN Red List of Threatened Species 2021: e.T4007A197499749. https://dx.doi.org/10.2305/IUCN.UK.2021-1.RLTS.T4007A197499749.en Bioportal 2024. Ujemite naravo! Bioportal, Center za kartografijo favne in flore. [dostop 8. 10. 2024]; http://www.bioportal.si/projekti_podatki.php Campbell-Palmer R, Gow D, Campbell R, Dickinson H, Girling S, Gurnell J, Halley D, Jones S, Lisle S, Parker H et al. 2016. The Eurasian Beaver Handbook: Ecology and Management of Castor fiber. Exeter (UK): Pelagic Publishing. Fryxell JM. 2001. Habitat suitability and source-sink dynamics of beavers. Journal of Animal Ecology. 70: 310-316. https://doi.org/10.1111/j.1365-2656.2001.00492.x Gregorc T, Zavratnik S. 2017. Zimski monitoring (Lutra lutra) na Gorickem. Projekt: Raznoživost pod Vidrino streho na Gorickem. Zakljucno porocilo. Ljubljana (SI): Lutra, Inštitut za ohranjanje naravne dedišcine. Halley DJ, Rosell F. 2002. The beaver's reconquest of Eurasia: status, population, development, and management of conservation success. Mammal Review. 32: 153-178. Halley DJ, Saveljev AP, Rosell F. 2021. Population and Distribution of Beavers Castor fiber and Castor canadensis in Eurasia. Mammal Review. 51: 1-24. https://doi.org/10.1111/mam.12216 Hartman G. 1996. Habitat selection by European beaver (Castor fiber) colonizing a boreal landscape. Journal of Zoology. 240: 317-325. https://doi.org/10.1111/j.1469-7998.1996.tb05288.x John F, Baker S, Kostkan V. 2010. Habitat selection of an expanding beaver (Castor fiber) population in central and upper Morava River basin. European Journal of Wildlife Research. 56: 663-671. https://doi.org/10.1007/s10344-009-0361-5 Juršic K, Zupancic K, Šet J, Mazinjanin K. 2017. Ocena številcnosti populacije evrazijskega bobra Castor fiber Linnaeus, 1758 na reki Krki in njenih pritokih v letu 2017. Natura Sloveniae. 19: 29-46. https://doi.org/10.14720/ns.19.2.29-46 Kocjancic J. 2005. Bobri so se vrnili v Prekmurje, v rokav reke Mure. Lovec. 88: 310-311. Kološa L. 2023. Izbira habitata evropskega bobra, Castor fiber (Linnaeus, 1758) glede na abiotske in biotske dejavnike na Gorickem [magistrsko delo]. [Maribor]: Univerza v Mariboru. Kryštufek B, Hudoklin A, Pavlin D. 2006. Bober (Castor fiber) v Sloveniji. Scopolia. 59: 1-41. Law A, Levanoni O, Foster G, Ecke F, Willby NJ. 2019. Are beavers a solution to the freshwater biodiversity crisis? Diversity and Distributions. 25: 1763-1772. https://doi.org/10.1111/ddi.12978 Macdonald D. 2001. The New Encyclopedia of Mammals. Oxford (UK): University Press. Macdonald DW, Tattersall FH, Brown ED, Balharry D. 1995. Reintroducing the European beaver to Britain: nostalgic meddling or restoring biodiversity? Mammal Review. 25: 161-200. https://doi.org/10.1111/j.1365-2907.1995.tb00443.x Macdonald DW, Maitland P, Rao S, Rushton S, Strachan R, Tattersall F. 1997. Development of a protocol for identifying beaver release sites. Scottish Natural Heritage Research, Survey and Monitoring Report. No. 93. Malacic K, Domanjko G, Podletnik M, Dešnik S. 2018. Priloga 1 k Letnemu porocilu o poslovanju 2017. Grad (SI): Javni zavod Krajinski park Goricko. Malacic K, Domanjko G, Podletnik M, Dešnik S. 2020. Priloga 1 k Letnemu porocilu o poslovanju 2020. Grad (SI): Javni zavod Krajinski park Goricko. [MKGP] Ministrstvo za kmetijstvo, gozdarstvo in prehrano. 2022. Javni pregledovalnik graficnih podatkov MKGP. Ministrstvo za kmetijstvo, gozdarstvo in prehrano. [dostop 11. 7. 2022]; https://rkg.gov.si/GERK/WebViewer/ Mitchell-Jones AJ, Amori G, Bogdanowicz W, Krystufek B, Reijnders PJH, Spitzenberger F, Stubbe M, Thissen JBM, Vohralik V, Zima J. 1999. The atlas of European mammals. London (UK): T & AD Poyser. Nowak RM. 1999. Walker's mammals of the World. Baltimore (USA): Johns Hopkins University Press. Pecek B. 2017. Dr. Marjana Hönigsfeld Adamic, varuhinja vider in bobrov. Bober se je vrnil domov, na Hodoš. Vestnik. 69: 15. Pinto B, Santos MJ, Rosell F. 2009. Habitat selection of the Eurasian beaver (Castor fiber) near its carrying capacity: an example from Norway. Canadian Journal of Zoology. 87: 317-325. https://doi.org/10.1139/Z09-015 Plut P. 2020. Spremljanje vedenja evropskega bobra s pomocjo avtomatskih kamer [magistrsko delo]. [Ljubljana]: Univerza v Ljubljani. Ur. l. EU. 1992. Direktiva Sveta 92/43/EGS z dne 21. maja 1992 o ohranjanju naravnih habitatov ter prostoživecih živalskih in rastlinskih vrst. UL L 206, 22.7.1992, p. 7-50 . Ur. l. RS. 2002. Pravilnik o uvrstitvi ogroženih rastlinskih in živalskih vrst v rdeci seznam. Uradni list RS, 82/02, 42/10. Ur. l. RS. 2004. Uredba o zavarovanih prosto živecih živalskih vrstah. Uradni list RS, 46/04, 109/04, 84/05, 115/07, 32/08 – odl. US, 96/08, 36/09, 102/11, 15/14, 64/16, 62/19. Vida M. 2022. Razširjenost evropskega bobra (Castor fiber) v severovzhodni Sloveniji v povezavi z habitatnimi in antropogenimi dejavniki [magistrsko delo]. [Maribor]: Univerza v Mariboru. Vochl S. 2008. Bober (Castor fiber L.) v nižinskih poplavnih gozdovih Slovenije [diplomsko delo]. [Ljubljana]: Univerza v Ljubljani. Zwolicki A, Pudelko R, Moskal K, Swiderska J, Saath S, Weydmann A. 2018. The importance of spatial scale in habitat selection by European beaver. Ecography. 42: 187-200. https://doi.org/10.1111/ecog.03621 Dodatek Tabela S1. Seznam 82 popisnih ploskev z geografskimi koordinatami, imeni vodnih teles, imeni krajev, vrednostmi spremenljivk (iz Tab. 1) in klasifikacijo glede na prisotnost/odsotnost sledi bobra. Tabela je dostopna kot spletni suplement na naslovu https://doi.org/10.14720/ns.26.2.5-20. Table S1. List of 82 sample plots with geographical coordinates, names of water bodies, place names, variable values (from Tab. 1), and classification based on presence/absence of signs of beaver activity. The table is available as an online supplement at https://doi.org/10.14720/ns.26.2.5-20. © 2024 Laura Kološa, Franc Janžekovic, Tina Klenovšek To je prostodostopen clanek, objavljen pod dolocili licence Creative Commons Priznanje avtorstva 4.0 Mednarodna, ki dovoljuje neomejeno rabo, razširjanje in kopiranje v kakršnemkoli mediju ter obliki, pod pogojem, da sta navedena avtor in vir. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. First records of two slug species, Limax conemenosi (O. Boettger, 1882) and Limax dacampi (Menegazzi, 1855) (Gastropoda: Limacidae) in Slovenia Maj KASTELIC, Behare REXHEPI University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; E-mail: mk09679@student.uni-lj.si Abstract. In Slovenia, 27 species of slugs have been confirmed so far. Distributional data for two species from the genus Limax new for the country are presented herewith. Limax conemenosi was found for the first time in Slovenia at Nova Gora near Krško, whereas Limax dacampi was first recorded in the village of Osp and recently in the village of Abitanti. Species identities were assessed on the basis of external morphological features and diagnostic DNA sequences of cytochrome c oxidase subunit I. Subsequently, the new number of slug species confirmed in Slovenia is 29. Key words: Gastropoda, slugs, Limax, DNA sequences, distribution, Slovenia Izvlecek. Prvi podatki o dveh vrstah golih polžev, pikastem slinarju Limax conemenosi (O. Boettger, 1882) in rdecem slinarju Limax dacampi (Menegazzi, 1855) (Gastropoda: Limacidae) v Sloveniji – Do zdaj je bilo v Sloveniji potrjenih 27 vrst golih polžev. V prispevku predstavljamo podatke o razširjenosti dveh vrst iz rodu Limax, novih za državo. Pikasti slinar Limax conemenosi je bil v Sloveniji prvic najden v Novi Gori v bližini Krškega, rdeci slinar Limax dacampi pa je bil prvic zabeležen v Ospu in nedavno v Abitantih. Vrsti smo potrdili na podlagi zunanjih morfoloških znacilnosti in pridobljenih DNK-sekvenc podenote 1 citokrom C oksidaze. Tako je novo število potrjenih vrst golih polžev v Sloveniji zdaj 29. Kljucne besede: Gastropoda, goli polži, Limax, DNA-sekvence, razširjenost, Slovenija Introduction Slugs are an understudied group of molluscs in Slovenia, with the first comprehensive paper on slugs published in 2002 (Vaupotic & Velkovrh 2002). The authors published a revised list of species with maps of distributions, reporting on 27 slug species for Slovenia. They collected data from older publications and complemented them with additional species records with the study of approximately 600 samples of slugs from three collections, including six new species for Slovenia (Vaupotic & Velkovrh 2002). There are five different families of slugs in Slovenia – Milacidae, Limacidae, Boettgerilidae, Agriolimacidae and Arionidae (Vaupotic & Velkovrh 2002). The Limacidae family is represented by five species, two of them belonging to the genus Limax. One of them is Limax maximus (Linnaeus, 1758), known for a distinct pattern of dark blots and dots on the upper side of the foot and mantle (Welter-Schultes 2012). The second one is Limax cinereoniger (Wolf, 1803), a species with highly variable dark colour patterns and a distinctive sole of the foot with two dark longitudinal bands on the sides (Welter-Schultes 2012) that make it easily recognizable. Both species have wide distribution in Slovenia (Vaupotic & Velkovrh 2002). In this contribution, we report on new data for two species, Limax conemenosi (O. Boettger, 1882) and Limax dacampi (Menegazzi, 1885), new for Slovenia. Materials and methods Field work Discoveries of both species are the result of accidental findings, with targeted field studies following the first discoveries. At the site at Nova Gora near Krško (Figs. 1, 3) slugs were first found accidentally under a wooden board. We searched for the species again twice later on, during the day by flipping wooden material, and in the night when slugs are active (Salvador & Tomotani 2024) by slow inspection of the terrain. We collected the biggest individual for subsequent determination. First discoveries of another species of slugs from the sites in southwestern Slovenia (Fig. 1) were also accidental. Slugs were found for the first time in the night time in 2011 at a site near Osp. Recently we found the species at another site in Abitanti (Figs. 1, 5) during our night fieldwork searching for amphibians. We observed slugs moving around in the grass and on the rock drywalls and collected one big individual for determination. Another search during the day by flipping rocks and wooden material wasn’t successful. Morphological determinations We determined both collected individuals still alive on the basis of the external morphological features described by Welter-Schultes (Welter-Schultes 2012). Both individuals were photographed and released in the places of their discovery. Figure 1. Distribution map of two newly discovered Limax species for Slovenia. Circles represent sites of discovery of Limax dacampi in southwestern Slovenia. Osp is marked with number 2 and Abitanti with number 3. Rhombus marked with number 1 represents site of discovery of Limax conemenosi in Nova Gora. Slika 1. Zemljevid razširjenosti dveh novoodkritih vrst slinarjev (Limax) v Sloveniji. Kroga ponazarjata mesti najdb rdecega slinarja Limax dacampi v jugozahodni Sloveniji. Osp je oznacen s številko 2 in Abitanti s številko 3. Romb, oznacen s številko 1, ponazarja mesto najdbe pikastega slinarja Limax conemenosi v Novi Gori. Molecular determinations In order to confirm both morphological determinations, we sequenced and analysed DNA sequences of cytochrome c oxidase subunit I of collected individuals. We isolated DNA from a small piece of tissue from the tip of the tail, using MagMAX DNA Multi-sample Kit (Thermo Fisher Scientific Inc., United states), following the instructions of the producer. We amplified a 650 bp fragment of the mitochondrial cytochrome oxidase I (COI) gene using the KAPA2G Robust PCR Kit (Sigma-Aldrich, USA) and primers LCO1490 and HCO2198 (Folmer et al. 1994). The PCR products were purified with Exonuclease I and FastAP (Thermo Fisher Scientific, USA) and sequenced bidirectionally by Macrogen Europe (Amsterdam, Netherlands) using the same primers. Chromatograms were assembled and edited in Geneious Prime 2023.2.1. The sequences were aligned with sequences of the Limax species that are morphologically similar and hence mistakable for the species we found and are also available in Genbank. We constructed a maximum likelihood phylogenetic tree using IQ-TREE with default settings (Minh et al. 2020) to perform DNA barcoding and determining whether our samples match any of the available sequences. Results and discussion The data on two species of slugs, Limax conemenosi and Limax dacampi, indicate the first confirmation of their presence for Slovenia. Comments on Limax conemenosi findings Limax conemenosi is a cream or yellowish-coloured slug with numerous 1 mm big black dots equally distributed over the upper side of the mantle and the foot (Fig. 2). The sole is uniformly coloured (Welter-Schultes 2012). It lives in bush thickets and rocky open habitats, often as a synanthrope. It is less frequently found in forests (Wiktor 1996). Figure 2. Conemenos’ slug Limax conemenosi collected in Nova Gora on 6. 4. 2024. Photos are taken on one centimetre grid paper, showing external morphological features from different angles (photo: Maj Kastelic). Slika 2. Pikasti slinar Limax conemenosi, ujet v Novi Gori 6. 4. 2024. Fotografiran je na papirju s centimetrsko mrežo iz razlicnih zornih kotov, ki prikazujejo njegove zunanje morfološke znacilnosti (foto: Maj Kastelic). Limax conemenosi probably originates from Greece, but is also found in Bulgaria, North Macedonia, Kosovo (Wiktor 1996), Albania (Dhora 2014) and Montenegro (Jovanovic 1995). There are no official records from Bosnia and Herzegovina and Croatia (Wiktor 1996; Štamol 2010; Duda & Haring 2023), but photos of slugs on the citizen science platform iNaturalist that have external morphological features characteristic of L. conemenosi are from localities as far north as Croatian Istria (iNat 2024). In Serbia, there have been no official records of the species, even though the southernmost tip of the country is marked on the distribution map in the book European non-marine molluscs, a guide for species identification (Welter-Schultes 2012). The slug L. conemenosi was first found accidentally under a wooden board in the village of Nova Gora near Krško (WGS84 lat./long.: 45.953872 °N, 15.399901 °E; alt. 415 m) (Fig. 3) on 30. 3. 2024. We found two individuals. Figure 3. Habitat of Limax conemenosi in Nova Gora on 29. 9. 2024. All of the individuals were found in close proximity to the houses with several surrounding vineyards and extensive orchards (photo: Matej Kastelic). Slika 3. Habitat pikastega slinarja Limax conemenosi v Novi Gori 29. 9. 2024. Vsi osebki so bili najdeni v bližini hiš. Ob hišah je veliko vinogradov in ekstenzivnih sadovnjakov (foto: Matej Kastelic). The species was rediscovered on 6. 4. 2024 when six individuals were found during the day under wooden boards. The biggest one of them was collected for determination (Fig. 2). Three more individuals were observed on 7. 9. 2024 in the night time when they were active. The species identity was confirmed using CO1 sequences. The Nova Gora slug sequence, deposited in GenBank under accession number PQ676333, shows 99.11% similarity to sequence MT293865.1, 99.07% to MT293864.1 and 98.48% to sequence MT975672.1 (Tab. S1, Supp. Mat.). All three reference sequences are deposited as L. conemenosi. The two most similar sequences (MT293865.1 and MT293864.1) were obtained from juvenile slugs near Lake Volvi (Dimzas et al. 2020). These identifications relied solely on external morphology, as reproductive system data was unavailable. At the time, no L. conemenosi sequences were officially designated (Dimzas et al. 2020). The third sequence (MT975672.1) comes from a slug collected on Corfu by R. Anderson in 2018 (Giusti et al. 2021). The relationships between our sequence and the reference sequences are illustrated in the phylogenetic tree (Fig. 6). Table 1. External morphological characteristics of the collected individual determined as L. conemenosi (»specimen«) and morphologically similar species living in Europe. Descriptions of characteristics are taken from Welter-Schultes (2012). Grey background with text in bold means that a certain characteristic of a species is the same as of the collected individual. White background with normal text signifies that a certain characteristic of a species differs from the characteristic of the collected individual. NA on white background means that a certain description is not available. Among the species in the table, which are all morphologically similar, only L. maximus was known to have occurred in Slovenia so far. Tabela 1. Zunanje morfološke znacilnosti preucevanega osebka dolocenega kot L. conemenosi (»specimen«) in morfološko podobnih vrst, ki živijo v Evropi. Opisi lastnosti so vzeti iz Welter-Schultes (2012). Sivo ozadje s poudarjenim besedilom pomeni, da je opisana lastnost enaka lastnosti preucevanega osebka. Belo ozadje z nepoudarjenim besedilom pomeni, da je opisna lastnost drugacna od lastnosti preucevanega osebka. NA na belem ozadju pomeni, da dolocen opis ni na voljo. Od vrst v tabeli, ki so si vse morfološko podobne, je bilo do sedaj v Sloveniji znano le pojavljanje vrste L. maximus. Outer morphological characteristics »specimen« Limax conemenosi Limax millipunctatus mantle size relatively short (1/4 of body, 30 mm) relatively short (1/4 of body, up to 22 mm) NA mantle shape rounded at posterior end NA mantle anteriorly rounded and pointed at posterior end, concentrically striated keel very short and not prominent very short (10 mm) and not prominent short and not very prominent tubercules elongated NA oval and not very prominent dorsum of the foot rounded and little darker than sides rounded and little darker than sides brown-reddish hue, coloured medial line in posterior section sides of the foot a little lighter than dorsum a little lighter than dorsum slightly less regular sole of the foot sole light, like the background colour sole light, like the background colour evenly white dots numerous small black dots with sharp edges numerous 1 mm large black dots with sharp edges numerous black dots pattern of dots regularly spotted, many dots regularly spotted evenly distributed colour light creamish to pinkgray dirty cream, yellowish or reddish grey greyish or yellowish with brown-reddish hue size 130 mm up to 120 mm 115–120 mm pneumostome without distinct margin, slightly posterior of the centre of the mantle 21–23 fine and fIattened wrinkles between medial line of dorsum and pneumostome without distinct margin, slightly posterior of the centre of the mantle tentacles without dots, bases of tentacles not approaching each other NA finely spotted, bases of tentacles not approaching each other mucus colourless colourless NA known distribution Nova Gora near Krško originally probably Greece, at present also Bulgaria to Albania Lombardia, N Apennines (cont.) Table 1. (cont.) Tabela 1. (nad.) Outer morphological characteristics Limax punctulatus Limax canapicianus Limax redii Limax maximus mantle size NA NA NA 30% of the body mantle shape NA rounded at posterior end NA pointed at posterior end keel light and extending over 1/2 of the dorsum length short and weakly lighter brown than dorsum NA clearly visible, 1/3 of body length tubercules elongated and irregular NA NA NA dorsum of the foot light greyish with yellowish hue light brown creamy or yellowish, sometimes with bluish hue ash-grey-cream or brownish, variable sides of the foot dots slightly less regular light brown creamy or yellowish, sometimes with bluish hue ash-grey-cream or brownish, variable sole of the foot evenly white and subdivided in 3 equally wide longitudinal zones evenly white NA uniformly cream-coloured dots numerous black dots (0.5 mm big on mantle) black, nearly rounded small black most slugs with large blots and variable mantle spots pattern of dots evenly distributed (12–14 dots in 3 to 4 longitudinal rows) NA scattered black dots, less dotted on mantle variable patterns of blots and dots colour light greyish with yellowish hue (lighter than L. millipunctatus) light brown creamy or yellowish, sometimes with bluish hue ash-grey-cream or brownish, variable size up to 130 mm up to 140 mm up to 150 (exceptionally 230 mm) up to 200 cm pneumostome darker margin, slightly posterior of the centre of the mantle in the mid section of the mantle NA 21–36 wrinkles between medial line of dorsum and pneumostome tentacles bases approaching each other NA grey NA mucus NA NA NA colourless known distribution N Italy, Bulgaria? NW Italy (Alpi Graie) N Italy (Como, Varese), S Switzerland (Ticino, W of Lago di Como) Originally S and W Europe, perhaps also N Africa, today widespread in Europe, Caucasus and abroad The specimen examined herewith best corresponds to description of L. conemenosi (Welter-Schultes 2012) (Tab. 1). Comments on Limax dacampi findings Limax dacampi is a red slug with dark colour bands at the sides or dark spots on the dorsum (Fig. 4). It grows up to 20 cm long and has a distinctive sole of the foot with two dark longitudinal bands on the sides as L. cinereoniger (Welter-Schultes 2012). It is known from different locations in Italy, where it was first described in 1885 at Lago di Garda by Menegazzi, even though new individuals were only rediscovered in type locality quite recently (in 2008) when mating was also documented (Falkner et al. 2008). It lives in different habitats, preferring forests and shrubs in lowlands (Welter-Schultes 2012). The species itself shows high morphological variability and is taxonomically problematic. It is probably a complex of different species (Falkner et al. 2008). It is known from different localities in Italy (Falkner et al. 2008; Rowson et al. 2014) as well as Switzerland, Croatia and the UK (Rowson et al. 2014). In the UK, it is only found in one location in North-east Yorkshire and has almost certainly been introduced from central Italy (Rowson et al. 2014). There is no record of L. dacampi in Slovenia in older publications (Wiktor 1996; Vaupotic & Velkovrh 2002). The species was first recorded in Slovenia on 11. 8. 2011, when Borut Kumar found L. dacampi in Osp. Identity of the slug was determined by Clemens M. Brandstetter (moderator of malacological part of forum Natura Mediteraneo, member of Die Gesellschaft zur Kartierung der Wirbellosen in Vorarlberg und Liechtenstein). The finding remained unpublished at the time. We found L. dacampi for the first time on a forest road near the village of Abitanti (WGS84 lat./long.: 45.436781 °N, 13.822295 °E; alt. 396 m) (Fig. 5) on 11. 5. 2024 during the night when slugs were active. We found eleven individuals and took pictures of every individual. We collected one of them for identification (Fig. 4). We revisited the site on 29. 8. 2024 in time of drought, but found no individuals. The identity of the species was confirmed based on CO1 sequences. Sequence of the slug from Abitanti is deposited in GenBank under accession number PQ676334 and is 99.84% identical to the sequence JX435840.1, 99.68% to the sequence JX435860.1, 99.66% to the sequence JX435861.1, 97.71% to the sequence JX435862.1 and 96.61% to sequences KF894382.1 and KF894384.1. All six corresponding sequences are deposited in GenBank as L. cf. dacampi. Two most similar sequences (JX435840.1 and JX435860.1) come from slugs from Croatian Istria (Nitz 2013). Two least similar sequences come from slugs from north-east Yorkshire (Rowson et al. 2014). Slug with most similar sequence was found in 1991 at Motovun (Nitz 2013) just approximately 11 km from where we found L. dacampi, which could mean that L. dacampi was present in Slovenia for quite some time, before it was first found. Figure 4. Limax dacampi collected at Abitanti on 11. 5. 2024. Photos are taken on one centimetre grid paper, showing external morphological features from different angles (photo: Maj Kastelic). Slika 4. Rdeci slinar Limax dacampi, ujet v Abitantih 11. 5. 2024. Fotografiran je na papirju s centimetrsko mrežo iz razlicnih zornih kotov, ki prikazujejo zunanje morfološke znacilnosti (foto: Maj Kastelic). Figure 5. Habitat of Limax dacampi at Abitanti on 29. 8. 2024. Slugs were found on a forest road next to dry stonewalls (photo: Maj Kastelic). Slika 5. Habitat rdecega slinarja Limax dacampi v Abitantih 29. 8. 2024. Gole polže smo našli na kolovozu ob suhozidih (foto: Maj Kastelic). Figure 6. Phylogenetic tree including sequences of slugs examined herein (shown in green), morphologically similar species living in Europe and species from the Limacidae family living Slovenia. Limax millipunctatus, Limax canapicianus and Malacolimax mrazeki are not shown in the tree, since there are no available sequences. The numbers behind species name are accession numbers from GenBank. Numbers at nodes indicate bootstrap support. Sources of sequences are shown in Tab. S1 in Supplementary Material. Slika 6. Filogenetsko drevo s sekvencama preucevanih golih polžev (napisani z zeleno barvo), morfološko podobnih vrst, živecih v Evropi, in vrst iz družine slinarjev Limacidae, ki živijo v Sloveniji. Limax millipunctatus, Limax canapicianus in Malacolimax mrazeki na drevesu niso prikazani, ker njihove sekvence niso na voljo. Števila za vrstnimi imeni so dostopne kode sekvenc, objavljenih na strani GenBank. Številke na razvejitvah prikazujejo vrednost samovzorcenja (bootstrap support). Viri sekvenc so prikazani v Tab. S1 v Dodatnem materialu. By confirming the presence of both species in Slovenia, the number of Limax slug species in Slovenia has increased to four, and total number of known slug species to 29. The group remains severely understudied in Slovenia, and further research is needed to improve our knowledge. Additional studies are likely to uncover more previously unrecorded species for the country. Povzetek V kratki vesti so predstavljeni podatki o dveh prvih najdbah vrst iz rodu slinarjev Limax. Iz družine Limacidae je bilo do sedaj znanih pet vrst, od tega dve vrsti iz rodu Limax (Vaupotic & Velkovrh 2002). Rdecega slinarja Limax dacampi, ki izvira iz Italije (Rowson et al. 2014), je prvic našel Borut Kumar leta 2011 v Ospu, potrdil pa Clemens M. Brandstetter, vendar najdbe nista objavila. V Abitantih smo 28. 11. 2024 našli odrasle osebke vrste in enega izmed njih vzeli za determinacijo (Sl. 4). Pikastega slinarja Limax conemenosi, ki verjetno izvira iz Grcije (Welter-Schultes 2012), pa smo prvic odkrili 30. 3. 2024 v Novi Gori v bližini Krškega. Najvecjega izmed najdenih osebkov smo odvzeli za determinacijo (Sl. 2). Oba polža smo najprej dolocili na podlagi opisov zunanjih morfoloških znakov, opisanih v European non-marine molluscs, a guide for species identification (Welter-Schultes 2012), nato pa še na podlagi DNK-sekvenc podenote 1 citokrom C oksidaze. DNK smo uspešno izolirali iz vzorca tkiva iz konice repa in ga pomnožili z oligonukleotidnimi zacetniki LCO1490 in HCO2198. Zaporedje so sekvencirali v Macrogen Europe (Amsterdam, Nizozemska) z uporabo istih zacetnikov. Na podlagi dobljenih sekvenc in sekvenc morfološko podobnih vrst iz rodu slinarjev Limax in predstavnikov družine slinarjev Limacidae, ki živijo v Sloveniji, smo sestavili filogenetsko drevo (Sl. 6). Nekatere vrste v drevesu manjkajo, saj njihovih sekvenc v bazi GenBank ni. Novo število potrjenih vrst golih polžev v Sloveniji je tako 29. Acknowledgements We would like to thank Cene Fišer for helping us with slug determination and guiding us throughout the writing process, Rajko Slapnik for providing the information of the first find of Limax dacampi by Borut Kumar, and Borut Kumar for trusting us to publish his data. We also thank Marjan Vaupotic for his advice on studying slugs, Maja Zagmajster for providing the map of distribution, and the ARIS programme P1-0184 for funding this research. Special thanks go to everyone who helped with the fieldwork: to Romana Božic for helping search for Limax conemenosi, Blaž Pavlic, Lana Klemencic, Nik Milek, Nik Šabeder and Val Milek with whom we searched for amphibians but discovered Limax dacampi, and to David Tomšic for his help during the second search for Limax dacampi. References Dhora D. 2014. Molluscs of Albania 2014: List of species and biogeographical data. Buletin Shkencor – Seria e shkencave të natyrës. 64: 149-181. Dimzas D, Morelli S, Traversa D, Di Cesare A, Van Bourgonie YR, Breugelmans K, Backeljau T, di Regalbono AF, Diakou A. 2020. Intermediate gastropod host of major feline cardiopulmonary nematodes in an area of wildcat and domestic cat sympatry in Greece. Parasites & Vectors. 13: 345. https://doi.org/10.1186/s13071-020-04213-z Duda M, Haring E. 2023. Molluscs (Gastropoda and Bivalvia) of the upper Neretva River. Natura Sloveniae 25: 15-17. https://doi.org/10.14720/ns.25.3.15-27 Falkner G, Brandstetter CM, Vogt DM, Niederhöfer H. 2008. Wiederentdeckung und Kopulationsbiologie von Limax dacampi Menegazzi 1855 am locus typicus (Gastropoda: Limacidae); [accessed 19. 9. 2024]. https://www.schnegel.at/download/pdf/ limax_dacampi.pdf Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology. 3: 294-299. Giusti F, Lesicki A, Benocci A, Pienkowska J, Manganelli G. 2021. Weltersia obscura, a new slug from the island of Montecristo (Tuscan Archipelago, Italy): a hitherto undiscovered endemic or a recent alien? (Mollusca, Pulmonata, Limacidae). Systematics and Biodiversity. 19(3): 1-17. https://doi.org/10.1080/14772000.2021.1908442 [iNat] iNaturalist. Limax conemenosi; [accessed on 12. 9. 2024]. https://www.inaturalist.org/observations?subview=map&taxon_id=793336 Jovanovic B. 1995. Diverzitet puževa (Gastropoda, Mollusca) Jugoslavije sa pregledom vrsta od medunarodnog znacaja. In: Stevanovic V, Vasic V, editors: Biodiverzitet Jugoslavije sa pregledom vrsta od medunarodnog znacaja. Beograd: Biološki fakultet & Ecolibri. p. 291-293. Minh B, Schmidt H A, Chernomor O, Schrempf D, Woodhams M D, von Haeseler A, Lanfear R. 2020. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution. 37: 1530-1534. https://doi.org/10.1093/molbev/msaa015 Nitz B. 2013. Integrative systematic and biogeography of Limax (Gastropoda: Stylommatophora). [PhD thesis]. [München]: Ludwig-Maximilians-Universität München. Rowson B, Anderson R, Turner JA, Symondson WOC. 2014. The slugs of Britain and Ireland: undetected and undescribed species increase a well-studied, economically important fauna by more than 20%. PLoS One. 9: 1-21. https://doi.org/10.1371/journal.pone.0091907 Salvador RB, Tomotani BM. 2024. Clocks at snail pace: biological rhythms in terrestrial gastropods. PeerJ. 12: e18318. http://doi.org/10.7717/peerj.18318 Štamol V. 2010. A list of the land snails (Mollusca: Gastropoda) of Croatia with recommendations for their Croatian names. Natura Croatica 19: 1-76. Vaupotic M, Velkovrh F. 2002. Goli polži (Gastropoda: Pulmonata: Milacidae, Limacidae, Boettgerillidae, Agriolimacidae, Arionidae) Slovenije. Acta Biologica Slovenica. 45: 35-52. https://doi.org/10.14720/abs.45.2.16630 Welter-Schultes F. 2012. European non-marine molluscs, a guide for species identification. Göttingen: Planet poster editions. Wiktor A. 1996. The slugs of the former Yugoslavia (Gastropoda terrestria nuda – Arionidae, Milacidae, Limacidae, Agriolimacidae). Annales Zoologici. 46: 1-100. Supplementary material Table S1. The list of GenBank (NCBI 2024) accession numbers with species determined and references, including new sequences reported here. The table is available as an online supplement at https://doi.org/10.14720/ns.26.2.21-33. © 2024 Maj Kastelic, Behare Rexhepi To je prostodostopen clanek, objavljen pod dolocili licence Creative Commons Priznanje avtorstva 4.0 Mednarodna, ki dovoljuje neomejeno rabo, razširjanje in kopiranje v kakršnemkoli mediju ter obliki, pod pogojem, da sta navedena avtor in vir. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Three new species of Niphargidae family added to the list of subterranean amphipods (Crustacea: Amphipoda) in Slovenia Cene FIŠER, Teo DELIC, Maja ZAGMAJSTER University of Ljubljana, Biotechnical Faculty, Department of Biology, SubBio Lab, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; E-mails: cene.fiser@bf.uni-lj.si; teo.delic@bf.uni-lj.si; maja.zagmajster@bf.uni-lj.si Abstract. Since the last comprehensive checklist of amphipods in 2021, three new species of subterranean amphipods have been confirmed for Slovenia: Niphargus danielopoli, N. lurensis and N. julius. Identification of all three species was based on molecular comparative analyses of the mitochondrial CO1 gene fragment, usually used in DNA barcoding identification. With these additions, we reached a total of 201 amphipod species confirmed for Slovenia, 60 of which are groundwater inhabitants, with 57 species belonging to the genus Niphargus. Key words: groundwater, checklist, additional species, Niphargus, hotspot, barcoding, species richness Izvlecek. Tri nove vrste iz družine Niphargidae dodane na seznam podzemnih postranic (Crustacea: Amphipoda) Slovenije – Od zadnjega izcrpnega seznama postranic leta 2021 so bile za Slovenijo potrjene tri nove vrste podzemeljskih postranic: Niphargus danielopoli, N. lurensis in N. julius. Identifikacija treh vrst je temeljila na molekularnih primerjalnih analizah fragmenta mitohondrijskega gena CO1, ki se obicajno uporablja pri identifikaciji s crtnim kodiranjem DNA. S temi dodatki je za Slovenijo potrjenih skupno 201 vrst postranic, od katerih je 60 podzemnih, s 57 vrstami iz rodu Niphargus. Kljucne besede: podzemne vode, seznam, dodatne vrste, Niphargus, vroca tocka, barkodiranje, vrstno bogastvo Introduction In the recently published checklist of amphipods of Slovenia, 198 different species inhabiting marine, brackish, freshwater, and terrestrial habitats have been listed (Fišer et al. 2021). More than one-fourth (57 species) of them inhabit groundwater and can be treated as obligatory subterranean species. All but three belong to the family Niphargidae. The genus Niphargus is the most diverse genus of freshwater amphipods in the world and is distributed throughout the western Palearctic region (Borko et al. 2021). Due to its wide distributional range and high species richness, Niphargus is the focal group for various taxonomical, ecological, evolutionary and biodiversity studies (e.g. Stoch et al. 2020; Borko et al. 2021, 2022). Subsequently, Borko et al. (2022) published a study with an extensive list of Niphargus species with corresponding CO1 barcoding sequences. Although some sequences could have been ascribed to morphologically described species, many of them present potential new species based on molecular differences. Further sequencing of the Niphargus CO1 marker in Ljubljana (SubBioLab, at Biotechnical Faculty, University of Ljubljana) and elsewhere allowed us to link the identity of two other MOTUs (molecular operational taxonomic units) in Borko et al. (2022) with valid species names. To keep the amphipod checklist for Slovenia updated, we report herewith on all three additional species for the country. Material and methods Information on the new species for Slovenia was registered in the SubBioDB database, a spatial relational database managed by SubBioLab. Info on the new species and MOTUs were extracted from Borko et al. (2022), where the sequences were originally used in the analyses of biodiversity patterns of subterranean amphipods in the Western Balkans. DNA extraction from amphipods stored in the SubBioLab collection was based on a single appendage; hence the specimens remained in the collection for potential subsequent morphological identification. The protocol of DNA extraction and amplification of the Folmer’s CO1 barcoding fragment (Folmer et al. 1994) for two species followed the one described in Borko et al. (2021), with post-sequencing species identification using the BLAST tool (Altschul et al. 1990). Species identification was made based on widely used 97% match (Ratnasingham & Hebert 2007) with the barcoding fragments of CO1 stored in GenBank. All sequences were deposited in GenBank, with access numbers given in the Results section. Results and discussion Three new groundwater amphipod species were recorded at four different localities in Slovenia (Tab. 1). One of them, N. danielopoli, was identified to the species level by Borko et al. (2022), while the other two were referred to as different MOTUs (Tab. 1). A comparison of acquired sequences with those stored in GenBank or originating in neighbouring countries (Stoch et al. 2020) allowed us to unambiguously identify two additional Niphargus species. Niphargus danielopoli Karaman G., 1994 was described from Austria. It is a small species that has been reported from several localities geographically scattered in central Europe and northern Italy (Karaman 1994), and confirmed in Northern Slovenia (Borko et al. 2022). Niphargus lurensis Schellenberg, 1935 was first described as a form of N. tatrensis Wrzesniowski, 1888. In their molecular study, Stoch et al. (2020) provided evidence that this form should be treated as a valid species distributed in Styrian karst in Austria. Based on the barcoding fragment published by Stoch et al. (2020), the identification of material from Northeastern Slovenia revealed that this species is also present at two sites in Slovenia (Tab. 1). The third species, N. julius Stoch, 1997, has been reported from several caves and springs in the Nadiža/Natisone and neighbouring river valleys in northeastern Italy, close to the Slovenian border (Stoch 1997; Karaman 2020). Its presence in Slovenia was confirmed after comparing sequences of individuals collected in a cave close to Kobarid with sequences from Italy (Stoch et al. 2023; Tab.1). Table 1. The list of new groundwater amphipod species confirmed as occurring in Slovenia, with reported details on findings (taken from the SubBioDB database). Coordinates (Lat: N latitude; Long: E longitude) are given in WGS84 decimal degrees. The Acc. No. refers to the sequence’s GenBank access number and a code in brackets to the specimen’s voucher number in the SubBioDB. The name, under which it was reported in Borko et al. (2022), is given in the last column. Tabela 1. Seznam novih vrst podzemnih postranic, ki se potrjeno pojavljajo v Sloveniji, s podrobnejšimi podatki o najdbah (povzeto po podatkovni bazi SubBioDB). Koordinate (Lat: severna geografska širina; Long: vzhodna geografska dolžina) so podane v WGS84 decimalnih stopinjah. Okrajšava Acc. No. se oznacuje GenBank identifikacijsko številko, medtem ko se oznaka v oklepaju nanaša na številko osebka (voucher) v SubBioDB. V zadnjem stolpcu je navedeno ime, pod katerim je bila vrsta navedena v Borko et al. (2022). Species Locality Lat, Long Date Collectors Acc. No. (voucher) Name in Borko et al. (2022) Niphargus danielopoli G. Karaman, 1994 Izvir Veliki Javornik, Javorniški rovt, Jesenice (spring) 46.458228, 14.108519 27.5.2017 Simona Prevorcnik OK156541 (NC216), OK157026 (ND518), OK157027 (ND519) N. danielopoli Niphargus lurensis Schellenberg, 1935 Vodnjak pri hiši Cven 1c (well) 46.551063, 16.208525 14.8.2011 Jasmina Kotnik OK156762 (ND186) N. spn ND186 Vodnjak ob hiši Ribiška 24 in Veržej (well) 46.586558, 16.165139 9.6.2017 Maja Zagmajster, Simona Prevorcnik, Nataša Mori OK157130 (ND642) N. spn ND186 Niphargus julius Stoch, 1997 Turjeva jama (Slovene cave Registry No. 821), Kred, Kobarid (cave) 46.241212, 13.500463 15.1.2018 Teo Delic, Špela Borko, Klemen Koselj, Maja Zagmajster OK157116 (ND624) N. spn ND624 Even though Slovenia has already been recognised as a hotspot of groundwater amphipod diversity in the Western Balkans (Bregovic et al. 2019), the ongoing analyses, run by the SubBioLab members, revealed new species for the country. The new observations reported herein increase the number of amphipod species for Slovenia to 201, with 60 of them from groundwater, and 57 belonging to the genus Niphargus. Povzetek V zadnjem objavljenem pregledu postranic Slovenije je bilo naštetih 198 vrst iz razlicnih habitatov, od teh 57 iz podzemnih voda (Fišer et al. 2021). Od slednjih vse razen treh vrst pripadajo družini Niphargidae. Rod Niphargus je vrstno najpestrejši rod postranic, ki je razširjen po obmocju cele zahodne Palearktike (Borko et al. 2021). V študiji Borko et al. (2022) je bil uporabljen in objavljen seznam številnih vrst rodu Niphargus s pripadajocimi CO1 sekvencami. V tem seznamu je navedena nova vrsta za Slovenijo, še dve pa sta bili v tej študiji navedeni kot molekulski operativni taksonomski enoti, ki sta potencialno svoji vrsti. Za identifikacijo smo uporabili postopek BLAST (Altschul et al. 1990) in na podlagi 97-% ujemanja s sekvencami na GenBanku potrdili identiteto teh osebkov. Skupno so bile identificirane tri nove vrste postranic za Slovenijo, najdene na štirih razlicnih lokalitetah (Tab. 1). Niphargus danielopoli Karaman G., 1994 je bil znan iz srednje Evrope. Niphargus lurensis Schellenberg, 1935 je razširjen po Štajerskem delu Avstrije, potrjena je bila tudi v severovzhodni Sloveniji. Tretja vrsta, N. julius Stoch, 1997, je bila znana iz doline reke Nadiže/Nattisone v Italiji, zdaj smo jo potrdili tudi v jami blizu Kobarida. Nova opažanja so povecala skupno število potrjenih postranic v Sloveniji na 201, od katerih jih 60 živi v podzemnih vodah. Acknowledgements We are grateful to the collectors of the material. The species identity of reference sequences from GenBank was confirmed by Dr. Fabio Stoch (Italy). The preparation of updates to the checklist has been encouraged by the need of NarcIS – Nature Conservation Information System (http://narcis.gov.si), established via the EU-funded project LIFE NarcIS (LIFE19 GIE/SI/000161). The research of Slovenian amphipod fauna was cofounded by the Slovenian Research Agency through core program P1-0184. The study was additionally funded by Biodiversa+, the European Biodiversity Partnership under the 2021-2022 BiodivProtect joint call for research proposals, co-funded by the European Commission (GA N°101052342), and with the funding organisations Ministry of Universities and Research (Italy), Agencia Estatal de Investigación – Fundación Biodiversidad (Spain), Fundo Regional para a Cięncia e Tecnologia (Portugal), Suomen Akatemia – Ministry of the Environment (Finland), Belgian Science Policy Office (Belgium), Agence Nationale de la Recherche (France), Deutsche Forschungsgemeinschaft e.V. – BMBF-VDI/VDE INNOVATION + TECHNIK GMBH (Germany), Schweizerischer Nationalfonds zur Forderung der Wissenschaftlichen Forschung (Switzerland), Fonds zur Förderung der Wissenschaftlichen Forschung (Austria), Ministry of Higher Education, Science and Innovation (Slovenia), and the Executive Agency for Higher Education, Research, Development and Innovation Funding (Romania); and Biodiversa+, the European Biodiversity Partnership, in the context of the Sub-BioMon – Developing and testing approaches to monitor subterranean biodiversity in karst project under the 2022-2023 BiodivMon joint call. It was co-funded by the European Commission (GA N°101052342) and the following funding organisations: Ministry of Higher Education, Science and Innovation (Slovenia), The Belgian Science Policy (Belgium), Ministry of Universities and Research (Italy), National Research, Development and Innovation Office (Hungary), Executive Agency for Higher Education, Research, Development and Innovation Funding (Romania) and self-financing partner National Museum of Natural History Luxembourg (Luxembourg). References Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2 Borko Š, Trontelj P, Seehausen O, Moškric A, Fišer C. 2021. A subterranean adaptive radiation of amphipods in Europe. Nature Communications. 12: 3688. https://doi.org/10.1038/s41467-021-24023-w Borko Š, Altermatt F, Zagmajster M, Fišer C. 2022. A hotspot of groundwater amphipod diversity on a crossroad of evolutionary radiations. Diversity and Distributions. 28(12): 2765-2777. https://doi.org/https://doi.org/10.1111/ddi.13500 Bregovic P, Fišer C, Zagmajster M. 2019. Contribution of rare and common species to subterranean species richness patterns. Ecology and Evolution 9(20): 11606-11618. https://doi.org/10.1002/ece3.5604 Fišer C, Mavric B, Govedic M, Pekolj A, Zagmajster M. 2021. Checklist of amphipod crustaceans (Crustacea: Amphipoda) in Slovenia. Natura Sloveniae. 23(2): 5-24. https://doi.org/10.14720/ns.23.2.5-24 Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology. 3: 294-299. Karaman GS. 1994. Contribution to the knowledge of the Amphipoda. Further studies on genus Niphargus Schioedte 1849 from Europe, N. ivokaramani, n. sp and N. danielopoli, n. sp. The Montenegrin Academy of Sciences and Arts: Glasnik of the Section of Natural Sciences. 10: 113-133. Karaman GS. 2020. Biodiversity of subterranean waters: redescription of poorly known Niphargus julius Stoch, 1997 (Crustacea: Amphipoda: Niphargidae) from Italy (Contribution to the knowledge of the Amphipoda 314). Agriculture & Forestry. 66(4): 239-258. https://doi.org/10.17707/AgricultForest.66.4.19 Ratnasingham S, Hebert PDN. 2007. BOLD: The Barcode of Life Data System (www.barcodinglife.org). Molecular Ecology Notes. 7: 355-364. https://doi.org/10.1111/j.1471-8286.2006.01678.x Stoch F. 1997. La fauna delle acque carsiche sotterranee delle Valli del Natisone. In: Il fenomeno carsico delle Valli del Natisone. Memorie dell'Istituto Italiano di Speleologia. s. II, vol. IX. p. 89-100. Stoch F. Christian E, Flot JF. 2020. Molecular taxonomy, phylogeny and biogeography of the Niphargus tatrensis species complex (Amphipoda, Niphargidae) in Austria. Organisms Diversity & Evolution. 20: 701-722. https://doi.org/https://doi.org/10.1007/s13127-020-00462-z Stoch F, Salussolia A, Flot JF. 2023. Polyphyly of the Niphargus stygius species group (Crustacea, Amphipoda, Niphargidae) in the Southern Limestone Alps. bioRxiv. https://www.biorxiv.org/content/10.1101/2022.04.28.489871v2.full © 2024 Cene Fišer, Teo Delic, Maja Zagmajster To je prostodostopen clanek, objavljen pod dolocili licence Creative Commons Priznanje avtorstva 4.0 Mednarodna, ki dovoljuje neomejeno rabo, razširjanje in kopiranje v kakršnemkoli mediju ter obliki, pod pogojem, da sta navedena avtor in vir. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. First record of the pill bug Armadillidium arcangelii Strouhal, 1929 (Crustacea: Isopoda) in Slovenia Miloš VITTORI, University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; E-mail: milos.vittori@bf.uni-lj.si Abstract. Numerous novel occurrences of Armadillidium arcangelii, a terrestrial isopod native to Italy, have been reported in recent years in synanthropic habitats across much of Europe. These records indicate that the species is rapidly spreading, likely via the transport of plants. On 21. 9. 2023, a male of this species was collected on turf near Seca on the Slovenian coast. This is the first record of A. arcangelii in Slovenia. The record is all the more relevant as A. arcangelii is a potential agricultural pest. Izvlecek. Prva najdba pasavcka vrste Armadillidium arcangelii Strouhal, 1929 (Crustacea: Isopoda) v Sloveniji – V zadnjih nekaj letih so v sinantropnih habitatih v razlicnih delih Evrope opazili kopenskega enakonožca, pasavcka vrste Armadillidium arcangelii, ki izvira iz Italije. To kaže na hitro širjenje te vrste, najverjetneje s transportom rastlin. Samca vrste A. arcangelii smo našli 21. 9. 2023 na trati ob morju blizu Sece. To je prvo opažanje vrste A. arcangelii v Sloveniji. Najdba je pomembna tudi, ker je bila vrsta prepoznana kot potencialen škodljivec na poljšcinah. Terrestrial isopod crustaceans (Oniscidea) are a substantial part of soil invertebrate fauna. Over the past decades, numerous species have been introduced to parts of the world where they had not been present previously (Sfenthourakis & Hornung 2018). In certain regions of North America, the terrestrial isopod fauna may consist almost entirely of introduced species, predominantly of European origin (Szlavecz et al. 2018). Recently, an enigmatic Armadillidum species has been recorded from numerous locations in Europe and Britain, with most of these occurrences likely representing recent introductions. While some uncertainty remained regarding the identity of the species that is rapidly colonizing synanthropic habitats across Europe, its morphological features matched those of Armadillidium arcangelii Strouhal 1929 (Noël et al. 2022), a species native to Italy (Schmalfuss 2003). In the past decade, these pill bugs have been collected and examined in the United Kingdom (Gregory 2014; Hughes et al. 2024), Spain (Garcia & Cabanillas 2021), France, Greece, the Netherlands (Noël et al. 2022), and Belgium (De Smedt & Van Dijck 2023). Citizen science data on the iNaturalist platform (https://www.inaturalist.org/) suggest that it is likely present in several other European countries as well, including Austria, Croatia, Germany, Poland, and Portugal (Noël et al. 2022). Nevertheless, the identification of this species, now widespread in Europe, is provisional, as A. arcangelii is morphologically very similar to Armadillidium apenninorum and Armadillidium marmoratum, and some of these species names might be synonyms (Schmalfuss 2003; Noël et al. 2022; Hughes et al. 2024). On 21. 9. 2023, a single adult male of a terrestrial isopod belonging to the genus Armadillidium was collected by the author of this field note on the Slovenian Adriatic coast (Fig. 1). The small, mottled pill bug was found under dead wood on a public turf along the shore near Seca (45.502944 N, 13.589944 E; 5 m a.s.l.). Further examination of the habitus and male characters revealed that the isopod matches the descriptions of A. arcangelii. The isopod and its dissected appendages are kept in the author’s collection at the Department of Biology, Biotechnical Faculty, University of Ljubljana. Several features can be used to identify A. arcangelii. The species is relatively small, with females reaching 8–9 mm in length and males being smaller (Strouhal 1929; Noël et al. 2022). The colour, while variable, is usually mottled brown (Strouhal 1929; Noël et al. 2022; Fig. 1A). The antennal lobes are small, protruding, and rounded, and the dorsal margin of the frontal shield reaches slightly above the frontal edge of the cephalothorax (Fig. 1A, B). The proximal article of the flagellum of the second antenna is shorter than the distal article (Strouhal 1929; Fig. 1A). The lateral parts of the posterior margin of pereonite 1 are curved, not sharply bent (Fig. 1A). The pleotelson is triangular, with straight lateral edges and rounded tip (Strouhal 1929; De Smedt & Van Dijck 2023; Fig. 1C). Diagnostic characters include the shape of the uropods (Strouhal 1929) and male characters, specifically the male pereopod 7 and pleopod 1 (Garcia & Cabanillas 2021; Noël et al. 2022). The posterior edge of the uropod exopodite in both sexes is not rounded (Strouhal 1929; Fig. 1C). The exopodite of the male pleopod 1 ends in a triangular distal lobe and the posterior edge of the exopodite bends near the distal end of the perispiracular area (Garcia & Cabanillas 2021; Noël et al. 2022; Fig. 1D). The tip of the male pleopod 1 endopodite curves outwards (Noël et al. 2022; Fig. 1E). The ventral edge of the ischium on the male pereopod 7 is straight (Noël et al. 2022; Fig. 1F). Figure 1. Armadillidium arcangelii, male, collected near Seca, Slovenia. A – habitus; B – cephalothorax; C – pleotelson with uropods; D – pleopod 1 exopodite with a bent posterior edge (arrowhead); E – pleopod 1 endopodite with the tip curving outward (arrowhead); F – straight ventral edge of ischium (arrowhead) on pereopod 7. Scale bars: 1 mm (A); 0.5 mm (B, C, F); 100 µm (D); 50 µm (E) (photo: M. Vittori). Slika 1. Armadillidium arcangelii, samec, nabran blizu Sece v Sloveniji. A – habitus; B – glavoprsje; C – pleotelzon z uropodi; D – eksopodit pleopoda 1 s pregibom na posteriornem robu (pušcica); E – endopodit pleopoda 1 s konico, upognjeno navzven (pušcica); F – raven ventralni rob ischiuma (pušcica) na pereopodu 7. Merilca: 1 mm (A); 0,5 mm (B, C, F); 100 µm (D); 50 µm (E) (foto: M. Vittori). In Britain, initial reports came from greenhouses, but the species has since also been reported in garden centres (Hughes et al. 2024). In Spain, it was reported in habitats affected by human activities such as mining and industrial waste disposal near Madrid and Cádiz (Garcia & Cabanillas 2021; Garcia & Rojas 2021). In France, the species occurs in synanthropic habitats outdoors, mainly close to the coast (Noël et al. 2022). In Belgium, A. arcangelii was recorded on the green roofs of the University of Hasselt, where it was collected on several occasions over the span of 4 years (De Smedt & Van Dijck 2023). The main route of the introduction of the species to several European locations was likely the transport of plants (Noël et al. 2022; De Smedt & Van Dijck 2023; Hughes et al. 2024). While terrestrial isopods generally do not cause agricultural damage, A. arcangelii was recently identified as a potential agricultural pest in Italy, as it may feed on young melon plants (Fusaro et al. 2024). The species had not been known to affect crops before. As it had not been reported in Slovenia previously, despite extensive past research of the area (Potocnik 1984), and as it is known to have been introduced in other parts of Europe, A. arcangelii may have been introduced to Slovenia. Nevertheless, since Italian populations are relatively close, it is also possible that the species spread to Slovenia naturally, or that it was present in this area in the past, but never collected or recognized. Given its wide distribution and rapid spreading (Noël et al. 2022), the finding of A. arcangelii in Slovenia had been expected. Considering previous checklists of the terrestrial isopod fauna of Slovenia (Vittori et al. 2023), recent records (Jakob et al. 2024), and the record of A. arcangelii reported here, there are currently 76 recorded species of Oniscidea in the country. Acknowledgments This work was supported by the University Infrastructural Centre »Microscopy of Biological Samples« at the Biotechnical Faculty, University of Ljubljana. References De Smedt P, Van Dijck T. 2023. The first record of the terrestrial isopod Armadillidium arcangelii Strouhal, 1929 (Isopoda: Armadillidiidae) from Belgium, on an extensive green roof. Bulletin de la Société royale belge d'Entomologie / Bulletin van de Koninklijke Belgische Vereniging voor Entomologie. 159: 124-129. Fusaro S, Taiti S, Dorigo L, Paoletti MG. 2024. A terrestrial isopod (Armadillidium arcangelii Strouhal, 1929) as a potential agricultural pest: a case study on melon crop (Cucumis melo L.) in Italy. Redia. 107: 31-37. https://doi.org/10.1926/REDIA-107.24.04 Garcia L, Cabanillas D. 2021. Los isópodos terrestres (Crustacea, Isopoda, Oniscidea) del entorno de las Lagunas de Ambroz: una zona urbana en proceso de renaturalización en el municipio de Madrid (Espańa). Boletín de la Asociación espańola de Entomología. 45: 161-175. Garcia L, Rojas D. 2021. Isópodos terrestres (Crustacea: Oniscidea) de Andalucía. Nuevas citas y especies interesantes. Revista de la Sociedad Gaditana de Historia Natural. 15: 47-52. Gregory SJ. 2014. Woodlice (Isopoda: Oniscidea) from the Eden Project, Cornwall, with descriptions of new and poorly known British species. Bulletin of the British Myriapod and Isopod Group. 27: 3-26. Hughes TD, Northfield A, Maguire W. 2024. The Conquest Continues: First Outdoor Records of Armadillidium arcangelii Strouhal, 1929 in the British Isles (Isopoda: Oniscidea: Armadilliididae). Bulletin of the British Myriapod and Isopod Group. 36: 14-19. Jakob A, Kuhar U, Vittori M, Klenovšek T, Strgulc Krajšek S. 2024. Significant records of plants, algae, fungi, and animals in SE Europe and adjacent regions, 2. Acta Biologica Slovenica. 67: 58-63. https://doi.org/10.14720/ abs.67.2.19618 Noël F, Gregory SJ, Agapakis G. 2022. Armadillidium arcangelii Strouhal, 1929 (Isopoda: Oniscidea): a step towards the conquest of Europe? Bulletin of the British Myriapod and Isopod Group. 32: 72-82. Potocnik F. 1984. Mokrice (Isopoda terrestria) slovenske obale Jadrana. Biološki vestnik. 32: 77-86. Schmalfuss H. 2003. World catalog of terrestrial isopods (Isopoda: Oniscidea). Stuttgarter Beiträge zur Naturkunde. Serie A, 654. Stuttgart: Staatliches Museum für Naturkunde. Sfenthourakis S, Hornung E. 2018. Isopod distribution and climate change. ZooKeys. 801: 25-61. https://doi.org/10.3897/zookeys.801.23533 Szlavecz K, Vilisics F, Tóth Z, Hornung E. 2018. Terrestrial isopods in urban environments: an overview. ZooKeys. 801: 97-126. https://doi.org/10.3897/zookeys.801.29580 Strouhal H. 1929. Die Landisopoden des Balkans. 3. Beitrag: Südbalkan. Zeitschrift für wissenschaftliche Zoologie. 133: 57-120. Vittori M, Mavric B, Pekolj A, Govedic M, Zagmajster M. 2023. A checklist of isopods (Crustacea: Isopoda) in Slovenia. Natura Sloveniae. 25: 27-52. https://doi.org/10.14720/ns.25.2.27-52 Tropidia scita (Harris, 1780) (Diptera: Syrphidae), a new hoverfly species for Slovenia Benjamin SCHWARTZ1,2, Maarten DE GROOT3 1Texas State University, Department of Biology, San Marcos, TX, 78666 USA; E-mail: bs37@txstate.edu 2Edwards Aquifer Research and Data Center, Texas State University, San Marcos, TX, 78666 USA 3Slovenian Forestry Institute, Department of Forest Protection, Vecna pot 2, SI-1000 Ljubljana, Slovenia; E-mail: maarten.degroot@gozdis.si Abstract. The hoverfly genus Tropidia Meigen, 1822, with the species T. scita (Harris, 1780), is recorded for the first time in the hoverfly fauna of Slovenia. This species was found at Draga ponds near Ig, Slovenia, on the 16th of June, 2024. With this new record, the number of hoverfly species in Slovenia has increased to 363. Izvlecek. Tropidia scita (Harris, 1780) (Diptera: Syrphidae), nova vrsta muhe trepetavke za Slovenijo – Rod Tropidia Meigen, 1822 z vrsto T. scita (Harris, 1780) je prvic zabeležen v favni muh trepetavk Slovenije. Ta vrsta je bila najdena 16. junija 2024 na ribnikih v Dragi pri Igu v Sloveniji. S tem novim zapisom se je število vrst muh trepetavk Slovenije povecalo na 363. In Slovenia, there are 362 reported species of hoverflies (Diptera: Syrphidae) and many other species likely remain to be still found there (Kocic et al. 2023). Of these, the genus Tropidia Meigen, 1822 is completely lacking from the Slovenia fauna. Members of Tropidia are medium-sized (7–12 mm) flies that may resemble Xylota Meigen, 1822, and some species of Myolepta Newman, 1838, but are recognizable by their enlarged hind femur with a triangular lamina on the apical part, and a carinate face with a medial ridge (Reemer et al. 2009; Bot & van de Meutter 2023). Because of triangular lamina on the apical part of the hind femur, Tropidia may be confused with Merodon Meigen, 1803, but in Merodon vein M1 is recessive. The genus has two species in Europe, Tropidia scita (Harris, 1780) and T. fasciata Meigen, 1822. Shorter hairs on the body and gently curved vein R4+5 differentiate Tropidia scita from T. fasciata (Bot & van de Meutter 2023). Both species are likely to occur in Slovenia, based on records in surrounding countries and the presence of suitable habitats, but have not been previously reported. The known range of T. scita includes the entire Palearctic from western Europe to Japan (Reemer et al. 2009; Speight 2020) and includes the surrounding countries of Austria, Italy, and Hungary (Speight 2020; Reverté et al. 2023). In this article, we present the first record of T. scita in Slovenia. The species occurs in humid and wet eutrophic habitats with open water, including marshy forests. Adults are found close to their reproduction sites, where they fly low through the vegetation or sit low at ground level on leaves or reed stems. Little is known regarding the larval stage, but it is assumed that it lives in decomposing plant material found in reed beds and other wetland areas (Reemer et al. 2009; Speight 2020). The published red list of hoverflies of Europe showed that this species has the status of »Least Concern« (Vujic et al. 2022). An assessment of the status in Slovenia is presently not possible due to data deficiency. Material examined (Fig. 1): Slovenia, Draga pri Igu, along Srednji ribnik; one of a series of ponds along a small valley ~13 km south of Ljubljana (WGS84: 45.93649 N, 14.55108 E), 16.06.2024, 310 m a.s.l., 1., leg. B. Schwartz. A close-up of a fly on a blade of grass Description automatically generated (Rectangle) Figure 1. Male Tropidia scita found at the fish ponds at Draga pri Igu in June 2024 (photo: B. Schwartz). Slika 1. Samec Tropidia scita, najden pri ribnikih v Dragi pri Igu junija 2024 (foto: B. Schwartz). Habitats within 50 m of the observation site (Figs. 2-3) include open ponds with deep water, marshy pond edges and adjacent open marshes with abundant rushes, sedges, scouring rushes and other emergent vegetation, forested swamps, small forest seeps and springs, and dry adjacent forested hillslopes. The specimen was found perching on leaves of Carex sp. (Cyperaceae) in the morning sun at 09:00 hrs. It seemed to prefer perching on leaves that were partly sheltered by an open overhanging canopy of the same plant, and moved frequently, but spent most of its time perching rather than flying or hovering. It was quite wary and did not allow a close approach. A single photo of a male was taken from several meters away using a 100-400mm zoom lens with a 1.4× teleconverter (560mm equivalent) on a Sony a7Rv full-frame digital camera.The location where the specimen was found is typical habitat for T. scita. In Slovenia, many similar places like fishing ponds occur throughout the central and eastern parts of the country and with a thorough survey many more locations with this species may be found. Figure 2. Map of Slovenia showing location of new record for Tropidia scita (red circle), major cities (black squares), and statistical regions. Slika 2. Zemljevid Slovenije, ki prikazuje lokacije novo odkrite vrste Tropidia scita (rdeci krogec), vecjih mest (crni kvadratki) in statisticnih regij. Figure 3. Satellite image of new record location (yellow circle) showing ponds, adjacent marshy forests, and hillslope forests. Source of image: Google Earth, 12 August 2024. Slika 3. Satelitska slika lokacije novo odkrite vrste (rumeni krog) z ribniki, okoliškimi mocvirnatimi gozdovi in gozdovi na pobocjih. Vir satelitske slike: Google Earth, 12. avgust 2024. Acknowledgments Benjamin Schwartz thanks members of the Subterranean Biology Lab, Department of Biology, Biotechnical Faculty, at University of Ljubljana for graciously hosting him during his visit to Slovenia. Maarten de Groot was supported by the research core program »Forest biology, ecology and technology« (P4-0107), financed by the Slovenian Research and Innovation Agency. References Bot S, van de Meutter F. 2023. Hoverflies of Britain and North-west Europe: A photographic guide. London (UK): Bloomsbury Wildlife. Kocic A, Vujic A, Tot T, Milosavljevic MJ, de Groot M. 2023. An updated checklist of the hoverflies (Diptera: Syrphidae) of Slovenia. Zootaxa. 5297: 189-227. https://doi.org/10.11646/ zootaxa.5297.2.2 Reemer M, Renema W, van Steenis W, Zeegers T, Barendregt A, Smit JT, Van Veen MP, van Steenis J, van der Leij LJJM. 2009. De Nederlandse zweefvliegen (Diptera: Syrphidae). Nederlandse Fauna 8. Leiden: Natuurhistorisch Museum Naturalis, KNNV uitgeverij, European Invertebrate Survey - Nederland. Reverté S, Milicic M, Acanski J, Andric A, Aracil A, Aubert M, Balzan MV, Bartomeus I, Bogusch P, Bosch J et al. 2023. National records of 3000 European bee and hoverfly species: A contribution to pollinator conservation. Insect Conservation and Diversity. 16(6): 758-775. https://doi.org/10.1111/icad.12680 Speight MCD. 2020. Species accounts of European Syrphidae, 2020. Syrph the Net, the database of European Syrphidae (Diptera), vol. 104. Dublin: Syrph the Net publications. Vujic A, Gilbert F, Flinn G, Englefield E, Ferreira CC, Varga Z, Eggert F, Woolcock S, Böhm M, Mergy R et al. 2022. The European Red List of Hoverflies. Brussels: European Commission. Popravki Erratum: » A contribution to the Slovenian spider fauna – V« Kuralt Ž., Pajek Arambašic N., Ferle M., Kostanjšek R., Natura Sloveniae 26(1), 2024, str. 29-42. Str. 31–39: pravilne navedbe avtorstva v clanku omenjenih vrst so: Pages 31–39: correct author citations for species mentioned in the paper are as follows: Larinioides patagiatus (Clerck, 1757) – Araneidae Cyrtarachne ixoides (Simon, 1870) – Araneidae Pritha nana (Simon, 1868) – Filistatidae Marinarozelotes adriaticus (Caporiacco, 1951) – Gnaphosidae Micaria micans (Blackwall, 1858) – Gnaphosidae Scotophaeus blackwalli (Thorell, 1871) – Gnaphosidae Zelotes similis (Kulczynski, 1887) – Gnaphosidae Agyneta orites (Thorell, 1875) – Linyphiidae Donacochara speciosa (Thorell, 1875) – Linyphiidae Lasiargus hirsutus (Menge, 1869) – Linyphiidae Trichoncus sordidus Simon, 1884 – Linyphiidae Walckenaeria vigilax (Blackwall, 1853) – Linyphiidae Alopecosa taeniata (C. L. Koch, 1835) – Lycosidae Pardosa oreophila Simon, 1937 – Lycosidae Pardosa paludicola (Clerck, 1757) – Lycosidae Pardosa sordidata (Thorell, 1875) – Lycosidae Pardosa sphagnicola (Dahl, 1908) – Lycosidae Xerolycosa miniata (C. L. Koch, 1834) – Lycosidae Mimetus laevigatus (Keyserling, 1863) – Mimetidae Philodromus laricium Simon, 1875 – Philodromidae Philodromus vagulus Simon, 1875 – Philodromidae Attulus rupicola (C. L. Koch, 1837) – Salticidae Marpissa radiata (Grube, 1859) – Salticidae Micrommata ligurina (C. L. Koch, 1845) – Sparassidae Euryopis quinqueguttata Thorell, 1875 – Theridiidae Parasteatoda tabulata (Levi, 1980) – Theridiidae Phoroncidia paradoxa (Lucas, 1846) – Theridiidae Rhomphaea rostrata (Simon, 1873) – Theridiidae Robertus mediterraneus Eskov, 1987 – Theridiidae NAVODILA AVTORJEM Poslanstvo revije NATURA SLOVENIAE je objavljati rezultate terensko-bioloških raziskav in podatke, ki prispevajo k razumevanju zgodovine flore in favne srednje in jugovzhodne Evrope. Dobrodošli so prispevki s pomembnimi in novimi podatki o razširjenosti vrst vseh kraljestev, pregledni seznami vrst ter ekološke, biogeografske, biodiverzitetne in naravovarstvene študije. Prispevki so objavljeni v angleškem ali slovenskem jeziku. Revijo v imenu Biotehniške fakultete Univerze v Ljubljani in Nacionalnega inštituta za biologijo izdaja Založba Univerze v Ljubljani. Naslov glavne urednice: Maja Zagmajster, Oddelek za biologijo, Biotehniška fakulteta, Univerza v Ljubljani, Vecna pot 111, SI-1000 Ljubljana; maja.zagmajster@bf.uni-lj.si PREDLOŽITEV ROKOPISOV Rokopisi naj bodo oddani prek spletnega portala Založbe Univerze v Ljubljani: https://journals.uni-lj.si/NaturaSloveniae. Vse rokopise bo recenziral vsaj po en recenzent. Avtorji lahko predlagajo imena in kontakte potencialnih recenzentov, uredništvo pa si pridržuje pravico, da izbere kateregakoli drugega. Po pregledu s strani recenzenta(-ov), avtor ali avtorji sami pripravijo novo verzijo rokopisa. Popravljen rokopis je treba vrniti z oznacenimi spremembami (lahko uporabite orodje Track changes) skupaj z razlicico brez oznacenih sprememb ali pripomb in spremnim dopisom, v katerem so pojasnjene opravljene spremembe. Predloženi rokopis ne sme biti predhodno objavljen v nobeni obliki in ne sme biti hkrati predložen drugam (v drugo revijo, bilten ali kongresno publikacijo). Z oddajo rokopisa podelijo založniku pravico do prve izdaje clanka po licenci Creative Commons Attribution 4.0 International. FORMAT IN OBLIKA PRISPEVKA Rokopisi so lahko predloženi v obravnavo kot znanstveni clanek, kratka znanstvena vest in terenska notica. Dobrodošli so tudi drugi formati prispevkov (pregledni clanki, komentarji, mnenjski clanki), vendar se je treba o tem predhodno posvetovati z urednikom. Znanstveni clanek je popoln opis izvirne raziskave, vkljucno z uvodnim pregledom ozadja in stanja poznavanja tematike. Struktura sledi principu »IMRAD« (uvod, material in metode, rezultati, razprava), sledijo sklepi (neobvezno), zahvala (neobvezno), literatura, povzetek, dodatno gradivo (neobvezno). Kratka znanstvena vest je izvirno delo, ki poroca o manjšem naboru podatkov ter o delnih ali predhodnih rezultatih raziskav. Struktura sledi principu »IMRAD«, vendar je poenostavljena, na primer z enotnim razdelkom »rezultati in razprava«. Glavnemu besedilu sledijo zahvala (neobvezno), literatura, povzetek in dodatno gradivo (neobvezno). Terenska notica je kratko porocilo o novih in zanimivih najdbah, ki izhajajo iz biološkega terenskega dela ali so z njim povezane. Vsebuje glavno besedilo, zahvalo (neobvezno) in literaturo. Naslov prispevka mora biti informativen, jasen in jedrnat. Naslovu morajo slediti imena in priimki ter polna imena avtorjev s poštnimi in elektronskimi naslovi. Lahko so dodane številke ORCID. Vsak prispevek mora vsebovati izvlecek, ki vkljucuje zgošceno predstavitev ciljev, uporabljenih metod, rezultatov in zakljuckov. Izvlecek naj ne bo daljši od 250 besed za znanstvene clanke, 200 besed za kratke znanstvene vesti in 100 besed za terenske notice. Avtorji naj vkljucijo pet do najvec deset kljucnih besed, zapisanih po abecednem vrstnem redu, ki morajo odražati podrocje raziskav in vsebino, zajeto v prispevku. Terenska notica ne vsebuje kljucnih besed. Znanstveni clanki in kratke znanstvene vesti morajo vsebovati povzetek, ki sledi glavnemu besedilu rokopisa. Namen povzetka je zagotoviti izcrpne informacije za slovensko govorece bralce, kadar je prispevek napisan v anglešcini, ali neslovensko govorece, kadar je prispevek v slovenšcini. Povzetek naj ne bo le ponovitev izvlecka, ampak naj vsebuje vec informacij o ciljih, metodah, rezultatih, razpravi in lahko vkljucuje navedbe literature ter sklice na slike in tabele. Priporocena dolžina povzetka je približno 500 besed za znanstvene clanke in 300 besed za kratke znanstvene vesti. Pisci, ki ne govorijo slovensko, lahko pripravijo angleški izvlecek, kljucne besede in povzetek, te pa bo uredništvo prevedlo v slovenšcino. Terenska notica nima povzetka. Rokopisi morajo biti predloženi v enem od razširjenih formatov za urejanje besedila, kot sta Microsoft Word (docx, doc) ali tekstovni dokument ODF (odt), po možnosti s pisavo »Times New Roman« velikosti 12, levo poravnavo in 3 cm robovi na A4 straneh. Med vrsticami naj bo dvojni razmik, vrstice naj bodo oštevilcene neprekinjeno po celem rokopisu. Naslov prispevka ter naslovi poglavij in podpoglavij morajo biti napisani s krepko pisavo velikosti 14. Znanstvena imena vseh rodov in vrst morajo biti zapisana v ležecem tisku. SLIKE IN TABELE Prispevki lahko vsebujejo do deset slik in/ali tabel. Tabele in slike, vkljucno z legendami, je treba umestiti v rokopis na želeno mesto. Locljivost slik v rokopisu je lahko nižja, da se zmanjša velikost oddane datoteke. Ce je rokopis sprejet v objavo, je treba slike predložiti loceno kot visokokakovostne vektorske ali rastrske grafike v formatih pdf, svg, jpg ali tiff. Slike morajo biti pripravljene brez elementov, kot so robovi in podnapisi; te lahko dodate v rokopis z uporabo urejevalnika besedil. Ce potrebujete pomoc pri pripravi grafike ustrezne kakovosti, se obrnite na urednika. Slike in tabele morajo biti oštevilcene zaporedno (Slika 1, Slika 2 ..., Tabela 1, Tabela 2 ...), v tekstu se je treba vsaj enkrat sklicevati na vsako sliko in tabelo v skrajšani obliki (Sl. 1 ali Sl. 1, 2; Tab. 1 ali Tab. 1, 2). Tabele in slike morajo skupaj s naslovi/podnaslovi in legendami vkljucevati dovolj podrobnosti, da so razumljive same po sebi. Naslovi/podnaslovi naj bodo v obeh jezikih (anglešcini in slovenšcini), ne glede na glavni jezik besedila. Za neslovensko govorece avtorje bo za slovenske prevode poskrbelo uredništvo. Ce so vkljucene fotografije, je treba v oklepaju navesti ime in priimek avtorja. DRUGA NAVODILA ZA OBLIKOVANJE Vsi datumi se pišejo s številkami, ne glede na jezik prispevka, gre za obliko: Dan.Mesec.Leto, na primer 23.5.2000, 16.6.2015. Domacih imen ne pišemo z veliko zacetnico, izjema je poimenovanje po osebi (npr. Savijev netopir). Kadar se domace in znanstveno ime uporabljata skupaj, velja naslednje: znanstveno ime sledi domacemu brez oklepajev le v naslovu, v besedilu pa ga je treba navesti v oklepaju. Obe imeni skupaj naj se uporabljata le pri prvi omembi v besedilu prispevka, pozneje pa naj se dosledno uporablja le ena oblika. Vsako znanstveno ime naj bo vsaj enkrat zapisano v celoti, tj. vkljucno z avtorjem in letnico opisa. Koordinate lokalitet naj bodo v WGS84 decimalnih stopinjah. Za Slovenijo so lahko tudi v veljavnem koordinatnem sistemu ETR89. Koordinatni sistem mora biti jasno oznacen. LITERATURA Navajanje literature in seznam literature naj bosta v skladu s slogom »Council of Science Editors« (CSE) (https://www.councilscienceeditors.org/scientific-style-and-format), z uporabo sistema »Name-Year«, z nekaterimi spremembami (navedenimi v nadaljevanju): https://www.mcgill.ca/library/files/library/cse-name-year-citation-style-guide.pdf V besedilu: V besedilu sta priimek avtorja in letnica objave navedena v oklepaju takoj za besedilom, na katerega se nanaša: Vecina samic odlaga jajca v prvi polovici junija (Fritz 2003) in... Ce ima vir dva avtorja, sta navedena oba priimka med katerima je znak "&" (to se razlikuje od navodil na zgornji povezavi!). Pri delih s tremi ali vec avtorji se navede samo priimek prvega avtorja, ki mu sledi "et al.": ...oznacene želve z marginalnim vrezovanjem (Vamberger & Kos 2011)... ...živi v spodnjem toku reke Save na Hrvaškem (Šalamon et al. 2013)... Ce se navaja vec virov hkrati, jih je treba navesti v kronološkem zaporedju in po abecednem redu, ce so viri objavljeni v istem letu strani istega avtorja/-jev, med sabo pa jih lociti s podpicjem. Dve ali vec del, ki jih je napisal isti avtor v istem letu, je treba letnici dodati oznako (a, b, c ...). Enake oznake se navedejo v seznamu literature. ... (Müller 1921; Seifert 2007a, 2007b; Ionescu-Hirsch et al. 2009; Lapeva-Gjonova & Kiran 2012; Wiezik & Wieziková 2013). Ce je avtor reference organizacija, inštitucija, univerza itd., se v besedilu uporabi skrajšana oblika imena, tako da se ohrani prva crka besed v imenu ali priznana kratica: ... (ARSO 2022). Seznam literature: Seznam literature naj sledi spodnjim primerom, a za dodatne primere naj se sledi prej navedenim smernicam za citiranje: [ARSO] Agencija Republike Slovenije za okolje. 2022. Podnebne znacilnosti oktobra 2022. Ljubljana (SI): Agencija Republike Slovenije za okolje, Ministrstvo za okolje, podnebje in energijo. [accessed on 26.11.2022]; https://meteo.arso.gov.si/met/sl/climate/current/climate_month/ Balestrieri A, Remonti L, Prigioni C. 2015. Towards extinction and back: Decline and recovery of otter populations in Italy. In: Angelici FM, editor. Problematic Wildlife. Springer International. Switzerland. p. 91-105. https://doi.org/10.1007/978-3-319-22246-2_5 Gregorc T, Nekrep I. 2010. Porocilo skupine za vidro. In: Vinko D, editor. Raziskovalni tabor študentov biologije Most na Soci 2010. Ljubljana (SI): Društvo študentov biologije. p. 12-21. Kruuk H, Conroy JWH, Glimmerveen U, Ouwerkerk EJ. 1986. The use of spraints to survey populations of otters (Lutra lutra). Biological Conservation. 35: 187-194. https://doi.org/10.1016/0006-3207(86)90050-9 Goricki Š, Stankovic D, Snoj A, Kuntner M, Jeffery WR, Trontelj P, Pavic M, Grizelj Z, Naparu.-Aljancic M, Aljancic G. 2017. Environmental DNA in subterranean biology: Range extension and taxonomic implications for Proteus. Scientific Reports. 7: 1-11. https://doi.org/10.1038/srep45054 Navajanje zakonodajnih dokumentov: Slovenska zakonodaja: Navajanje v besedilu: (Ur. l. RS 2002) ali (Ur. l. RS 2004a) ali (Ur. l. RS 2004b) Seznam literature: Ur. l. RS. 2002. Pravilnik o uvrstitvi ogroženih rastlinskih in živalskih vrst v rdeci seznam. Uradni list RS, št. 82/02, 42/10. Ur. l. RS. 2004a. Uredba o zavarovanih prostoživecih živalskih vrstah. Uradni list RS, št. 46/04, 109/04, 84/05, 115/07, 32/08 – odl. US, 96/08, 36/09, 102/11, 15/14, 64/16, 62/19. Zakonodaja EU, mednarodne konvencije: Navajanje v besedilu: (UL ES 1992) Seznam literature: OJ EC. 1992. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Communities L 206, 22.7.1992. p. 7-50. INSTRUCTIONS TO AUTHORS The mission of NATURA SLOVENIAE is to foster the understanding of the natural history of Central and Southeastern Europe by publishing the results of field-biological research and data. Manuscripts reporting significant and new distributional records, species lists from all kingdoms as well as ecological, biogeographical, biodiversity and conservation studies are welcome. Papers are published in English or Slovenian language. The journal is being published by University of Ljubljana Press on behalf of the Biotechnical Faculty of the University of Ljubljana and the National Institute of Biology (Slovenia). The address of the Editor in Chief: Maja Zagmajster, Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana; maja.zagmajster@bf.uni-lj.si MANUSCRIPT SUBMISSION Manuscripts should be submitted via the web portal of the University of Ljubljana Press: https://journals.uni-lj.si/NaturaSloveniae All manuscripts will be subject to peer review by at least one referee. Authors are invited to suggest the names and contacts of potential referees, although the editor reserves the right to select any other. Once reviewed by the referee(s), the manuscript should be revised by the author or authors themselves. The revised manuscript should be returned with marked changes (Track changes tool can be used) along with a clean version (no marked changes or comments) and a rebuttal letter explaining the changes made. The submitted manuscript must not have been previously published in any form and must not be simultaneously submitted elsewhere (in other journals, bulletins or congress publications). By submitting a manuscript, the authors the authors grant the publisher right of first publication with the work simultaneously licensed under the Creative Commons Attribution 4.0 International License. TYPES AND FORMAT OF CONTRIBUTIONS Manuscripts may be submitted for consideration as Scientific Papers, Short Communications and Field Notes. Other formats of contributions are also welcome (review articles, comments, opinion papers), but should be discussed beforehand with the editor. Scientific Paper is a complete description of original research including an introductory overview of the state-of-the-art. The structure is typically IMRAD (Introduction, Material and Methods, Results, Discussion), followed by Conclusions (optional), Acknowledgements (optional), References, Summary, Supplementary material (optional). Short Communication is an original paper reporting on a smaller dataset as well as partial or preliminary research results. The structure follows the IMRAD logic but is simplified, for example by fusing the Results and Discussion sections. The main text is followed by Acknowledgements (optional), References, Summary, and Supplementary material (optional). Field Note is a short report on new and interesting findings coming from or related to biological field work. It contains information in the main text, Acknowledgements (optional) and References. The title of the contribution should be informative, clear and concise. The title should be followed by the name(s) and full affiliations of the author(s), with postal and e-mail addresses. ORCID numbers are optional. Each contribution should contain the abstract which includes concise information about the objectives, methods used, results and conclusions. The abstract should not exceed 250 words for Scientific Papers, 200 words for Short Communications and 100 words for Field Notes. Authors should include five to maximum ten keywords, written in alphabetical order, which must accurately reflect the field of research and content covered in the paper. A Field Note does not contain key words. Scientific Papers and Short Communications should include a Summary following the main text of the manuscript. The purpose of the Summary is to provide comprehensive information for Slovenian or non-Slovenian speaking readers when the contribution is written in English or Slovenian, respectively. The Summary should not be a repetition of the abstract but contain more information on objectives, methods, results, discussion, and may include citations from the reference list or mentions of figures and tables. The recommended length is about 500 words for Scientific Papers and 300 words for Short Communications. Non-Slovenian speaking writers can provide English Abstract, Keywords and Summary. These will be translated into Slovenian by the editorial team. A Field Note does not contain a Summary. Manuscripts should be submitted in one of the major text editing formats such as Microsoft Word (docx, doc) and ODF text document (odt), preferably using »Times New Roman« size 12 font, align left and margins of 3 cm on A4 pages. Double spacing should be used between lines, which should be numbered continuously for the whole manuscript. The manuscript title and headings of chapters and subchapters should be written in bold font size 14. The scientific names of all genera and species must be written in italic. ILLUSTRATIONS AND TABLES Papers should contain up to ten figures and/or tables. Tables and figures, including legends, should be inserted in the manuscript at the desired position. The resolution of figures in the manuscript may be reduced to ensure a manageable file size. If the manuscript is accepted for publication, figures should be submitted separately as high-quality vector or raster graphics, in pdf, svg, jpg, or tiff formats. Figures should be prepared without graphical elements such as borders and captions; those can be added in the manuscript using the word processor instead. Please contact the editor if you need assistance with preparing graphics of sufficient quality. Figures and tables should be numbered consecutively throughout the manuscript (Figure 1, Figure 2 …, Table 1, Table 2 …). Each Figure and Table should be referred to at least once in the main manuscript text, in abbreviated form (Fig. 1 or Figs. 1, 2; Tab. 1 or Tabs. 1, 2). Tables and figures along with their titles and legends should contain enough details to be self-explanatory. Titles should be given in both languages (English and Slovenian), regardless of the language of the main text. For non-Slovenian speaking writers, Slovenian translations will be provided by the editorial team. When photographs are included, the author’s name and surname should be given in brackets. OTHER FORMAT GUIDELINES All dates are written with numbers, no matter the language of the contribution, it is the form: Day. Month. Year, for example 23. 5. 2000, 16. 6. 2015. Vernacular names should not be capitalized, an exception being naming after a person (e.g. Savi's pipistrelle). When vernacular and scientific name are used together, the following applies: the scientific name follows the vernacular without brackets only in the title, while in the text it should be given in parentheses. Both names together should be used only at the first mention in the contribution text, while later only one form should be used consistently. Each scientific name should at least once be written in full, i.e. including taxonomic authority and year of description. Coordinates of localities should be given in WGS84 decimal degrees format. For Slovenia, they can also be in the valid ETR89 coordinate system. The coordinate system must be clearly indicated. REFERENCES Citing of the references and the format of the reference list should follow the Council of Science Editors (CSE) style (https://www.councilscienceeditors.org/scientific-style-and-format), using Name-Year system, with some modifications (listed below): https://www.mcgill.ca/library/files/library/ cse-name-year-citation-style-guide.pdf In the text: The author’s surname and the year of publication are enclosed in parentheses immediately following the text to which it refers: Most females lay eggs in the first half of June (Fritz 2003) and… If a reference has two authors, both surnames are included separated by “&” (this is different to instructions in the link!). For works with three or more authors, only the first author’s name is included, followed by et al.: …marked turtles by marginal notching (Vamberger & Kos 2011)… …does live downstream along the Sava River in Croatia (Šalamon et al. 2013)… If several sources are cited at once, they should be listed in chronological order and alphabetically among references published in the same year, separated by a semicolon. Two or more works written by the same author in the same year should be marked by a designator (a, b, c…) to distinguish them. The same designators are used in the reference list. … (Müller 1921; Seifert 2007a, 2007b; Ionescu-Hirsch et al. 2009; Lapeva-Gjonova & Kiran 2012; Wiezik & Wieziková 2013). If the author of a reference is an organization, institution, university, etc., an abbreviated form of the name is used in the in-text citation, by retaining the first letter of each word in the name, or some other recognized abbreviation: … (FAO 2007). Reference list: The reference list should follow the below examples, but see the above given citation guidelines: [ARSO] Agencija Republike Slovenije za okolje. 2022. Podnebne znacilnosti oktobra 2022. Ljubljana (SI): Agencija Republike Slovenije za okolje, Ministrstvo za okolje, podnebje in energijo. [accessed on 26.11.2022]; https://meteo.arso.gov.si/met/sl/climate/current/climate_month/ Balestrieri A, Remonti L, Prigioni C. 2015. Towards extinction and back: Decline and recovery of otter populations in Italy. In: Angelici FM, editor. Problematic Wildlife. Springer International. Switzerland. p. 91-105. https://doi.org/10.1007/978-3-319-22246-2_5 Goricki Š, Stankovic D, Snoj A, Kuntner M, Jeffery WR, Trontelj P, Pavic M, Grizelj Z, Naparu.-Aljancic M, Aljancic G. 2017. Environmental DNA in subterranean biology: Range extension and taxonomic implications for Proteus. Scientific Reports. 7: 1-11. https://doi.org/10.1038/srep45054 Gregorc T, Nekrep I. 2010. Porocilo skupine za vidro. In: Vinko D, editor. Raziskovalni tabor študentov biologije Most na Soci 2010. Ljubljana (SI): Društvo študentov biologije. p. 12-21. Kruuk H, Conroy JWH, Glimmerveen U, Ouwerkerk EJ. 1986. The use of spraints to survey populations of otters (Lutra lutra). Biological Conservation. 35: 187-194. https://doi.org/10.1016/0006-3207(86)90050-9 Citing legislation documents: Slovenian legislation: Citation in the text: (Ur. l. RS 2002) or (Ur. l. RS 2004). Reference list: Ur. l. RS. 2002. Pravilnik o uvrstitvi ogroženih rastlinskih in živalskih vrst v rdeci seznam. Uradni list RS, no. 82/02, 42/10. Ur. l. RS. 2004. Uredba o zavarovanih prosto živecih živalskih vrstah. Uradni list RS, no. 46/04, 109/04, 84/05, 115/07, 32/08 – odl. US, 96/08, 36/09, 102/11, 15/14, 64/16, 62/19. EU legislation, international conventions: Citation in the text: (OJ EC 1992) Reference list: OJ EC. 1992. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Communities L 206, 22.7.1992. p. 7-50.