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ABSTRACT

The mechanical properties of a metal-matrix composite foam are investigated by interrupted in-situ
compressive deformation experiments within an X-ray computed tomography device (XCT). Each in-situ
experiment generates a sequence of reconstructed 3D images of the foam microstructure. From these data, the
deformation field is estimated by registring the images corresponding to three consecutive steps. To this end,
the generic registration framework of the itk software suite is exploited and combined with several image pre-
processing steps. Both segmented (binary) images having just two grey values for foreground (strut structure)
and background (pore space) and the result of the Euclidean distance transform (EDT) on pore space and solid
phase are used.
The estimation quality is evaluated based on a sequence of synthetic data sets, where the foam’s microstructure
is modelled by a random Laguerre tessellation. For large deformations, a combination of non-rigid registration
for the EDT images and partwise-rigid registration on strongly deformed regions of the binary images, yields
surprisingly small estimation errors.
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INTRODUCTION

The deformation and collapse behaviour of cellular
structures is of growing interest for a lot of applications
as light weight crash absorbing systems. In the
present study, mechanical properties of metal-matrix
composite (MMC) foams combining an austenitic
TRIP-steel and magnesia partially stabilised zirconia
(Mg-PSZ) are investigated. Both components exhibit
a martensitic phase transformation – a diffusionless
change of the atomic arrangement – generating the
potential for improved mechanical properties like
strength, strain, and energy absorption.

Interrupted in-situ compressive deformation
experiments are performed within an XCT device. 3D
imaging allows to observe the spatial microstructural
deformation as well as to select regions of interest
for subsequent metallographic preparation and phase
analysis (Berek et al., 2011).

Quantitative description of the shear bands
and calculation of displacement fields contribute
essentially to comprehension and prediction of the
damage progress. Each in-situ experiment generates
a sequence of reconstructed 3D images of the
foam microstructure. The problem of estimating the

deformation field from the image data is equivalent
to registration of the images corresponding to
consecutive experimental steps. Registration – finding
the transformation mapping one image to another such
that the features match best – is a well-known and
widely studied problem in medical imaging. Thus we
use the generic registration framework of “The Insight
Segmentation and Registration Toolkit” (itk) software
suite (Yoo, 2004; Ibanez et al., 2005; ITK, 2013) in
order to estimate the deformation field.

Previous to the actual registration, the images
are denoised, binarised, and a Euclidean distance
transform is applied to both pore space and solid
component to enhance structural information in
spite of the high porosity. Subsequently, the best
fitting transform is found iteratively, measuring image
similarity using a mutual information metric. The non-
rigid transform is modeled by continuous, piecewise
polynomial functions (B-splines). In order to be able
to estimate the structural failure, a “refinement step” is
applied on areas of poor fit.

In order to validate our method, the estimation
error is determined for a synthetic data set being
very close to the real observations. A realisation of a
Laguerre tessellation generated by a random sphere
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packing serves as model foam (Redenbach et al.,
2011). It is dilated, digitised, and virtually deformed.
For the thus derived image sequence, the estimated
deformation fields are compared to the true ones.

This paper is organised as follows. First, the
experimental setup for the in-situ experiments as
well as the resulting image data are described. The
used image processing and segmentation methods are
shortly summarised in the following section. The
subsequent section contains an overview of image
registration and its main algorithmic ingredients, a
description of the itk registration framework, and
details of our algorithm. Then the validation using
random Laguerre tessellations is explained followed
by the section presenting the results. Finally, we
discuss the results and give an outlook to future work.

EXPERIMENTAL SETUP AND
IMAGE DATA

Composites with improved mechanical properties
in comparison to the single materials can be
manufactured by the combination of ductile metals
with ceramics. Guo et al. (2003) created metal matrix
composites (MMC) based on a low alloyed TRIP-steel
(transformation induced plasticity). The incorporation
of up to 20 vol. % of yttrium partially stabilised
zirconia (Y-PSZ) yielded strengths of about 1 400
up to 2 100 MPa under dynamic impact loading
accompanied by an increase in the global hardness
of approximately 25%. Indeed, the composite did not
show plasticity and failed in a brittle behaviour.

We consider a high alloyed stainless Cr-Mn-
Ni TRIP-steel reinforced by magnesia partially
stabilised zirconia (Mg-PSZ)-particles. The austenitic
face centred cubic crystal structure of the steel
can be retained to room temperature depending
on the chemical composition. Thus, stress and
deformation induced transformations to the tetragonal
space centred martensitic phase become possible
at room temperature. This formation of martensite
during plastic deformation of austenite results in
a significant increase of ductility (Transformation
Induced Plasticity) and strength as shown by Kovalev
et al. (2012).

Martensitic phase transformations also appear
in zirconia. Between melting point (2 680◦C)
and 2 370◦C the cubic crystal structure is stable.
Further cooling causes the transformation into
the tetragonal modification. Below 1 170◦C highly
distorted monoclinic crystal structure of zirconia is
thermodynamically stable (Kisi and Howard, 1998;

Stevens, 1986). The high temperature modifications
of zirconia can be stabilised to room temperature
by the addition of positive ions like Mg2+ and Y3+.
In connection with oxygen vacancies metastable
tetragonal zirconia is formed. Under sufficient
mechanical loading partially stabilised zirconia shows
stress induced transformation from the tetragonal to
the monoclinic modification. This is connected with
a volume increase leading to compressive stresses
in the surrounding of the zirconia particles. This
results in transformation toughening (Garvie et al.,
1975; Green et al., 2000). Thus, in the corresponding
MMC the effects of martensitic phase transformations
within matrix and reinforcement with the particle
reinforcement effect lead to improved mechanical
performance (Aneziris et al., 2010). The resulting
enhanced energy absorption capability is strongly
desired for crash absorbers.

Open cell foams are manufactured by powder
metallurgy using a replica method (Schwartzwalder,
1963). Thereby, polyurethane (PU) foams with 30
pores per inch are applied as templates. TRIP-steel
(TLS Bitterfeld, Germany) and 10 or 5 vol.% magnesia
stabilised zirconia powders (Saint Gobain, USA)
are mixed with organic additives, respectively. The
particle size distribution and the chemical composition
of the powders are specified in Tables 1- 3. The
manufacturing technology and the composition of the
organic additives are described in detail by Aneziris
et al. (2010) and Sieber et al. (2010), respectively.

Table 1. Particle size distribution of the powders. More
precisely, d10,d50, and d90 denote the 10, 50, and
90% quantiles of the particle diameter distribution,
respectively.

d10 [µm] d50 [µm] d90 [µm]
X5CrNi18-10 11.1 34.8 91.25
Mg-PSZ 0.1 1.3 10.8

Table 2. Chemical composition of the X5CrNi18-10
TRIP-steel powder.

C Si Mn Nb S Cr
wt.% 0.05 0.12 0.96 0.01 0.01 16.4

Ni N Mo Ti Fe
wt.% 9.3 0.07 1.8 0.004 bal.

Table 3. Chemical composition of the Mg-PSZ powder.

MgO SiO2 Al2O3 CaO
wt.% 3.4 2.4 0.6 0.2

TiO2 Fe2O3 NaO2 ZrO2
wt.% 0.1 0.1 0.1 bal.
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The polyurethane foam is impregnated with the
prepared slurry, squeezed out and dried at 90◦C for
1 hour. Subsequently, cold spray coatings based on
the same mixture composition are applied in order
to eliminate defects and to reach the critical wall
thickness for the desired mechanical properties. The
structure of the MMC foam is mainly determined by
the polyurethane foam. After pyrolysis process, the
burned out PU foam leaves cavities within the walls
of the metal-ceramic foam. It is presumed that these
voids have an essential influence on the mechanical
and thermo-mechanical behaviour of the foam.

After removing the organics (debindering) the
samples are sintered for 2 hours at 1 350◦C in argon
atmosphere. For the deformation experiments samples
with a size of about 10 x 10 x 16 mm3 are cut.

Interrupted in-situ compressive deformation
experiments are performed in a computer tomograph
(ProCon X-Ray Garbsen, Germany) with a 160
kV transmission X-ray tube. The nominal spatial
resolution (pixel size) was about 30 µm after
reconstruction, the volume rendering of the MMC
foam sample is shown in Fig. 1.

Fig. 1. Reconstructed CT image of the MMC foam
sample. Sample size 10.2×10.2×16.45mm3. Volume
rendering using MAVI (2005).

Two loading plates are positioned in a carbon
fibre reinforced polymer tube between the top
load cell and the bottom mechanical actuator. The
sample is placed between the loading plates. The
deformation speed was about 10−3/s at quasi-static
and isothermal conditions. Between the deformation
steps, the position was held constant in order to obtain

CT images of the structures. After relaxation periods
(e.g., recovery effects by movement of dislocations),
CT scans were taken under constant stress. Fig. 2
shows the time schedule of an XCT in-situ deformation
experiment for an MMC foam with 10 vol.% up
to 20% average compressive strain corresponding
to the initial loaded structure area. The particular
stress maxima are points of the respective continuous
stress strain curve. Three areas can be separated:
Elastic deformation, cracking leading to a plateau and
densification involving a significant increase of the
stress.

Fig. 2. In situ quasi-static compression test in XCT
on a MMC foam with 10 vol.% Mg-PSZ. Stress and
strain versus time. The combination of test device and
computed tomography allows the observation of the
damage process in selected areas.

Due to the manufacturing process, cell wall
thicknesses vary within the foam sample. Vertices and
struts are thicker than the cell walls in between. This
effect is due to the surface tension of the applied
slurries. Furthermore, caused by the spray process, cell
walls in the external areas are thicker than in the central
area. Berek et al. (2011) use the cell wall distribution
for a first quantitative description of the structural
change under loading.

The deformation process during our experiment is
characterised by a bottom-up shifting of the structure
due to the movement of the lower plate of the
compression device. Thanks to the thicker cell walls,
the external regions are rather stable, while the central
region is deformed. First cracks appear at the weakest
cells, which are rather large, feature thin cell walls, and
are stretched perpendicular to the deformation axis.
Starting from the first cracks, deformation spreads to
the neighbouring cells – a so-called deformation band
forms. These deformation bands can be explained by
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the dramatic change of the stress distribution in the
neighbouring cells after the first break of a cell wall.
On the other hand, compact structure elements of the
foam remain stable up to high degrees of deformation.

(a) 2% (b) 6%

(c) 10% (d) 13%

(e) 16% (f) 20%

Fig. 3. Reconstructed CT images of an MMC foam
sample with 10 vol.% Mg-PSZ at 2, 6, 10, 13, 16 and
20% deformation. The 2D slices were cut at the same
position within the 3D images.

A quantitative description of the shear bands
and displacement fields is supposed to improve
comprehension and prediction of the damage initiation
and progress significantly. Estimation of deformation
fields based on 2D image correlation is not able to
capture the close relation between failure mechanisms
and features of the microstructure. Hence the following
sections are dedicated to an algorithm allowing precise
estimation of the 3D deformation fields based on the
obtained sequence of CT image data.

IMAGE PRE-PROCESSING AND
SEGMENTATION

Before actually registering the images
corresponding to consecutive experimental steps, the
original grey value images have to be pre-processed as
imaging artifacts like noise, ring artifacts, or global
grey value fluctuations can distort the registration
results considerably. Thus these sources of error are
minimised by first filtering the images using a 5×5×5
median filter. Subsequently, the solid component is
segmented. That is, a new, binary image is created
with just two grey values for foreground – the MMC
strut system –, and background – the pore space. This
segmentation is achieved by combining two standard
methods – Otsu’s (1979) global and Sauvola and
Pietikäinen’s (2000) local grey value thresholdings.

For dividing the two classes (foreground and
background) according to the pixels’ grey values,
Otsu’s method finds the threshold value so that the
intra-class variances are minimised, while the variance
between the two classes is maximised.

Sauvola’s method chooses the threshold for each
pixel x as

t(x) = µ
(
W (w,x)

)(
1+ k

(
s(W (w,x))/R−1

))
,

with a cubic window W (w,x) of size w and centre x, the
mean µ(W (w,x)) of the grey values inside the window,
their standard deviation s(W (w,x)), and the dynamic
range of the standard deviation R, see Sauvola and
Pietikäinen (2000).

Finally, masking the result of the local
thresholding with the one of the global thresholding
yields both the outline of the foam structure and the
fine pores within the struts (Ohser and Schladitz, 2009,
Fig.4.11).

Some grey value fluctuations stem from the locally
varying thickness of the material and thus contain
spatial structural information. This implicit spatial
information is lost by binarising the images. In order to
reconstruct it and even gain information about the pore
space, we applied the Euclidean distance transform
(EDT) on both foreground and background of the
binarised images and smoothen the result by a mean
filter. This way, we assigned each pixel its signed
shortest Euclidean distance to the other class while
keeping a smooth grey value histogram. The resulting
image therefore contains significantly more spatial
information than the simple black-and-white image:
midpoints of struts and cells are bright, the surfaces of
the struts are dark. The whole process is visualised in
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Fig. 4. All pre-processing and segmentation steps were
performed using MAVI (2005).

(a) original (b) median filtered

(c) binarised, Otsu (d) binarised, Sauvola

(e) (c) masked by (d) (f) smoothed EDT

Fig. 4. Pre-processing steps illustrated using 2D slices
through the 3D image of the 10% MMC sample.

IMAGE REGISTRATION

OVERVIEW

Image registration can be loosely defined as the
task to identify corresponding regions in different
images that somehow “show the same”. For example,
image registration is widely used in a medical context
for aligning images obtained by different methods
(e.g., computed tomography and ultra-sound) or at
different times (e.g., showing the lung in a relaxed
and an unrelaxed state). For two images A and B
that have to be aligned, this is generally achieved by
maximising a function m(A,B(T )) that indicates the

well-alignedness of the transformed image B(T ). Here
B(T ) denotes the image holding the grey values of B
under the spatial transformation defined by T . More
precisely, the images A and B(T ) are aligned if

1. T is the correct transformation between A and B,
and

2. each point of the image domain of A is first
transformed by T and subsequently assigned the
grey value corresponding to this position in B.

This results in B(T ), see Fig. 5.

Fig. 5. Schematic overview of registration.

In order to track sub-pixel displacements, one has
to consider an interpolation I(B) of the image.

In case of an affine transform or a rigid transform
(displacement of the whole image by the same vector
or rotation), T would be a matrix; however for more
complex, non-rigid transformations, theoretically it
could be any function. Allowing arbitrary functions
for T would obviously result in misalignment since
the general problem is ill-posed. As a remedy usually
certain assumptions for T such as affinity or continuity
are made and generally only certain types of functions
are allowed as possible transforms, depending on the
previous knowledge about the image content. Still,
image registration is generally prone to misalignment,
especially in case of large deformations or poor image
quality. Moreover, the limitation to certain functions
also limits the transformations that can be observed,
also resulting in bad fits or slow convergence in cases
an inapt class of functions was picked. We decided
to use grid nodes on the images and interpolated the
transformation between them by B-splines.

In its objective, image registration is closely
related to the method of digital image and volume
correlation, which also seeks to align images in order
to find the deformations between the images. Digital
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Image Correlation (DIC) and its three-dimensional
version Digital Volume Correlation (DVC) seek to
obtain the transformation between images by a
different method than image registration: Instead of
minimising an overall cost function as in image
registration, small subvolumes of the original image
are fitted into the deformed image. In two dimensions,
this method can be applied to a neighbourhood of every
single pixel (or every second pixel) and yields usually
precise results. Similar to standard image registration,
there also arise problems with discontinuities and large
deformations, but there have been recent proposals
how to elegantly solve these issues (Poissant and
Barthelat, 2010; Tang et al., 2012). Still, in three
dimensions, DVC is very costly due to the large
number of pixels even in relatively small images:
Usually, one would only select few subregions and
interpolate the transformation between the subregions
or rely on parallel computing methods (Gates et al.,
2011).

FINDING INITIAL PARAMETERS
It is generally well-known that the (fast)

convergence of image registration and image
correlation methods highly depends on a good initial
guess of the deformation parameters. Especially in the
case of large deformations as we observed them in our
data, this is crucial for acceptable results.

Albeit precise, DVC would have been
computationally too costly to apply to our data due to
the high number of pixels we needed in order to resolve
discontinuities. However, we used the general idea
of fitting only subvolumes to increase precision for
guessing initial parameters for a B-spline transform.

Therefore, we used rigid registration of “slices”
in order to find initial parameters for the more
sophisticated B-spline transform. The slices were
set perpendicular to the direction of loading, this
allowed us to initially register parts of the image,
which experience little deformation, and then use
the parameters of these regions as initial parameters
for neighbouring, more strongly deformed slices, see
Fig. 6: In this example one would register region A at
first, since this region experiences only little change
compared to the deformed image. Therefore, even a
simple algorithm yields good results if we assume
the initial parameter to be 0. The final parameters
obtained by this registration would then be used as
initial parameter for region B, which experiences more
deformation than region A. After the registration of
region B, its final parameters would be used as initial
parameters for region C, and so forth. By this we
make sure that the initial parameter for region E, which
experiences the biggest deformation, are close to the

real deformation parameters, avoiding local minima in
the metric. The resulting parameters are set as initial
parameters for the B-spline transform. Despite 30%
strain corresponding to deformations as large as 70
pixels in our test set, we still obtain good results using
this method.

(a) (b)

Fig. 6. Schematic overview of the “slices” registration.

The next part, the B-spline transformation, makes
the assumption of underlying continuity in the
deformation which can be considered as legitimate
for large parts of the images and generally for small
deformations. At last, with the “refinement step”,
we sought out possible discontinuities in the already
non-rigidly registered images and applied another
registration in their neighbourhoods. Details of the
algorithm are explained in the following.

THE ITK REGISTRATION FRAMEWORK

Fig. 7. Overview of the registration framework
implemented in itk, (source: (Yoo, 2004; Ibanez et al.,
2005)).

Fig. 7 gives an overview over the itk
registration framework: Using an optimisation
algorithm (“Optimizer”), we minimise a measure
(“Metric”) of the images’ difference with respect
to the transformation (“Transform”) parameters.
Interpolation (“Interpolator”) guarantees registration
on sub-pixel level.
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DIGITAL VOLUME CORRELATION

For finding initial parameters of the non-rigid
registration, we registered subvolumes of the binarised
images. For this registration, we used the mean squares
metric as a measure of difference. For each subvolume
V of A, a transformation

tV = [ux,uy,uz]V

between image A and B is determined by

t̂V = min ∑
i∈V

(
A(i)− I(B(i+ t̃))

)2 .

In this case, I is the above-mentioned interpolation
function needed for detection of sub-pixel
displacements. In our case of binarised images, we
used a nearest neighbour interpolation, meaning that
in order to interpolate grey values of B at non-grid
points, these positions get assigned the grey value of
the nearest pixel. For minimisation we used a regular
step gradient descent algorithm with 300 iterations, a
maximal step length of 4.0 and a minimal step length
of 0.001.

NON-RIGID REGISTRATION

For the non-rigid registration setup, we used the
algorithm proposed by Mattes et al. (2003), which
provided a framework for non-rigid multimodality
image registration, using a mutual-information-based
measure and modeling the non-rigid deformation on
a B-spline grid on the EDT images. They used a
multiresolution approach for avoiding local minima
and increased resolution. However, as we do not expect
our materials to be as soft as their chest tissue and
as the foam experiences not only large deformations,
but also material failure, we abstained from this
multiresolution approach. Instead, we estimated initial
parameters for the B-spline grids by rigid registration
of slices as described above. The main parts of this
algorithm will be shortly described below. We used the
implementation from ITK (2013).

Difference measure

Due to the application of the EDT on the binarised
images, as described above, we preserved some spatial
information in the images that would have been lost
otherwise. However, now we cannot assume anymore
that corresponding physical points have the same grey
value within the images, leading to the need for a
multimodal measure of the images’ well-adjustedness.
A correlation-based measure only takes into account
linear relationships in the image modalities, which
is not sufficient for our EDT registration. Therefore,

we decided to use the above-mentioned mutual
information approach from Mattes et al. (2001):

The mutual information

I(A,B) =−∑
a

p(a) log p(a)+∑
a,b

p(a|b) log p(a|b)

of two images A and B is a measure of the information
A contains about B and vice versa. Here, p(a) is the
probability of the occurrence of the grey value a in A
and p(a|b) is the probability of the occurrence of the
grey value a in a pixel in A given that the grey value b
appears on the corresponding pixel in B (Pluim et al.,
2003).

Mattes’s mutual information uses B-spline kernels
to smoothen the image grey value histograms. It is
defined as follows: For the grid X and two images
A : X → IA, B : X → IB and a sample S ∈ X , we set

Î (A,B) =− ∑
iA∈IA

∑
iB∈IB

p̂(iA, iB) ln
p̂(iA, iB)

p̂A(iA)p̂B(iB)
,

with

p̂(iA, iB) = α ∑
(x,y,z)∈S

β
(0)
(

iA−
A(x,y,z)−A′

bA

)
·β (3)

(
iB−

B(x,y,z)−B′

bB

)
,

with A′ resp. B′ being A’s and B’s grey value minima
and bA and bB the grey value ranges of each histogram
bin. This is necessary to fit a specific number of
histogram bins to the grey value histogram. α is
a normalizing factor to ensure ∑ p̂(iA, iB) = 1 and
β (0) and β (3) are zero-order and cubic spline kernels,
respectively. Following from that we get

p̂B(iB) = ∑
iA∈IA

p̂(iA, iB) ,

and

p̂A(iA) = α ∑
(x,y,z)∈S

β
(0)
(

iA−
A(x,y,z)−A′

bA

)
.

We used a sample size of 30% for the calculation
of the mutual information.

Interpolation
In order to allow sub-pixel registration, we

sampled pixel values at non-grid positions of the
original image B by a linear interpolation. This
interpolation method was chosen heuristically as it
performed better than cubic or tricubic B-splines.
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B-spline deformation
In order to obtain a smooth, non-rigid deformation

field, we used a set of grid nodes which were
transformed independently. For the estimation of
the transformation between the grid nodes we
used tricubic B-splines (Unser, 1999). Each grid
node’s initial parameters tD were obtained by the
“slice” registration described above. The resulting
deformation is

T (tD,x) = ∑
h

tD(h)β (3)
(x−xD(r)

∆xD
−h
)
.

The displacement field T̂ that was found in this
step is then used to calculate I(B(T̂ )). The gradient
magnitude of the displacement field was subsequently
used to identify the deformation bands.

Minimisation
Following the proposal from Mattes et al. (2003),

we used the limited memory Broyden, Fletcher,
Goldfarb and Shannon minimisation for bounded
problems (L-BFGS-B optimiser) without bounding
constraints (Byrd et al., 1994), which is a quasi-
Newton minimisation algorithm. This algorithm is
very well-suited for problems with many parameters
since it only requires relatively small memory for
storing the update steps. We found a cost function
convergence factor of 103, a projected gradient
tolerance of 10−7 and 60 evaluations sufficient for a
good result. This algorithm is provided by (ITK, 2013),
too.

REFINEMENT STEP
With the setup of non-rigid registration that

was described above we were only able to detect
continuous deformations due to the assumption of B-
spline transformation. However, as the foam structure
is expected to break eventually, one has to assume
that there are also discontinuities present. These
discontinuities would lead to misregistrations on the
image data. This thought gave rise to a third step of the
algorithm, which we call “refinement step”. Roughly
said, the refinement follows the following idea:

1. Identify badly registered regions.

2. Divide them into much smaller subregions.

3. Register these subregions separately using the
previous continuous approach.

This method can capture discontinuities by movement
of the subregions w.r.t. each other while keeping
computational effort practicable as only a small
fraction of the original volume is used. In order to find

discontinuities of the deformation, we compared the
resampled binary image B(T̂ ) with A and calculated
their squared difference. The resulting image was
filtered with a median filter in order to consider only
larger misregistrations. The resulting binary image was
labeled and the labels’ midpoints were subsequently
used as central points to split their neighbourhood into
eight cubes of size 50× 50× 50 (Fig. 8). On each of
the resulting cubes we then performed again the non-
rigid registration on the corresponding EDT images
as described above. By this method, we allowed
discontinuities on labels’ midpoints, which correspond
to misregistrations, while keeping the continuous
deformations on parts of the image that were already
well-registered. Initial values for the Bsplines were
calculated from the deformation field of the non-
rigid registration step. The parameters were set to
30 evaluations during the minimisation, using 7 B-
spline grids. The cost function convergence factor
was set to 105, the projected gradient tolerance to
10−9. Additionally, we used a sample size of 80% to
calculate the mutual informations of the cubes.

In order to keep the computational times low, we
set the size of the median filter’s mask usually to 5.

Fig. 8. Refinement for each label.

VALIDATION USING A SYNTHETIC
FOAM STRUCTURE

For validating our method, we used a synthetic
230×230×230 pixel data set of a structure resembling
the real sample. Lautensack et al. (2008) and
Redenbach et al. (2011) showed that dilated random
Laguerre tessellations generated by a sphere packing
are well suited to model ceramic foams. Here, we used
the Laguerre tessellation deduced from a force-biased
packing of spheres with gamma distributed volumes.
The strut and wall thicknesses were not fit to the real
sample in the strict sense, however, the model still
showed similar properties regarding the strut thickness
and closed facets. See Fig. 9 for a visualisation of the
synthetic foam structure.

138



Image Anal Stereol 2014;33:131-145

Fig. 9. Volume rendering of the synthetic foam used for
method validation.

Now this synthetic structure is virtually deformed.
Due to the stiffness of the observed foam, we chose
the general sigmoid function as most appropriate
displacement in direction of the z-axis for testing our
setup, while the synthetic sample is not deformed in x-
or y-direction:

Tx = Ty = 0 ,

Tz =−0.2− K−0.2√
1+0.5exp(−0.04(z−130))

.

The deformation fields and resulting deformations of
the synthetic foam are displayed in Fig. 10.

For simulating discontinuities similar to the
deformation bands observed in the real data, we chose

~Tx = z∗0.05∗K ,

~Ty = 0 ,

~Tz =−0.2− K−0.2√
1+0.5exp(−0.04(z−130))

,

for z < 130 and

~Tx = (z−230)∗0.05∗K ,

~Ty = 0 ,

~Tz =−0.2− K−0.2√
1+0.5exp(−0.04(z−130))

,

else. This results in a displacement field similar to the
one we would expect for material failure in the foam
with both parts moving slightly sidewards to different

directions. Fig. 11 shows the resulting deformation
fields and deformed synthetic foam.

(a) K = 12 (b) K = 12

(c) K = 70 (d) K = 70

Fig. 10. Continuous deformation fields and resulting
deformation of the synthetic foam structure visualised
using ParaView (2002) and MAVI, respectively.

(a) K = 12 (b) K = 12

(c) K = 70 (d) K = 70

Fig. 11. Discontinuous deformation fields and
resulting deformation of the synthetic foam structure
visualised using ParaView and MAVI, respectively.
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We used the parameters K = 12,24,56,70,
corresponding to the approximate displacements in
pixels observed in the experimental data.

RESULTS

In case of continuous deformations simulated by
sigmoid functions, we obtained very good results for
each value of K by only using the B-spline deformation
and omitting the refinement step: When comparing
the obtained displacement fields with the original
displacement fields, all large errors occur close to the
image borders, they can by eliminated by cropping the
image by 5 pixels at each edge. The resulting average
errors, mean squared errors (mse), peak signal to noise
ratios (psnr) and median errors can be found in Table 4.

Table 4. Quality indices of B-spline registration for
continuous deformation fields for different K after
cropping by 5 pixels at each side. Displayed are
the mean differences between original and estimated
deformation field for each vector component in pixels.

K mse psnr medx medz med|.|2
12 0.0467 34.84 −0.0123 0.0740 0.1593
24 0.0945 37.80 −0.0068 0.0717 0.2013
56 0.222 41.45 0.001 0.0873 0.2580
70 0.3906 40.94 0.0058 0.1256 0.3157

For discontinuous test fields we only obtained
slightly better results when additionally using the
“refinement step”. Figs. 12,13 show histograms
of the deviations between original discontinuous
displacement fields and the displacement fields
obtained by the B-spline algorithm, Figs. 14,15 show
the respective histograms when using the “refinement
step”. The mean differences and and mean squared
errors (mse) for the B-spline registration can be found
in Table 5, the respective values for the refinement
step can be found in Table 6. The quality indices
indicate that the refinement step actually does not
improve the quality of the registration. However, with
our experimental data we found differences which
we consider relevant. This might indicate that our
discontinuous test field was a too simple model of
the deformation of the experimental foam. Both the
histograms and the fact that the error’s median is
absolutely smaller than its mean, indicate that it
is advised to use methods of robust regression for
fitting: It is clear from the histograms that the error’s
distribution is heavy-tailed and not Gaussian.

Table 5. Quality indices of the B-spline registration
for discontinuous deformation fields for different K
after cropping by 5 pixels at each side. Displayed are
the mean differences between original and estimated
deformation field for each vector component in pixels.

K mse psnr medx medz med|.|2
12 0.2465 27.62 0.0056 0.0760 0.3139
24 0.9066 27.98 −0.0216 0.0898 0.4590
56 4.0243 28.87 −0.0043 0.0925 0.7312
70 6.28072 28.8719 −0.0285 0.123 0.8943

Table 6. Quality indices of registration with refinement
step for discontinuous deformation fields for different
K after cropping by 5 pixels at each side. Displayed are
the mean differences between original and estimated
deformation field for each vector component in pixels.

K mse psnr medx medz med|.|2
12 0.2538 27.49 0.0071 0.0770 0.3140
24 0.8994 28.02 −0.0198 0.0892 0.4569
56 4.1744 28.71 −0.0014 0.0889 0.7241
70 6.632 28.64 −0.0306 0.1076 0.8937

(a) ∆x for K = 12

(b) ∆tot for K = 12

Fig. 12. Histograms of the errors in vector
compontents (∆x, ∆y, ∆z) and the length of the
errors (∆tot) for discontinuous test fields at K = 12
without using the “refinement step”.
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(a) ∆x for K = 70

(b) ∆tot for K = 70

Fig. 13. Histograms of the errors in vector
compontents (∆x, ∆y, ∆z) and the length of the
errors (∆tot) for discontinuous test fields at K = 70
without using the “refinement step”.

(a) ∆x for K = 12

(b) ∆toty for K = 12

Fig. 14. Histograms of the errors in vector
compontents (∆x, ∆y, ∆z) and the length of the
errors (∆tot) for discontinuous test fields at K = 12
when using the “refinement step”.

Finally, we applied our algorithm to subimages of
the image data obtained by the experiments described
earlier, performing the same preprocessing steps
as described above. We registered two consecutive
images. Fig. 16 shows the resulting deformation fields
for the experiments. Due to differences in coordinate
systems of the programs used for displaying the data,
the foams seem to be compressed from above and not
from below as described in the experimental setup. We
used the gradient magnitude computation described
by Sapiro and Ringach (1996) to mark areas with
large local changes in the deformation. This algorithm,
which was used in its itk implementation, sets as
gradient magnitude the difference of the two largest
eigenvalues of the matrix [gi j] with

gi j =
∂T
∂ui
· ∂T

∂u j

for the deformation T (u1,u2,u3). These areas
correspond to the above-mentioned deformation
bands. The gradient magnitudes shown in Fig. 16 were
calculated for the smooth deformation fields obtained
after the B-spline step.

DISCUSSION

For purely continuous displacement fields, we
were able to obtain a peak signal to noise ration of
40.94 dB and a mean squared error of 0.3906 for
strains as large as 30% (for K = 70) when cropping
the images by 5 pixels. For the more realistic cases of
5%, 10% and 20% strain, we had mean squared error
of 0.0467, 0.0945 and 0.222.

141



LOSCH K ET AL: Displacement fields of foams

(a) ∆x for K = 70

(b) ∆toty for K = 70

Fig. 15. Histograms of the errors in vector
compontents (∆x, ∆y, ∆z) and the length of the
errors (∆tot) for discontinuous test fields at K = 70
when using the “refinement step”.

The failure behaviour of the foam clearly
exhibits discontinuities when and where the structure
actually fails. When only being based on B-splines,
our registration algorithm always yields a smooth
deformation field T̂ and is thus not able to capture
the locally discontinuous changes when the first struts
break.

We therefore added a DVC-like procedure to
improve deformation field estimation in these regions.
DVC is computationally far more expensive, thus
we applied it only to regions where material failure
and discontinuities in the displacement field have
to be expected. To this end, points of material
failure were located by comparing the binarised
original image A with the binarised image B(T̂ ), both
strongly smoothed. Restriction to central regions of
the images and labelling of the connected components
resulted in a small set of misaligned pixels. Only the
surrounding pixels of the labels’ centres were taken

into consideration for the third part of our algorithm.
Surprisingly, this refinement of the algorithm did not
improve the estimation results significantly on the test
fields. To the contrary, in some cases, the pure B-
splines-registration led to more precise results. In order
to estimate the quality of the algorithm on the images
obtained by the experiment we compared the second
binary image (B(T̂ ) in the description of the algorithm)
to the first binary image (A). For this we found a
reduction of the amount of errors larger than 2 pixels
on the experimental data, see Fig. 17 for a comparison
between simple B-spline registration and registration
with refinement step.

For example, in case of the resampling of
the binary image corresponding to the 6% to 8%
compression, the proportion of error pixels (which is
the mean grey value distribution in case of binary
images) is 0.0304 after the refinement step and 0.0324
for a B-spline registration. In general, we have to
expect errors of 1 pixel size due to the nearest
neighbour interpolation. However, after eroding by
2 × 2 × 2 cubes, the proportion of error pixels is
0.0010 after the refinement step and 0.002 for the
B-spline registration, meaning the “refinement step”
essentially bisects the man of larger errors. For other
registered images corresponding to a compression step
of 2% we observe the same relation between the
proportions. This indicates that our discontinuous test
fields were chosen unrealistically since we cannot
observe this improvement on the test deformations.
Still, the refinement step is computationally quite
expensive and dependent on the image data. The
seemingly good results on the experimental data could
be rooted in the fact that we do not know the real
deformation of the experimental data and that therefore
our comparison gives unrealistically good results.

More importantly, we also showed that our
algorithm is capable of acquiring discontinuous
displacements via the refinement step routine, although
it is not sure to which amount since the peak signal to
noise ratios and mean squared errors do not improve
when compared to the B-spline transformation alone.
However, we observe an improvement on our
experimental data. Future work would consist in
creating benchmarks for realistic discontinuous non-
rigid deformations that allow testing of algorithms on
realistic data sets, in parallelizing the algorithm for
increased speed and precision and the implementation
of a three-dimensional “subset splitting” procedure
(Poissant and Barthelat, 2010) for better resolution of
discontinuities and material failures.
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(a) Deformation between 0%
and 2% contraction

(b) Gradient magnitude of the
B-spline deformation field

(c) Volume rendering of
foam at 2%

(d) Deformation between 10%
and 16% contraction

(e) Gradient magnitude of the
B-spline deformation field

(f) Volume rendering of
foam at 16%

(g) Deformation between 16%
and 20% contraction

(h) Gradient magnitude of the
B-spline deformation field

(i) Volume rendering of
foam at 20%

Fig. 16. Resulting estimations of deformation fields and the gradient magnitudes after B-spline registration,
calculated on the experimental data.
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(a) (B(T̂B−spline)−A)2 (b) (B(T̂re f ined)−A)2

(c) (B(T̂B−spline) − A)2

eroded by a 2×2×2 cube
(d) (B(T̂re f ined) − A)2

eroded by a 2×2×2 cube

Fig. 17. Comparison of the misalignments in binary
images for different algorithm steps on corresponding
slices. White pixels correspond to errors.

CONCLUSIONS

Image registration yields useful results with
respect to both precision and computational efficiency
not only in medical applications but also for material
sciences. By intelligent and cost-efficient initialisation
of the image registration, we were able to successfully
determine the deformation of open MMC foams under
load.

Analysis of the derived deformation fields
opens new opportunities to relate local failure with
potentially distinctive structural features. For instance,
according to the estimated deformation field, areas
of high interest could be identified and prepared for
further (destructive) testing, e.g., to investigate the
local crystal structure. Moreover, combining realistic
models for both microstructure and deformation fields
would enable virtual experiments allowing to study
the effects of the cellular structure, the strut and wall
thickness distributions, local structural deviations, and
the crystal structure separately.
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