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ABSTRACT
     A conjugate heat transfer model of fluid flow across a solid
heat conducting structure has been built. Two examples are
presented: a.) air-stream cooling of the solid structure and b.)
flow across rods with volumetric heat generation. To construct
the model, a Volume Average Technique (VAT) has been
applied to the momentum and the energy transport equations for
a fluid and a solid phase to develop a specific form of porous
media flow equations. The model equations have been solved
with the semi-analytical Galerkin method.

    The detailed velocity and temperature fields in the fluid
flow and the solid structure have been obtained. Using the
solution fields, the whole-section drag coefficient Cd and the
whole-section Nusselt number Nu have been also calculated. To
validate the developed solution procedure, the results have been
compared to the results of the finite volume method and to the
experimental data. The comparison demonstrates an excellent
agreement.

INTRODUCTION
Heat transfer conditions in a heat exchanger are a well known

and extensively studied subject. Also, today available
computational power gives us an opportunity to build
increasingly detailed physical models of heat transfer processes.
Nevertheless, direct computations of whole heat exchanger
installations are at present still far from an everyday engineering
practice. In order to resolve most of the flow features and at the
same time keep the model simple enough to serve as an
engineering tool, averaging of fluid and heat flow variables has
to be performed.

A Volume Averaging Technique (VAT) has been developing
from the 1960s and it has been applied to a number of different
fluid dynamics and heat transfer problems. Recently, it has
been applied to model processes in heat exchangers and heat
sinks (Hu, 2001, Horvat & Catton, 2001 & 2003). Using VAT,
the transport processes in a heat exchanger are modeled as
porous media flow (Travkin & Catton, 1999). This
generalization allows us to unify the heat transfer calculation
techniques for different kinds of heat exchangers and their
structures. The case-specific geometrical arrangements, material
properties and fluid flow conditions enter the computational
algorithm only as a series of precalculated coefficients. The

clear separation between the model and the case-specific
coefficients simplifies the model and speeds up calculations.

In most cases, the developed set of VAT equations has been
solved with the finite difference or the finite volume method.
Lately, efforts have been made to obtain the solution also by the
Galerkin method (Horvat & Catton, 2003).

The Galerkin method is a semi-analytical method, where a
solution field is anticipated to be a series of orthogonal
functions. As the solution depends only on a number of
orthogonal functions and not on a number of grid nodes, highly
accurate solutions can be obtained. In the present paper, two
applications of the Galerkin method are given. In the first case,
we present a closed-form solution for the conjugate heat transfer
problem of air-stream cooling of a solid structure. In the second
case, a solution for water flow across rods with volumetric heat
generation is given. Although the Galerkin method has limited
applicability in complex geometries, its highly accurate
solutions are an important benchmark on which other numerical
results can be tested. Further, the VAT formulation lends itself
to the Galerkin method because most of the geometric
complexity is absorbed into the closure relationships.

GEOMETRY LAYOUT
For both cases (i.e. the air-stream cooling of the solid

structure and the flow across rods with volumetric heat
generation), a similar geometry has been used (Fig. 1).

Figure 1: General geometrical layout

Strojniški vestnik - Journal of Mechanical Engineering 51(2005)7-8, 527-533
UDK - UDC 536.2
Izvirni znanstveni lanek - Original scientific paper (1.01)

527



A cold stream of fluid enters from the left and is heated by
the solid structure as it passes the test section. The flow is
bounded at the bottom by an isothermal wall, where no-slip
boundary conditions are prescribed. At the top, the flow is
considered open. The details on boundary conditions for each
specific case will be given later.

In the first case, the length L as well as the width W of the
aluminum solid structure are 11.43 cm, whereas the height H is
3.81 cm. The simulation domain consists of 31 rows of pin-fins
in the streamwise direction and 31 rows of pin-fins in the
transverse direction. The diameter of the pin-fins d is 0.3175
cm. A pitch-to-diameter ratio in the streamwise direction px/d is
set to 1.06 and in the transverse direction py/d is 2.12.

In the second case, the aluminum rods with internal heat
generation rate I have a diameter d of 0.9525 cm. Their height is
20 cm. They are arranged in 64 rows in the streamwise direction
and in 16 rows in the transverse direction. In the streamwise
direction, a pitch-to-diameter ratio px/d is 1.0 and in the
transverse direction py/d is 2.0. At the bottom, the rods are
attached to an isothermal plate that is 60.96 cm long and 30.48
cm width.

In both cases, the entering flow profile is assumed to be fully
developed.

MATHEMATICAL MODEL
Flow across a solid structure can be described with basic

mass, momentum and heat transport equations (Horvat, 2002).
In order to develop a unified approach for different geometries
and material properties, the transport equations are averaged
over a representative elementary volume (Fig. 2).

REV

Figure 2: Representative elementary volume

This volume averaging leads to a closure problem where
interface exchange of momentum and heat between a fluid and a
solid has to be described with additional empirical relations e.g.
a local drag coefficient f and a local heat transfer coefficient h.
Reliable data for the local drag coefficient f and the heat transfer
coefficient h have been found in Launder & Massey (1978),
Žukauskas & Ulinskas (1985), and Kays & London (1998).

In both cases, the simulated system has been further
simplified by assuming flow with a dominating streamwise
velocity component and a constant pressure drop across the
structure. As a consequence, the velocity changes only
vertically in the z-direction. This means that the streamwise
pressure gradient across the entire simulation domain is
balanced with the hydrodynamic resistance of the structure and
with the shear stress. Thus, the momentum equation can be
written in the differential form as
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The energy transport equation for the fluid flow has also been
developed using the unidirectional velocity assumption. The
temperature field in the fluid results from the balance between
thermal convection in the streamwise direction, thermal
diffusion and the heat transferred from the solid structure to the
fluid flow:
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The rod bundle structure in each REV is not connected in the
horizontal directions (see Fig. 1). As a consequence, only the
internal heat generation I and the thermal diffusion in the
vertical direction are in balance with the heat leaving the
structure through the fluid-solid interface. The thermal diffusion
in the horizontal directions can be neglected. This simplifies the
energy equation for the solid structure to:
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In the case of the air-stream cooling of the solid structure, the
last term is zero as there is no volumetric heat generation in the
solid structure.

Boundary conditions for the set of  equations (1-3) are given
below
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and are valid for both cases.

SOLUTION METHOD
To construct the solution method, the transport equations (1-

3) have been scaled and converted into a dimensionless form:
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where M2, M3, M4, F1, F4, F5, S1, S2 and S3 are constants. In the
same way, the boundary conditions (4) have been transformed
to

                   0=x :   1=fT   ,

                   :0=z    0=u ,  0=fT  , 0=sT  ,

                   1=z  :   0=u , 0=
∂

∂
z

Tf , 0=
∂
∂

z

Ts  .

(8)

The momentum equation (5) has the same form and the same
boundary conditions in both cases. To obtain its solution, the
momentum equation has been linearized to:
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where K= M3 |u| . Taking into account the boundary conditions
(8), the solution of Eq. (9) is:

( ) ( ) 321 GzexpGzexpGu +ε−+ε= . (10)

The solution has the same form in both cases with different
values of the constants ε, G1, G2 and G3.

Although the principles of the Galerkin method are the same
for both cases, the differences in the solution procedure for the
energy equations (6 & 7) require a separate treatment for each
case.

Air-Stream Cooling of the Solid Structure
To find a solution to the conjugate problem, both equations

(6 & 7) are combined into a single expression for the solid
phase temperature Ts :
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where D1, D2, D3 and D4 are constants. Further, separation of
variables is used:

( ) ( )zZxXTs = . (12)

where the solution in the z-direction is anticipated in the form of
a series:
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to satisfy the boundary conditions (8). Introducing (13) into (11)
and regrouping the expression, we can write
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As the series is finite, there is a certain discrepancy
associated with the series expansion (14). This error is
orthogonal to the set of functions used for the expansion and
can be reduced by multiplying the equation (14) with Zj (j = 1,n)
and integrating it from 0 to 1:
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In a matrix form, Eq. (15) is written as

                       0' )2()1( =+ kjkkjk JAXJAX , (16)

where Jkj
(1) and Jkj

(1) are integrals that are calculated
analytically. As the x and z dependent parts of Eq. (16) can be
separated:
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separate equations are written for the x-direction:

0' =β+ XX , (18)

and for the z-direction:

( ) 0)1()2( =β− kkjkj AJJ . (19)

The solution of Eq. (18) is obtained by integration:

( )xCX β−= exp , (20)

where C and β are arbitrary constants.
Equation (19) is an extended eigenvalue problem that has

non-trivial solutions if
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From the condition (21), a set of n eigenvalues β are
determined. Furthermore, each eigenvalue βj (j=1,n)
corresponds to a specific j eigenvector Ak that is also calculated.

 Using the solutions of Eq. (18) and of the matrix system (21),
one can construct the temperature field for the solid phase :
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where Cj is a vector of coefficients that is found from the
boundary condition Tf (0, z) = 1. Applying it to Eq. (23), one can
write:
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Again, multiplying Eq. (24) by Zi (i=1,n) and integrating it from
0 to 1:
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the orthogonality condition reduces Eq. (25) to
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where Ji
(1) and Ji

(2) are analytically calculated integrals. Writing
Eq. (26) in a matrix form:
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the unknown coefficients Cj are calculated by inversion of the
matrix system (27).

Flow Across Rods with Volumetric Heat Generation
In the case of internal heat generation in the solid structure,

Eq. (11) has an additional term:
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which significantly complicates the solution procedure. The
solid-phase temperature field Ts needs to be separated as
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),()(),( zxtzTzxT sbs += , (29)

where Tb is a temperature field in absence of forced convection
across the rod bundle (u = 0) and ts is a solid-phase temperature
residue. Inserting the decomposition (29) into Eq. (28), a
separate equation is written for the temperature Tb :
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and for the temperature ts :
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The boundary conditions (4) are transformed to

                     0=x : 1=st  ,
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A solution of Eq. (30) is found in the following form :

2
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where  , B1, B2, B3, B4,  and B5 are constants to be determined
from the boundary conditions (32).

Equation (31) has the same form as Eq. (28) in the previous
case. Therefore, separation of variables is used:

( ) ( )zZxXts =  . (34)

Again, the solution for the z-direction of Eq. (31) is expressed
as a finite set of n orthogonal functions:
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and the procedure to find X(x) and Z(z) is the same as in the
previous case (Eqs. 14-21). Finally, the solution for temperature
ts can be expressed as:

kjkjjs ZAXCt = , (36)

where Cj is a vector of coefficients that has to be determined.
Adding the temperature fields Tb (Eq. 33) to ts (Eq. 36), the
expression for the dimensionless solid-phase temperature Ts is
written as
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Recalling Eq. (7) and inserting the expression for the solid-
structure temperature Ts (Eq. 37), the dimensionless fluid
temperature is given by
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The coefficients Cj are found with help of the boundary
condition Tf (0, z) = 1. Imposing it onto Eq. (38), the following
form is obtained:
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Next, Eq. (39) is multiplied by orthogonal functions Zi (i=1,n)
and integrated from 0 to 1:
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Due to orthogonality of basis functions Zi, the expression (40) is
simplified to :
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where Ji

(1), Ji
(2), Ji

(3), Ji
(4), Ji

(5) and Ji
(6) are analytically calculated

integrals. Writing Eq. (41) in the matrix form:
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the unknown coefficients Cj are calculated by inversion of the
matrix system (42).

RESULTS AND DISCUSSION
     The calculations have been performed for different pressure
drops and thermal inputs (Table 1 & 2). The imposed pressure
drop causes flow across the heated solid structure. As the
structure is cooled, a steady temperature field is formed in the
fluid as well as in the structure.

  The results obtained with the Galerkin method have been
compared with the results of the VAT model solved with the
finite volume method, and in the first case also with the
experimental data of Rizzi et al. (2001). Comparisons have been
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made for the velocity field u, the temperature field in the fluid
flow Tf and in the solid structure Ts.  Further, the whole-section
values of the drag coefficient Cd and the Nusselt number Nu
have been compared with results from the finite volume method
and with the experimental data.

Air-Stream Cooling of the Solid Structure
Calculations have been performed at heating power Q =50W,

125W and 220W to match the experimental data obtained by
Rizzi et al. (2001). In this section we present only calculated
values of the whole-section drag coefficient Cd and Nusselt
number Nu for the heating power Q = 125W. It should be noted
that although different heating power Q is used, there exists a
similarity in force convection heat removal from the heat sink
structure.

Simulations of the heat sink thermal behavior have been done
for a range of pressure drops Δp and boundary temperatures Tin

and Tg, that are summarized in Table 1.

Table 1: Boundary conditions - preset values.

No. ΔΔΔΔp[Pa] Tin  [
oC] Tg [oC]

1        5.0    23.0     103.8

2      10.0    23.0      74.6

3      20.0    23.0      58.8

4      40.0    23.0      48.2

5     74.7    23.2      41.8

6   179.3    23.2      35.7

7    274.0    23.0      33.6

8     361.1    22.8      32.3

For calculations performed with the Galerkin method, 34
mesh points in x- and 140 mesh points z-direction have been
used to simulate heat transfer processes in the fluid- and the
solid-phase. As the accuracy of the semi-analytical Galerkin
method is essentially connected with the number of the
orthogonal functions used for expansion, Eq. (22), 45 basis
functions have been used in this case.

  Based on the calculated velocity and temperature fields, the
whole-section drag coefficient

of

d
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are estimated as functions of Reynolds number.
Figure 3 shows the whole-section drag coefficient Cd (Eq.

43) as a function of Reynolds number. The results calculated
with the Galerkin method are close to the results obtained with
the finite volume method as well as to the experimental data.
Slight discrepancy from the experimental data at higher
Reynolds number is due to transition to turbulence, which is
evident on the experimental results, but is not captured by the
model.

Figure 4 shows the whole-section Nusselt number Nu (Eq.
44), as a function of Reynolds number. The differences between
the Galerkin method results, the finite volume method results

and the experimental data are negligible as the Reynolds
number increases from Re = 762 to Re = 1893.
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Figure 3: Whole-section drag coefficient Cd , 125W
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Figure 4: Whole-section Nusselt number Nu, 125W

Flow Across Rods with Volumetric Heat Generation
Three sets of calculations of the water flow across the heat

generating rod bundle have been performed for the volumetric
heat generation rate of 0.0 W/cm3, 0.5 W/cm3 and 2.0 W/cm3.
Due to  space limitations, only the results for the last case are
presented. The boundary values of pressure drops Δp and
temperatures Tin and Tg used in this case are summarized in
Table 2.

Table 2: Boundary conditions - preset values.

No. ΔΔΔΔp[Pa] Tin  [
oC] Tg [oC]

1       40.0    35.0     39.0

2       80.0    35.0      39.0

3     120.0    35.0      39.0

4     160.0    35.0      39.0

5     200.0    35.0      39.0

6     240.0    35.0      39.0

7     280.0    35.0     39.0

8     320.0    35.0     39.0

9     360.0    35.0     39.0
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All calculations with the Galerkin approach have been done
with 80 eigenfunctions. For the finite volume method
simulations, 64 grid points have been used in the x-direction,
and 80 grid points in z-direction.

Although, the whole section drag coefficient Cd and the
Nusselt number Nu have also been determined, we have chosen
to present the comparison of the velocity and the temperature
fields calculated with the Galerkin method and the finite volume
method.

Figure 5 shows the velocity distributions obtained with the
Galerkin method (marked as GM) and the finite volume method
(marked as FVM). Note that the core of the simulation domain
has a flat velocity profile due to the drag associated with the
submerged rods. The results comparison reveals an excellent
agreement between both methods, although the VAT
momentum equation in the present Galerkin solver (Eq. 9) is
simply linearized.
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Figure 5: Velocity distribution for different Reynolds numbers

Figure 6 gives a temperature field cross-section in the water
flow for the Reynolds number Re = 2152. The internal heat
generation in the rods is set to  I = 2.0 W/cm3. The temperature
fields are presented in the Celsius scale. Bold isotherms denote
the results obtained with the Galerkin method and halftone (red)
isotherms denotes temperatures obtained with the finite-volume
method. Isotherms show that the fluid temperature increases in
the horizontal direction, from the inflow to the outflow due to
heat generating rods. Heating from the isothermal bottom is of
minor importance.
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Figure 6: Temperature field in the water flow; I = 2.0 W/cm3,
Re = 2152; ( ⎯⎯⎯⎯ ) Galerkin method, ( ) Finite volume method

Figure 7 shows the temperature in the aluminum structure.
As the temperature of the fluid flow is higher at the exit than at
the entrance, lack of cooling increases the temperatures in the
solid structure. Due to higher thermal conductivity of the
aluminum rods, the temperature field in the solid structure

reveals higher vertical gradients close to the isothermal bottom
surface than in the water flow.
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Figure 7: Temperature field in the solid rods; I = 2.0 W/cm3,
Re = 2152; ( ⎯⎯⎯⎯ ) Galerkin method, ( ) Finite volume method

CONCLUSIONS
The paper presents an effort to utilize the Galerkin method

for solving conjugate heat transfer problems in cross-flow
condition.

In the scope of this work, the Volume Averaging Technique
(VAT) was used to develop a specific form of the porous media
flow models. The advantage of using VAT is that the
computational algorithm is fast running, but still able to present
a detailed picture of temperature fields in the fluid flow as well
as in the solid structure.

The semi-analytical Galerkin procedure was developed to
solve the system of equations. To show applicability of the
Galerkin method, two examples were presented. In the first
example, the velocity and the temperature fields were calculated
for the air cooling of the aluminum heat sink. The second
example showed the solution procedure for the flow across rods
with volumetric heat generation.

The present paper gives only a part of results. Namely, for
both cases, the whole-section drag coefficient Cd and the
Nusselt number Nu were calculated and compared with the
results of the finite volume method and in the first case also
with the experimental data (Rizzi et al., 2001). The comparisons
showed excellent agreement. The detailed velocity and
temperature fields in the coolant flow as well as in the heat
conducting structure were also calculated and compared with
the results of the finite volume method. The comparisons show
negligible differences between the results of both methods.

The present results demonstrate that the selected Galerkin
approach is capable of solving thermal problems where the
thermal conductivity and volumetric heat generation in the solid
structure significantly influence the heat transfer and therefore
have to be taken into account.
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NOMENCLATURE

Ao interface area [m2]
Aji eigenvectors [dimensionless]

A⊥ =W⋅H, channel flow area [m2]
B1 = (S3 /S1 - 2B5 )/(1+ξ2exp(2ξ))  [dimensionless]
B2 = B1exp(2ξ)  [dimensionless]
B3 = - B1 - B2   [dimensionless]
B4 = -2 B5 - B1ξ exp(ξ)+B2ξ exp(-ξ)  [dimensionless]
B5 = D5 /(2D3)  [dimensionless]
cf fluid specific heat [J/kgK]
Cd drag coefficient [dimensionless]
d diameter [m]
dh hydraulic diameter ( =4Ωf /Ao ) [m]
D1 = F1   [dimensionless]
D2 = F4S1 / S2  [dimensionless]
D3 = F5S1 / S2+F4  [dimensionless]

D4 = F1S1 / S2  [dimensionless]
D5 = F1S3/S1  [dimensionless]
f local drag coefficient [dimensionless]
F1 = αf cf ρf U dh / (λf L)  [dimensionless]
F4 = αf dh

2/ H 2  [dimensionless]
F5 = h dh

2 S / λf   [dimensionless]
G1 = - M4 /(K(1-exp(ε)))
G2 = -G1-M4 /K
G3 = M4 /K
h heat transfer coefficient [W/m2 K]
I volumetric heat generation rate [W/m3]
Jkj analytically calculated integrals [dimensionless]
K = M3 |u|  [dimensionless]
L length of the simulation domain [m]
M2 = αf μf dh / (ρfUH2)  [dimensionless]
M3 = f dhS / 2  [dimensionless]
M4 = dh /L   [dimensionless]
Nu Nusselt number [dimensionless]
p pitch [m]

Δp pressure drop across simulation domain [Pa]

Q thermal power [W]
Re Reynolds number (=ρf u dh / μf ) [dimensionless]
RHS right-hand-side of the equation
S specific interface surface [1/m]
S1 = αs dh

2/ H2  [dimensionless]
S2 = h dh

2S /λs  [dimensionless]
S3 = αs dh

2I /(λs(Tg -Tin))   [dimensionless]
ts solid phase temperature residue [dimensionless]
Tb solid phase temp. in absence of convection,

[dimensionless]
Tf fluid temperature [K], [dimensionless]
Tg bottom temperature [K], [dimensionless]
Tin inflow temperature [K], [dimensionless]
Ts solid temperature [K] , [dimensionless]
U velocity scale (= √ Δp/ρf ) [m/s]

Greek letters

αf fluid fraction [dimensionless]

αs solid fraction (1-αf) [dimensionless]

β eigenvalues [dimensionless]

γ = π (2n-1)/2 [dimensionless]

ε = K/M2 [dimensionless]

Z z - dependent part of T [dimensionless]

λf fluid thermal conductivity [W/mK]

λs solid thermal conductivity [W/mK]

ξ = D3 /D2 [dimensionless]

X x - dependent part of T [dimensionless]

Ωf fluid volume [m3]
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