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Abstract
The properties relevant to lipophilicity of four series of synthesized s-triazine derivatives have been studied by quantita-

tive structure-retention relationship (QSRR) approach. Examination of chromatographic behavior revealed a linear cor-

relation between RM values and the volume fraction of mobile phase modifier. Furthermore, a reliable relationship was

defined between the retention constants, RM
0, and theoretically calculated bioactivity descriptors for lipophilicity and

solubility. Principal component analysis (PCA) followed by multiple linear regression (MLR) and hierarchical cluster

analysis (HCA) was performed to identify the most important factors, to quantify their influences, and to select descrip-

tors that best describe the behavior of the compounds investigated. The best QSRR models were further validated by

leave one out technique as well as by the calculation of statistical parameters for the established theoretical models. The

RM
0 values of the investigated s-triazine derivatives have been recommended for description of their lipophilicity and

evaluation of pharmacokinetic properties. 
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1. Introduction

1,3,5-Triazine (s-triazine) derivatives belong to very
attractive group of chemicals having an important role in
agriculture as active components of herbicide formula-
tions, as well as in pharmacology. The effects that are wi-
dely exploited in drug industry are their anticonvulsant
properties, as well as potent antimalarial and bactericidal
activity.1–4 In addition, their anticancer activity has been
demonstrated as well. For their rich biological activity,
pharmaceutical industry is each day trying to introduce
novel derivatives that could improve drug properties and
reduce side effects. Even though having a wide array of
therapeutical effects in humans, carcinogenic and mutage-
nic effects of some s-triazine derivatives on living orga-
nisms have been demonstrated.5–7

s-Triazine is a weak base with six-membered hete-
rocyclic ring containing three nitrogens replacing carbon-
hydrogen units in the benzene ring. The compound, so as
its derivatives, has an excellent potential for the formation

of non-covalent bonds, such as coordination and H-bonds,
via its nitrogen ion-pairs.8 Non-covalent bonds have a very
important role in biological activity of these compounds,
but also in understanding of their physiological behavior,
namely absorption, metabolism and elimination. Further-
more, such chemical properties of s-triazines are respon-
sible for their characteristic chromatographic behavior.9

Molecular lipophilicity is one of the major physi-
cochemical properties. Widespread use of lipophilicity in
modeling of biological processes explains the need for ra-
pid and valid procedures for quantification of this physi-
cochemical property. 

Chromatographic approach has been shown to be
quite successful in modeling physicochemical and biologi-
cal processes.10–12 Owing to its simplicity and efficiency,
reversed-phase thin-layer chromatography (RP TLC) ap-
pears especially attractive for lipophilicity determina-
tion.13,14 Taking into consideration that in reversed-phase
chromatography solutes distribute between polar and non-
polar phases, calculated retention parameters can be adop-
ted as indirect designators of compounds lipophilicity. 
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For the quantitative structure-retention relationships
(QSRR) models it is very important to select most suitab-
le structural descriptors for predicting retention. Hence,
principal component analysis (PCA) was performed on
molecular descriptors and retention factors (RM

0) to reveal
some similarities among studied compounds and to select
adequate descriptors. Hierarchical cluster analysis (HCA)
has been carried out in order to confirm the grouping of
compounds already obtained by the PCA.15 Descriptors of
analyzed molecules were calculated using software for
molecular design. Two molecular descriptors, that have
low value of intercorrelation coefficient, were used for
constructing each statistically valid multiple linear regres-
sion (MLR) model.

The objectives of the conducted QSRR analysis we-
re to evaluate the retention data by multivariate statistical
methods and to find the possible relationship between re-
tention characteristics and the physicochemical parame-
ters of the investigated s-triazine derivatives in order to
understand the separation mechanism in the given chro-
matographic systems.

2. Experimental

2. 1. Synthesis of Compounds
The investigated compounds were 1,3,5 - triazines

substituted at positions 4 and 6 by smaller and larger

groups with various lipophilic characteristics, chosen for
investigation are presented in Table 1. The compounds
were synthesized in the laboratory of the Department of
Organic Chemistry at the Faculty of Technology and
Metallurgy, University of Belgrade. All of investigated s-
triazine derivatives were synthesized by the modified
procedure of Thurston from cyanuric chloride and cor-
responding amines.16, 17 In synthesis commercial cyanu-
ric chloride (2,4,6-trichloro-1,3,5-triazine), was used
(Fluka). 

5 g cyanuric-chloride was dissolved in 100 g of pu-
re ether, cooled with cooling mixture on temperature be-
low 0 °C. In this solution, with constant agitation and
maintenance of low temperature, dry gaseous ammonia
was introduced until its scent appeared in the reaction
mixture and after subsequent shaking. Precipitate, which
was mainly consisted of ammonium chloride, was imme-
diately separated with filtration, and filtrate was evapora-
ted under reduced pressure. The residual white precipita-
te, for a better purification, was dissolved in ether, once
again. Separation of small amount of insoluble matter
was performed with filtration procedure and the filtrate
was evaporated, again. All s-triazine derivatives were
crystallized from aqueous methanol in a form of small,
fluffy needles.18, 19

The chemical structures and the purities of the
synthesized s-triazine derivatives were confirmed by mel-
ting points, mass spectra and UV spectra.

Table 1. The chemical structures of studied s-triazines

Series I Series II
Compound R Compound R n

I.1 -CH(CH3)-C6H5 II.1 3

I.2 -CH(CH3)-C6H4-4-CH3 II.2 4

I.3 -CH(CH3)-C6H4-4-Cl II.3 5

I.4 -CH(CH3)-C6H4-4-Br

Series III Series IV

Compound R R R Compound R n
III.1 C6H11 H H IV.1 3

III.2 C6H11 CH3 CH3 IV.2 4

III.3 C6H11 C6H5 H IV.3 5

III.4 C6H11 C6H5 C6H5
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2. 2. Thin Layer Chromatography

Precoated RP-18W/UV254 plates (Macherey-Nagel
GmbH and Co., Düren, Germany) were used for HP
TLC analysis. Investigated solvent mixtures used as
mobile phases according a procedure described ear-
lier.20

The investigated compounds were dissolved in an
appropriate solvent, methanol, 1 mg ml–1) and the solu-
tions (0.2 μl) were separately spotted into the plates. All
the reagents used were of analytical purity. The plates we-
re developed by the ascending technique at room tempera-
ture with previous saturation of the chamber with mobile
phase. All measurements were carried out at ambient tem-
perature. After drying of the plates, the spots were visuali-
zed under UV light at λ = 254 nm. RF values were calcula-
ted as average from three measurements for each solute-
mobile phase combination. For subsequent calculations
mean RM values were used; these were calculated by using
the formula:

formula (1)

The calculated RM values for different concentra-
tions of organic solvent were used to check the linearity of
their relationship with the volume fraction of organic mo-
difier according to the equation: 21

formula (2) 

where ϕ is the volume fraction of organic solvent in the
mobile phase, RM

0 is the intercept obtained by extrapola-
tion to ϕ = 0% of modifier, and S is the slope of the linear
plot. Equations (1) and (2) served for deriving data for
further QSRR studies.

For the testing the validity of the predictive power of
selected MLR models the the leave-one-out technique
(LOO) was used. The developed models were validated
by the calculation of following statistical parameters: pre-
dictive residual error (PRESS), sum of square of deviation
(SSY), SPRESS, cross-validated regression coefficient
(r2

CV), and adjusted r-squared (r2
adj). These parameters

were calculated from the following equations.

formula (3)

formula (4)

formula
(5)

formula
(6)

formula
(7)

where, Yobs, Ycalc and Ymean are observed, calculated and
mean values; n, number of compounds; p, number of in-
dependent parameters.

PRESS is an acronym for prediction sum of squares.
It is used to validate a regression model in predictability.
To calculate PRESS, each observation is individually
omitted. The remaining n-1 observations are used to cal-
culate a regression and estimate the value of the omitted
observation. This is done n times, once for each observa-
tion. The difference between the actual Y value, yobs, and
the predicted Y, ycalc, is called the prediction error. The
sum of the squared prediction errors is the PRESS value.
The smaller PRESS is, the better the predictability of the
model. Its value being less than SSY points out that the
model predicts better than chance and can be considered
statistically significant. SSY are the sums of squares asso-
ciated with the corresponding sources of variation. These
values are in terms of the dependent variable, y. 

The PRESS value above can be used to compute an
r2

CV statistic, called r2 cross validated, which reflects the pre-
diction ability of the model. This is a good way to validate
the prediction of a regression model without selecting anot-
her sample or splitting your data. It is very possible to have a
high r2 and a very low r2

CV. When this occurs, it implies that
the fitted model is data dependent. This r2

CV ranges from be-
low zero to above one. When outside the range of zero to
one, it is truncated to stay within this range. Adjusted r-
squared (r2

adj) is an adjusted version of r2. The adjustment
seeks to remove the distortion due to a small sample size.

In many cases r2
CV and r2

adj are taken as a proof of
the high predictive ability of QSRR models. A high value
of these statistical characteristic (> 0.5) is considered as a
proof of the high predictive ability of the model. 

2. 3. Molecular Modeling

Molecular modeling was performed by using CS
Chem-Office Software version 7.0 (Cambridge) running
on a P-III processor.22 All molecules were constructed by
using Chem Draw Ultra 7.0 and saved as the template
structures.23 For every compound, the template structure
was suitably changed considering its structural features,
copied to Chem 3D 7.0 to create a 3-D model and, finally,
the model was cleaned up and subjected to energy mini-
mization using molecular mechanics (MM2). The mini-
mization was performed until the gradient of conformatio-
nal potential (RMS) value reached a value less than 0.1
kcal/mol·A. For calculating lipophilicity parameters, the
lowest energy structure for each model was used. Partition
coefficients were calculated with different theoretical ba-
ses (atomic based prediction, fragment based prediction):
Alog P, IAlog P, Clog P, log PKowin, Xlog P, ACDlog P by
applying different theoretical procedures.24–26 ACDlog P
was calculated by using commercial software (the com-
mercial physical property calculation software, ACD/Labs
Physico-Chemical Laboratory).27
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2. 4. Stastical Methods

PCA was carried out using Statistica v. 8 software,
and HCA using NCSS 2007 and GESS software packa-
ge.28 The complete regression analysis were carried out
by PASS 2005, GESS 2006, NCSS Statistical Softwa-
res.28 Physicochemical properties were calculated using
the ChemSilico software29 and Molinspiration online
program.30

3. Results and Discussion

Results from regression analysis using well-known
equation (2) according a procedure described earlier.20

The retention behavior of compounds in various
chromatographic systems strongly depends on their physi-
cochemical properties due to complex interactions in ter-
nary system analyte/stationary/mobile phase exploiting
wide array of different mechanisms. These correlations
are known as QSRR.31,32 Besides practical application in
optimization strategies, QSRR studies can significantly
contribute to getting some insight into the mechanism of
chromatographic separation on a molecular level. The
QSRR equations describe RM

0, determined for organic
components of the mobile phase and it is a function of lo-
garithm of octanol/water partition coefficients. Linear re-
lationships between the retention factor, RM

0, and the stan-
dard lipophilicity parameter, log P, can be expected be-
cause retention of compounds in reversed phase liquid
chromatography is principally governed by hydrophobic
interactions. Theoretical partition coefficients (Alog P,
IAlog P, Clog P, log PKowin, Xlog P, ACDlog P) can be cal-
culated by software packages (Table 2).

While log P is substantial for the absorption of the
compound, water solubility (log S) is another important
determinant in biological activity of the substance, since
biological systems are, in fact, aqueous systems. Water so-

lubility, or simply solubility, and lipophilicity are closely
related. Molecules with low solubility usually have high li-
pophilicity. The third very important factor is the ioniza-
tion ability. pH value affects strongly the form in which io-
nizable compound will be (neutral or ionic). Ionization
ability, expressed as pKa, and solubility, are also related.
Solubility of neutral molecules is not pH dependent, while
solubility of ionizable molecules depend on pH strongly.

In order to identify the effect of molecular descrip-
tors on the retention constants, QSRR studies of title com-
pounds were performed. Besides the descriptors of lipop-
hilicity (log P) the following molecular descriptors were
calculated: dissociation constant (pKa), water solubility
(log S), molar refractivity (MR), total energy (Et), and
Gibbs energy distribution (GibbsE) (Table 2).

3. 1. Multivariate Statictical Analysis 
and Model Validation

3. 1. 1. Principal Component Analysis (PCA) 
and Hierarchical Cluster Analysis (HCA)

PCA is a very useful statistical technique for redu-
cing the amount of data when there is correlation present,
while retaining as much of the information (variation) as
possible. Application of PCA to retention data can reveal
some similarities among the studied compounds that are
governed by both their intrinsic structural properties and
specific interactions that occur in different chromatograp-
hic systems. Loading plots highlight the most influential
chromatographic systems responsible for such clustering.
Furthermore, a PCA carried out on the set of calculated
molecular descriptors can cluster compounds based on
their structural features alone. It is therefore useful to per-
form a PCA on both retention data and molecular descrip-
tors separately. If a congeneric series of compounds is stu-
died, outliers might be detected by using PCA and remo-
ved prior to the final modeling.

Table 2. Molecular descriptors calculated by different theoretical methods

Comp. Alog P IAlog P Clog P log PKowin Xlog P ACDlog P pKa log S MR Et GibbsE
I.1 5.250 5.060 4.850 5.070 4.830 3.870 3.019 –4.400 106.361 3.392 820.190

I.2 5.650 5.130 5.850 6.160 5.70 4.790 4.216 –4.400 116.444 3.527 817.770

I.3 5.940 7.080 6.280 6.360 6.070 5.060 3.346 –4.410 115.971 5.063 777.070

I.4 6.180 5.890 6.580 6.850 6.430 5.420 3.162 –4.650 121.607 7.715 829.570

II.1 4.960 5.150 5.320 5.880 3.710 3.70 3.45 –4.000 90.399 33.636 628.690

II.2 5.780 5.960 6.440 6.860 4.850 4.820 3.884 –4.320 99.602 26.337 621.330

II.3 6.550 6.650 7.550 7.850 5.990 5.950 2.001 –3.000 108.804 41.901 613.970

III.1 4.910 4.760 5.40 5.960 4.010 3.740 4.155 –3.330 90.326 21.101 615.470

III.2 5.550 4.810 5.480 6.860 5.140 4.820 6.840 –4.980 98.796 30.761 675.090

III.3 6.070 5.80 7.210 8.170 6.140 5.360 4.691 –4.120 113.516 30.554 799.790

III.4 6.980 7.980 9.020 10.390 8.270 7.070 – – 136.705 39.737 984.110

IV.1 3.830 3.630 3.120 3.810 2.370 2.850 1.715 –3.510 64.708 21.498 445.790

IV.2 4.210 4.080 3.670 4.30 2.940 3.410 1.778 –3.760 69.309 17.739 442.110

IV.3 4.640 4.480 4.230 4.790 3.510 3.980 0.955 –3.520 73.911 25.401 438.430
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The idea behind PCA is to find principal compo-
nents PC1, PC2,...,PCn which are linear combinations of
the original variables describing each specimen, X1,
X2,...Xn. 

The first principal component (PC1) defines as
much of the variation in the molecular descriptors data as
possible. The second principal component (PC2) descri-
bes the maximum amount of residual variation after the
first PC has been taken into consideration, and so on.33

HCA is a method which reveals similarities/dissimi-
larities between objects in the variable space, or similari-
ties/dissimilarities in the object space.34 Cluster hierarchy
is commonly displayed as a tree diagram called a dendo-
gram. The horizontal axis of the dendogram represent the
distance or dissimilarity between clusters. The vertical ax-
is represents the objects and clusters. 

In this study PCA has been applied in order to over-
view the data for similarities and dissimilarities. Score va-
lues for the first two PCs are presented in Figure 1.

The highest positive impact to the PC1 is recorded by
partition coefficients, Gibbs energy distribution, and molar
refractivity. The negative influence on the score values of
the PC1 has log S. Score plot visualize similarities/diffe-
rences between investigated compounds (Figure 2).

Because of missing values for pKa and log S, the com-
pound III.4 was excluded from the PCA and HCA analysis.

The score plot reveals that compounds from fourth
series are well separated from the others. Compounds of
series IV, becouse of their small molecular volume signifi-
cantly differ from other investigated seriies. These are
monosubstituted molecules, therefore the least hydropho-
bic, which results in the lowest values of log P. Unfortu-

Figure 1. Factor loadings of partitions coefficients and molecular

descriptors for the first two PCs

Figure 2. Score plot based on the partition coefficients and molecu-

lar descriptors of the compounds investigated

Figure 3. Dendogram of 13 compounds in the space of 11 molecu-

lar descriptors

nately, scores plot does not reveal separation of com-
pounds from I, II, and III. group. In order to determine
differences between the I, II and III. group, and to con-
firm the diversity of the IV. group of analyzed molecules,
HCA has been applied. Clustering is based on Ward’s lin-
kage method35 and Euclidean distance. As result of HCA,
dendogram is shown in the Figure 3. Obtained dendo-
gram shows clustering of investigated compounds in
three well-separated clusters: cluster A contains com-
pounds from the I. series, cluster B groups compounds
from the II. and III. series, and individual cluster C con-
tains compounds from the IV. series. It is obviously that
compounds in cluster B have similar properties: (com-
pounds of series II and III are disubstituted molecules
(high molecular volume) and have not halogen atom in
structure (series I). It is well known that the presence of
halogen atoms certainly affect the retention behavior.
Hence, it may be concluded that by using HCA, com-
pounds are more precisely separated than by PCA.
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3. 1. 2. Introduction to MLR Based on Retention
Data and Molecular Descriptors

The reduction of the number of descriptors was per-
formed before the model construction. The descriptors ob-
tained by stepwise regression routine served as the input
data for MLR analysis. 

Pearson’s correlation matrix has been performed on
all descriptors by using NCSS Statistical Software28 (Tab-
le 3). The correlation matrix presented that some parame-
ters selected in the study is highly correlated with the ot-
her. However, it is very important not to derive the models
containing descriptors which are highly correlated (highly
correlated variables lead to unstable MLR models).

Mathematical models were formed by a stepwise ad-
dition of terms. A deletion process was then employed whe-
re each variable in the model was held out in turn and using
the remaining parameters models were generated. Each
descriptor was chosen as an input for the software package
of NCSS and then the stepwise addition method implemen-
ted in the software was used to choose the descriptors con-
tributing to the retention of s-triazines derivatives.

The correlation coefficients for monoparametric mo-
dels were presented in Table 4. It can be concluded that the
partition coefficient (log P) tends to correlate with retention
constant exclusively. Results presented in Table 4 have con-
firmed expected correlation between RM

0 and log P.36, 37

The specifications for the best-selected MLR models
are shown in Table 5. MLR method only can be used when
a relatively small number of molecular descriptors are used
(at least five to six times smaller than the total number of
compounds). In this case (for fourteen compounds), only

two descriptors can be used to develop a good QSRR mo-
del in order to avoid a high chance of spurious correlations.
In this approach, only the biparametric QSRR models we-
re derived. The statistical quality of the generated models
is determined by statistical measures: the square of the cor-
relation coefficient (r2), the standard error of estimation
(s), and F-test (Fisher’s value) for statistical significan-
ce.38–40 The square of the correlation coefficient (or coeffi-
cient of multiple determination) is a relative measure of fit
by the regression equation. Correspondingly, it represents
the part of variation in the observed data that is explained
by the regression. The correlation coefficient values closer
to 1.0 represent the better fit of the regression. Standard
deviation is measured by the error mean square, which ex-
presses the variation of the residuals or the variation about
the regression line. Thus, standard deviation is an absolute
measure of quality of fit and should have a low value for
the regression to be significant. The F-test reflects the ratio
of the variance explained by the model and the variance
due to the error in regression. High values of the F-test in-
dicate that the model is statistically significant. 

However, it is well known that there are three impor-
tant steps in any QSRR study: development of models, va-
lidation of models and utility of developed models. Vali-
dation is a crucial aspect of any QSRR analysis.41 The sta-
tistical quality of the resulting models, as depicted in Tab-
le 5, is determined by r2, s, and F.42–44 It is noteworthy that
all these equations were derived using entire data set of
compounds (n = 14) and no outliers were identified. The
F - value presented in Table 5 is found statistically signifi-
cant at 99% level since all the calculated F values are hig-
her as compared to tabulated values. 

Table 3. Correlation between different molecular descriptors

r  Alog P IAlog P Clog P log PKowin Xlog P ACDlog P pKa log S MR Et GibbsE
Alog P 1.000 0.893 0.966 0.918 0.962 0.969 0.402 –0.313 0.913 0.059 0.726

IAlog P 1.000 0.879 0.769 0.838 0.843 0.190 –0.187 0.804 0.001 0.603

Clog P 1.000 0.966 0.898 0.930 0.408 –0.176 0.852 0.199 0.655

Kowwin 1.000 0.847 0.906 0.550 –0.220 0.777 0.340 0.595

Xlog P 1.000 0.931 0.451 –0.445 0.968 –0.158 0.843

ACDlog P 1.000 0.337 –0.255 0.829 0.133 0.601

pKa 1.000 –0.658 0.483 0.042 0.555

log S 1.000 –0.506 0.454 –0.635

MR 1.000 –0.284 0.934

Et 1.000 –0.458

GibbsE 1.000

Table 4. Correlation coefficients (r) for the relationships between RM
0 and molecular descriptors

Modifier Alog P IAlog P Clog P Log PKowin Xlog P ACDlog P pKa log S MR Et GibbsE
Acetonitrile 0.924 0.800 0.906 0.924 0.903 0.900 0.708 –0.468 0.868 0.311 0.758

Acetone 0.845 0.715 0.840 0.838 0.794 0.760 0.731 –0.399 0.809 0.270 0.719

Tetrahydrofuran    RM
0 0.864 0.750 0.830 0.773 0.799 0.741 0.587 –0.297 0.848 0.168 0.755

Methanol 0.931 0.855 0.937 0.924 0.902 0.898 0.568 –0.295 0.875 0.325 0.755

2-Propanol 0.915 0.762 0.871 0.832 0.848 0.846 0.571 –0.325 0.838 0.236 0.680
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The developed models were validated by the calcu-
lation of following statistical parameters: PRESS, SSY,
SPRESS, r2

CV, and r2
adj (Table 6). 

Cross-validation parameters of the best models (9
and 19) are obtained with acetonitrile as mobile phase
showed the best validation. From both above presented
models, it can be concluded that the strong influence of
the lipophilicity, log P, is important for the retention beha-
vior and this parameter is usually related to pharmacologi-
cal activity.45

The only way to estimate the true predictive power

of a model is to test its ability to predict accurately the
retention behavior of compounds. In order to verify the
predictive power of the developed model, predicted
(RM

0 values) of s-triazine derivatives investigated were
calculated by using models 9 and 19 and compared with
the experimental values (Table 7). The data presented in
Table 7 show that the observed and the estimated activi-
ties are very close to each other. The residual activity
(difference between experimentally observed RM

0 va-
lues and QSRR calculated RM

0 values is less than equal
to 0.702. 

Table 5. Statistical parameters for multiple dependence between RM
0 and calculated descriptors 

Modifier RM
0 = a1 + b1Alog P + c1pKa

RM
0 a1 b1 c1 r2 F s eq.

acetone –1.447 0.746 0.288 0.876 35.913 0.359 8

acetonitrile –0.831 0.528 0.153 0.956 113.345 0.129 9

tetrahydrofuran –0.979 0.686 0.134 0.823 23.294 0.337 10

2-propanol –1.250 0.604 0.084 0.937 76.415 0.154 11

methanol –2.986 1.052 0.163 0.874 35.156 0.403 12

RM
0 = a2 + b2Clog P + c2pKa

RM
0 a2 b2 c2 r2 F s eq.

acetone –0.020 0.467 0.282 0.895 42.596 0.333 13

acetonitrile 0.256 0.314 0.155 0.931 68.604 0.165 14

tetrahydrofuran 0.415 0.412 0.134 0.805 20.686 0.354 15

2-propanol –0.027 0.363 0.084 0.918 56.249 0.178 16

methanol –0.943 0.652 0.156 0.891 40.832 0.377 17

RM
0 = a3 + b3ACDlog P + c3 pKa

RM
0 a3 b3 c3 r2 F s eq.

acetone –0.181 0.583 0.329 0.821 22.877 0.436 18

acetonitrile –0.114 0.461 0.172 0.974 195.377 0.099 19

tetrahydrofuran 0.311 0.504 0.177 0.695 11.461 0.442 20

2-propanol –0.379 0.513 0.108 0.927 65.296 0.166 21

methanol –1.386 0.871 0.209 0.839 26.279 0.457 22

Table 6. Cross-validation parameters

Modifier eq. PRESS SSY PRESS/SSY SPRESS r2
CV r2

adj

8 1.941 10.584 0.183 0.372 0.817 0.853

acetone 13 1.857 10.584 0.175 0.364 0.825 0.874

18 3.270 10.584 0.309 0.483 0.691 0.785

9 0.306 3.992 0.077 0.146 0.923 0.949
acetonitrile 14 0.724 3.993 0.181 0.227 0.819 0.918

19 0.148 3.993 0.037 0.103 0.963 0.970
10 1.894 6.428 0.295 0.368 0.705 0.788

tetrahydrofuran 15 2.056 6.428 0.320 0.383 0.680 0.766

20 3.691 6.427 0.574 0.513 0.426 0.635

11 0.403 3.889 0.104 0.170 0.896 0.926

2-propanol 16 0.815 3.889 0.209 0.241 0.791 0.902

21 0.470 3.889 0.121 0.183 0.879 0.915

12 2.448 13.059 0.187 0.418 0.813 0.851

methanol 17 2.632 13.060 0.202 0.433 0.798 0.869

22 3.529 13.059 0.270 0.502 0.730 0.808
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The results of this investigation indicate that the
retention constants of the tested compounds are gover-
ned by the partition coefficient, log P, and dissociation
constant, pKa. Lipophilicity as a pharmacokinetic des-
criptor has an important effect on retention behavior and
this parameter is usually related to retention parameter,
RM

0.47 To conclude, results of this study indicate that
Alog P and ACDlog P are equaly suitable for prediction
of retention behavior of investigated series of s-triazi-
nes. 

By observing correlation of RM
0 with different mole-

cular descriptors, it could be concluded which chromato-
graphic system is the best for prediction of the retention
behavior of s-triazines investigated. The data presented in
Tables 5 and 6 show that the thin layer of octadecil silica
gel with acetonitrile-water is the best RP TLC system for
prediction. 

Further, the plot that shows predicted RM
0 values

against the observed RM
0 values also proves the usefulness

of the derived models (Figure 4).

In order to investigate the existence of a systemic er-
ror in developing the QSRR models, the residuals of pre-
dicted RM

0 values were plotted against the observed RM
0

values (Figure 5). The propagation of the residuals on
both sides of the zero axis indicates that no systemic error
in the development of regression models exists, as sugge-
sted by Jalali-Heravi and Kyani.46

Table 7. Retentive screening summary

I Model II Model
Comp. observed acetonitrile

predict residual predict residual
I.1 2.110 2.403 0.293 2.247 0.137

I.2 2.786 2.797 0.011 2.746 –0.04

I.3 2.887 2.817 –0.07 2.746 –0.141

1.4 2.896 2.916 0.02 2.812 –0.084

II.1 2.388 2.316 –0.072 2.461 0.073

II.2 2.753 2.815 0.062 2.880 0.127

II.3 3.000 2.933 –0.067 2.937 –0.063

III.1 2.356 2.397 0.041 2.596 0.24

III.2 3.284 3.146 –0.138 3.037 –0.247

III.3 3.101 3.092 –0.009 3.247 0.146

III.4 3.556 2.854 –0.702 3.088 –0.468

IV.1 1.497 1.454 –0.043 1.501 0.004

IV.2 1.590 1.664 0.074 1.684 0.094

IV.3 1.956 1.765 –0.191 1.732 –0.224

Figure 4. Plots of predicted versus experimentally observed reten-

tion parameters

Figure 5. Plots of residual values against the experimentally observed

values of retention parameters
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3. 2. Correlations of Retention Parameters (RM
0)

and Lipophilic Substituent Constant (ππ)

Lipophilic substituent constants (π), also known as
hydrophobic substituent constants, represent the contribu-
tion that a certain functionality of the molecule makes to
the partition coefficient. The parameter was defined by
Hansch and co-workers by the equation:48

formula 23)

where PH and PX are the partition coefficients of the parent
compound and its monosubstituted derivative, respecti-
vely. The π value varies depending on the solvent system
used in the determination of the partition coefficients.
Most of the π values are determined using the n-octa-
nol/water system. A positive π value indicates that a substi-
tuent has a higher lipophilicity than hydrogen, and that po-
tentiates the distribution of the compound to the n-octanol
phase. Thus, higher concentrations of such derivative are
expected in the lipid material of biological systems. Nega-
tive π values show that the substituent has a lower lipophi-
licity than hydrogen, increasing the concentration of the
compound in the aqueous media of biological systems.

When estimating the lipophilicity of compounds, li-
pophylic substituent constants can be used as an alternative
to the partition coefficient, when studying a series of ana-
logues in which only the substituents are different. This is
based on the assumption that lipophilic effects of the unc-
hanged parts of molecules are similar for each of the analo-
gue. Consequently, the π values stress the effects of the
substituents to the lipophilicity of the molecule. Further-
more, biological activity – π relationships that have high
regression constants and low standard deviations demon-
strate that the substituents are important in determining the
lipophilic character of the drug. Dependence of π on RM

0

values for compounds of series I is given in the Figure 6.
For all examined modifiers observed dependences

between RM
0 and π could be described with polynomial

functions (24–28) of second order with good correlation. 

RM
0(acetone) = 3.187 – 0.496π + 2.065π2

(24)
r = 0.998,   s = 0.046,   n = 4,   

RM
0 (acetonitrile) = 2.109 + 1.792π – 1.012π2

(25)
r = 0.999,   s = 0.019,   n = 4

RM
0 (methanol) = 2.449 – 0.094π + 2.845π2

(26)
r = 0.991,   s = 0.199,   n = 4

RM
0 (2-propanol) = 1.901 + 1.267π – 0.319π2

(27)
r = 0.999,   s = 0.028,   n = 4

RM
0 (tetrahydrofuran) = 3.437 + 0.932π

– 1.181π2 (28)
r = 0.967,   s = 0.043,   n = 4

Figure 6. Correlation between RM
0 and π for series I compounds.

4. Conclusions
Molecular modeling and QSRR analysis were per-

formed to find the quantitative effects of the molecular
structure of the compounds on their retention behavior.
For all investigated derivatives, calculated retention para-
meters could be very good correlated with some of the
molecule physicochemical properties, such as in silico
calculated bioactivity descriptors for lipophilicity and so-
lubility. Accurate mathematical models (MLR) were de-
veloped for predicting the retention behavior of some s-
triazine derivatives. The validity of the model has been es-
tablished by the determination of suitable statistical para-
meters. The established models were used to predict the
retention of the s-triazine investigated and close agree-
ment between experimental and predicted values was ob-
tained. The low residual activity and high cross-validated
r2 values (r2

CV) obtained suggest a good predictive ability
of the developed QSRR models. It indicates that the reten-
tion constants of series of s-triazine derivatives can be
successfully modeled using various molecular descrip-
tors. It can be concluded that the strong influence of the li-
pophilicity, log P, and dissociation constant, pKa are im-
portant for the retention behavior. 
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Povzetek
Z QSRR (»Quantitative structure-retention relationship«) metodo smo raziskovali lastnosti, pomembne za lipofilnost

{tirih serij sintetiziranih derivatov s-triazina. Pri prou~evanju kromatografskih lastnosti se je izkazalo, da velja linearna

korelacija med vrednostmi RM in volumskim dele`em modifikatorja mobilne faze. Dolo~ili smo zvezo med retenzijski-

mi konstantami, RM
0, in teoreti~no izra~unanimi deskriptorji bioaktivnosti za lipofilnost in topnost. Najbolj{i QSRR

modeli so bili nadalje validirani z eksperimentalnimi tehnikami in izra~unom statisti~nih parametrov za dolo~anje teo-

reti~nih modelov. Dobljene vrednosti RM
0 prou~evanih derivatov s-triazina so primerne tudi za opis lipofilnosti in dolo-

~anje farmakokineti~nih lastnosti.


