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Abstract 

Most of the world's population lives in areas facing a severe water crisis. Climatology researchers need 

precipitation information, pattern analysis, modeling of spatial relationships, and more to cope with these 

conditions. Therefore, in this paper, a comprehensive approach is developed for describing geographic 

phenomenon using various geostatistical techniques. Two main methods of interpolation (Inverse Distance 

Weighting and Kriging) are used and their results are compared. The Urmia Lake Basin in Iran was selected 

as a case-study area that has faced critical conditions in recent years. Precipitation was initially modeled using 

both conventional, non-statistical approaches and advanced geo-statistical methods. The result of the 

comparison shows that ordinary Kriging is the best interpolation method for precipitation, with an RMS of 

4.15, and Local Polynomial Interpolation with the exponential kernel function is the worst method, with an 

RMS of 5.02. Finally, a general regression analysis was conducted on precipitation data to examine its 

relationship with other variables. The results show that the latitude variable was identified as the dependent 

variable with the most influence on precipitation, with an impact factor of 81%, and that the slope has the 

lowest impact on precipitation, at nearly zero percent. The influence of latitude on precipitation appears to be 

localized, suggesting that it may not be a significant variable for predicting global environmental threats. 

Keywords: Precipitation Estimation, Geostatistics, Spatial Relationship Modeling, Kriging interpolation. 

Izvleček 

Večina svetovnega prebivalstva živi na območjih, ki se soočajo s hudo krizo zaradi pomanjkanja vode. 

Klimatologi za spopadanje s temi izzivi potrebujejo informacije o padavinah, analize prostorskih vzorcev in 

modele prostorskih odnosov. V prispevku opisujemo celoviti pristop k opisovanju geografskega pojava z 

uporabo različnih geostatističnih tehnik. Uporabljeni sta dve glavni metodi interpolacije (metoda inverzne 

utežene razdalje in Kriging) ter primerjani njuni rezultati. Kot območje študije primera je bilo izbrano porečje 

jezera Urmia, ki se je v zadnjih letih soočalo s kritičnimi razmerami. Padavine smo najprej modelirali s 
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klasičnimi in geostatističnimi metodami. Rezultati kažejo, da je navadni Kriging najboljša interpolacijska 

metoda za padavine – z vrednostjo RMS 4,15, metoda z eksponentno jedrno funkcijo pa je najslabša – z 

vrednostjo RMS 5,02. Na koncu je bila izvedena splošna regresijska analiza padavin. Rezultati kažejo, da je 

bila spremenljivka širine najvplivnejša odvisna spremenljivka s faktorjem vpliva 81 %, naklon pa ima 

najmanjši vpliv na padavine s skoraj nič odstotki. Zdi se, da je vpliv zemljepisne širine lokalne narave in morda 

ne predstavlja pomembne globalne okoljske grožnje. 

Ključne besede: ocena padavin, geostatistika, modeliranje prostorskih odnosov, interpolacija Kriging. 

 

1. Introduction 

Precipitation plays an essential role in the global 

water and energy cycle. More than 40% of the 

world's population lives in areas with a severe water 

crisis (Bostan et al., 2012). Iran is in one such dry 

zone, receiving at most one-third of the average 

global precipitation (Eivazi and Mosaedi, 2012). 

According to the Food and Agriculture 

Organization of the United Nations (FAO), the 

world received an average of 890 millimeters of rain 

in 2013. In contrast, Iran's average precipitation 

hovers around 260 millimeters, indicative of a 

significant water crisis in the country (Maris et al., 

2013). Researchers have continually sought 

accurate rainfall data for precipitation zoning, 

analyzing rainfall patterns, and estimating 

precipitation so as to manage diverse environmental 

conditions (Behzadi and Ali Alesheikh, 2013; 

Mahjoobi and Behzadi, 2022; Moral, 2010). 

More accurate rainfall estimates are essential as the 

inputs for various analytical models in climate 

science. Achieving a precise estimate of rainfall is 

crucial for analyzing rainfall patterns spatially and 

temporally (Cristiano et al., 2017). In 

acknowledgement of this issue’s importance, 

barometric stations to measure rainfall were 

installed in most of the region, alongside synoptic 

and climatological stations. Nonetheless, 

researchers often encounter challenges in 

interpolating and zoning static data, primarily due to 

the spatial and temporal variability of precipitation 

(Jalilzadeh and Behzadi, 2019; Moral, 2010). 

To address these challenges, researchers have 

developed various methods for estimating 

precipitation, with some relying on geostatistical 

approaches. Significant strides have been made in 

recent decades, enabling the study and prediction of 

precipitation’s spatial and temporal distribution 

(Behzadi and Mousavi, 2019; Benoit and 

Mariethoz, 2017). Numerous international studies 

have been conducted on precipitation estimation, 

often employing Geographic Information System 

(GIS) applications and ground-based methods to 

produce comprehensive precipitation estimates and 

coordinated maps. 

For instance, Karayusufoglu et al. (2010) explored 

and estimated spatial parameters and precipitation 

distribution in Turkey's Solakli Basin, utilizing 

interpolation techniques like inverse distance 

weighting (IDW), Kriging, and others. Their 

research concluded that the Kriging method 

demonstrated superior accuracy (Karayusufoglu et 

al., 2010). Abo-Monasar et al. (2014) analyzed 

rainfall in China, utilizing general linear regression 

and Kriging methods with data from 684 

meteorological stations. The study opted for the 

stepwise regression method to select six auxiliary 

variables: longitude, latitude, elevation, slope, 

surface roughness, and river density. The Kriging 

method outperformed other prediction techniques 

(Abo-Monasar and Al-Zahrani, 2014). Baykal et al. 

generated predictive maps using GIS to assess 

climate-induced changes. Employing climate 

classification and time series methods in select 

Turkish provinces, the study underscored the 

suitability of interpolation methods for precipitation 

estimation (Baykal et al., 2022). Zhong et al. 

focused on water management strategies like 

rainwater harvesting, employing LiDAR data to 

represent catchment and vegetated areas in the 

Southwestern United States. Their results indicated 

the feasibility of rainwater harvesting for irrigation 

for approximately eight months of the year (Zhong 

et al., 2022). Longo-Minnolo et al. leveraged 

alternative data sources for estimating precipitation 

in Italy. Their research demonstrated that auxiliary 

methods, alongside ground data, could effectively 



Aghamohammadi H. et al.: Spatial Statistics Analysis of Precipitation in the Urmia Lake Basin – Prostorska statistična 

analiza padavin v porečju jezera Urmia 

Acta hydrotechnica 36/65 (2023), 139–154, Ljubljana 

 

141 

estimate precipitation (Longo-Minnolo et al., 2022). 

Zou et al. employed various interpolation methods 

to estimate precipitation levels (Zou et al., 2021). 

Jalilzadeh and Behzadi developed a fuzzy algorithm 

to emphasize the importance of satellite images in 

flood estimation. The fuzzy logic algorithm 

identified water levels in the area with an accuracy 

rate of 87% (Jalilzadeh and Behzadi, 2020). Various 

studies, including those by Baykal et al., Zhong et 

al., Longo-Minnolo et al., Zou et al., and Jalilzadeh 

and Behzadi, collectively highlight the reliability of 

interpolation methods for estimating precipitation 

levels and assessing climate-induced changes. 

Reviewing these previous studies, two significant 

research areas stand out: precipitation zoning and 

the analysis of spatial variations in rainfall. To 

comprehend the spatial variability of rainfall, it is 

essential to consider precipitation’s intricate and 

continuous interplay with other elements, both 

spatially and temporally. This dynamic behavior of 

precipitation has captured the attention of 

climatologists and researchers involved in 

climatology (Papalexiou et al., 2018). One approach 

to studying precipitation is describing its spatial 

variation using spatial statistics (Liu et al., 2022). 

Furthermore, all spatial events inherently possess 

temporal components (Behzadi and Alesheikh, 

2013; Maris et al., 2013).  

In contrast to classical statistics, spatial statistics 

reveal the statistical properties of distributions in 

space (Abdollahi and Behzadi, 2022; Ghashghaie 

and Behzadi, 2019). This enables the identification 

of spatial differences, similarities, specific and 

unique points, or homogeneous regions. These 

insights facilitate determining the size or extent of 

spatial phenomena is possible (Sun et al., 2009). 

Recognizing the significance and application of 

spatial analysis, many researchers have delved into 

identifying climatic elements, particularly rainfall. 

Precipitation estimation and modeling are 

fundamental aspects of climate research. As such, 

considerable efforts have been made by climate 

scientists, encompassing zoning, estimation, and 

analysis of rainfall patterns to strengthen our 

understanding of various regions and to improve 

environmental management strategies. 

In this paper, we initially employ a range of 

interpolation methods, including traditional and 

geostatistical approaches, to identify the optimal 

model for precipitation in the Urmia Lake Basin. 

Further, we evaluate the correlations between the 

obtained precipitation model and various 

geographic factors, such as geographical location, 

altitude, and regional topography, utilizing diverse 

spatial statistics techniques. The remainder of this 

paper is organized as follow: the next section 

introduces the theoretical principles. Section 3 

outlines the materials and methods employed, 

followed by a section presenting experimental 

results and a comparative analysis with other 

methods. Finally, the discussion is wrapped up and 

conclusions are drawn in the last section. 

 

2. Theoretical Principles 

2.1 Interpolation 

Interpolation is estimating quantitative values for 

unknown points using adjacent and distinct points. 

This process is conducted when the point data is 

insufficient for producing co-value maps. 

Therefore, interpolation means converting point 

data to zonal data. The general interpolation 

equation is given by Equation 1; the difference 

among the various models is only in the weighting 

factor (Yang et al., 2020): 

    (1) Ẑ(𝑠0) = ∑ 𝜆𝑖

𝑁

𝑖=1

𝑍(𝑠𝑖) 

where Ẑ(s0) is the estimated value in position s0, 

Z(si) is the measured value in si, i represents the 

measured points, and N is the number of stations. 

There are different methods for interpolation, which 

are shown in Figure 1 (Bajat et al., 2013; Cheng et 

al., 2008; Jafarian and Behzadi, 2020).
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Figure 1: Different types of interpolation methods. 

Slika 1: Različne vrste metod interpolacije. 

After employing interpolation, such methods should 

be evaluated (Njeban, 2018). There are several ways 

of comparing the results obtained from these 

methods. The cross-validation method is one of the 

most appropriate and most widely used methods. In 

this method, the interpolation operation is carried 

out again by removing each of the measured points 

(such as the barometric station in this paper). Then 

the difference between the estimated value and the 

actual value is calculated as a measure of error. 

Since the resulting error is obtained for all points, 

the estimation is done for all points (Kumar et al., 

2022). The validation method uses various 

parameters for comparison. In this paper, the RMS 

method is used for all interpolation. 

 

2.2 Clustering and analysis of rainfall patterns 

In this study, we intended to use interpolation as a 

prerequisite for other analyses of precipitation 

patterns and rainfall estimation and modeling. To 

analyze the precipitation patterns, researchers use a 

variety of algorithms, including the mean of the 

nearest neighbor, multi-spatial analysis, k-rupli 

function, etc. 

Using these analyses facilitates studying the cluster 

behavior of certain phenomena (Triguero et al., 

2019). Some of these analyses present the results as 

a statistical report, and others on the map (Bostan et 

al., 2012). After analyzing the distribution pattern of 

phenomena and their spatial distribution as spatial 

statistics and standard z distributions, researchers 

must also show cluster and distribution, as well as 

the pattern of dispersion of complications with their 

attribute value on a map (Maris et al., 2013). There 

are several tools for creating cluster maps, most of 

which are: 1) Analysis of the cluster with Anselin 

Local Moran's I index and 2) the Hot Spot Analysis 

or Getis-Ord Gi* statistic. 

As stated, general Moran statistics only show cluster 

behavior for annual rainfall and cannot express the 

type of spatial behavior exhibited by the concerned 

phenomenon on the map; therefore, to reveal the 

behavior of annual rainfall in terms of spatial 

distribution patterns on the map, Moran local 

statistics are used (Abdollahi and Behzadi, 2022). 

Hot spot analysis, as another method for mapping 

clusters, calculates the Gi* statistic for all data 

points. The resulting computed statistic, z, indicates 

where quantities are high or low, representing hot or 

cold clusters in the study area or dataset 

(Ghashghaie and Behzadi, 2019). 

 

2.3 Modeling of spatial relationships 

One of the most popular methods for modeling the 

spatial relationships of geographic problems, such 

as precipitation, is the Ordinary Least Squares 

Regression (OLS) method (Huang, 2018). In the 

sense of regression, it is assumed that we look at a 

variable such as Y over time or among different 

units and obtain the relevant data, and then its 

changes are interpreted (Bostan et al., 2012). For 

this dependent variable, consider the variable or 

variables that can explain these changes. Suppose 

(Mirzaei and Sakizadeh, 2016): 

(2) 𝑦𝑡 = 𝑓(𝑥1,𝑡 , … 𝑥𝑘,𝑡) 

Equation (2) constitutes a mathematical model as it 

solely represents the mathematical relationship 
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Radial method
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between the dependent variable (Y) and the 

independent variables (Xs). If the function F 

exhibits linearity concerning the variables Xi (as 

depicted in Equation 3), it is referred to as a linear 

mathematical model. 

(3) 𝑦𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 + ⋯ + 𝛽𝑘𝑥𝑘,𝑡 

A generalized least squares regression is a form of 

linear regression for predicting or modeling 

dependent variables to a set of independent (or 

explanatory) variables. Recognizing and evaluating 

the relationship between these two categories of 

variables helps us better understand the relationship 

between dependent and independent variables. It 

also shows everything that is happening in one 

place. The general squares regression is the most 

well-known regression technique (Karayusufoglu et 

al., 2010; Mirzaei and Sakizadeh, 2016). Regression 

provides an equation to represent this process by 

providing a global model of variables, and 

understanding the relationship between variables 

(Fernández-Delgado et al., 2019). 

 

 

 

3. Materials and methods 

3.1 Area of case study 

The Urmia Lake Basin is an invaluable aquatic 

ecosystem situated in the northwest region of Iran, 

renowned both nationally and globally. This 

ecosystem serves as a quintessential illustration of a 

closed basin, wherein all river runoffs within the 

basin converge. This lake, with an area of 51,876 

square kilometers, is one of the main basins in the 

country, located between the provinces of West 

Azerbaijan (46%), East Azerbaijan (43%), and 

Kurdistan (11%). The lake is also the 25th-largest 

lake in the world in terms of surface area, the largest 

inland lake in Iran, and the second-largest saltwater 

lake in the world. The topography of the basin area 

of Lake Urmia is shown in Figure 2. 

Unfortunately, despite this lake's unique importance 

in Iran, it has been experiencing significant 

depletion since 2000, and today, it is at risk of 

drying up completely. Several factors, such as 

rainfall, river flow, evaporation, and temperature, 

contribute to this process. Therefore, this basin was 

selected as the study area to evaluate precipitation's 

influence on this ongoing drought occurrence. 

 

Figure 2: The studied area. 

Slika 2: Obravnavano območje. 
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3.2 Data 

For this study, the annual precipitation data of 21 

synoptic stations of the Meteorological 

Organization were used, spanning 63 years of 

statistics between 1951 and 2014. Then, based on 

these statistics, the average annual precipitation of 

the stations was calculated as the dependent 

variable. In addition, latitude and longitude, along 

with the height and slope of the terrain at each 

station, as well as average annual and average 

annual wind speed, were extracted as independent 

variables. Figure 2 shows the scope of the study 

area, and the location of the stations. 

 

3.3 Methods of research implementation 

The methods and steps for implementation are 

summarized in five systematic stages, which serve 

as a structured approach for analyzing geographic 

rainfall. This framework is not limited to 

precipitation alone; it can be adapted for the analysis 

of various other geographical phenomena. 

Within this framework, we begin by interpolating 

rainfall data using a range of established ground-

based statistical and traditional methods. 

Subsequently, the most suitable interpolation 

method is chosen based on cross-validation results. 

In the third stage, we delve into our analysis of 

rainfall patterns, employing four key indicators. 

Moving forward, we assess the distribution patterns 

of these phenomena, employing spatial statistics 

and standard z distribution. In the fourth stage, we 

apply two distinct cluster analysis techniques: 

Anselin Local Moran's I and hot spot analysis. 

Finally, in the fifth and concluding phase, we model 

the spatial relationships within the rainfall dataset 

using the generalized least squares regression 

method. These relationships are expressed through 

a linear equation and visualized on a map. It's 

important to note that these steps collectively offer 

a comprehensive perspective on addressing the 

precipitation issue. 

 

 

 

 

 

 

4. Results 

4.1 Precipitation interpolation 

For many interpolation methods, we first need to 

examine a series of initial statistical tests on input 

data. These statistical tests include: 1) Examining 

the normalization of rainfall data at stations and 

normalizing them if needed; and 2) Examining the 

data for a trend and removing it if it exists. 

 

4.2 Examining the Normality of Data 

We conducted a rigorous examination of rainfall 

data normalization at weather stations using the 

Kolmogorov-Smirnov test, a widely recognized 

statistical method for assessing the data’s adherence 

to normal distribution. The significance level (Sig.), 

depicted in Figure 3, plays a crucial role in our 

analysis. This significance level represents the p-

value derived from the Kolmogorov-Smirnov test. 

In hypothesis testing, a common practice is to set a 

significance level, often denoted as α, which serves 

as a critical threshold for determining whether 

observed data significantly deviate from a normal 

distribution. In our study, we adopted a standard 

significance level of 0.05. 

The statement "Sig. above 0.05" in Figure 3 

signifies that the computed p-value from the 

Kolmogorov-Smirnov test exceeded this 0.05 

threshold. This outcome holds significant 

implications: it indicates that we lack substantial 

evidence to reject the null hypothesis. In this 

context, the null hypothesis posits that the rainfall 

data at Lake Urmia’s weather stations follow 

normal distribution. 

It's crucial to recognize that, despite any visual 

deviations suggested by the histogram, the 

statistical rigor provided by the significance level 

reinforces our conclusion. The data's adherence to a 

normal distribution is affirmed, as the observed 

deviations, if present, are not statistically 

significant. 

In light of these findings, we confidently assert that 

the rainfall data can be considered standard and 

there is no necessity for data normalization. This 

conclusion, supported by rigorous statistical 

analysis, bolsters the reliability of our results. 
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Figure 3: Normality of rainfall data at Lake Urmia. 

Slika 3: Test normalne porazdelitve podatkov o padavinah ob jezeru Urmia.

4.3 Examining data trends 

Another important consideration is the absence of 

any discernible trend in the variable data being 

estimated. In cases where a trend does exist, it 

should be addressed through appropriate data 

preprocessing methods. Figure 4 provides a visual 

representation of this aspect. From a west-to-east 

perspective, there is no evident trend in the data. 

However, when examining the data from a north-to-

south perspective, a second-order polynomial trend 

becomes apparent. This trend must be accounted for 

in certain interpolation methods, such as Kriging 

and general co-Kriging. 

 

Figure 4: The trend in rainfall data in Lake 

Urmia. 

Slika 4: Trend v podatkih o padavin ob jezeru 

Urmia. 

4.4 Precipitation interpolation in the Urmia 

Lake Basin 

After examining the preliminary statistical tests on 

the data, various types of traditional interpolation 

and geostatistical methods were implemented. Then 

the best rainwater map was drawn using the cross-

validation. It should be noted that in the IDW 

method, the optimal power is 2, and the neighboring 

type is considered standard. In the Radial Basis 

Function (RBF) method, various kernel functions 

are employed, and the kernel function that yields the 

smallest error is selected as the best estimation. In 

the context of terrestrial-based techniques, a variety 

of half-diffraction models were employed, with 

meticulous attention to minimizing errors. The 

results of implementing these methods, with the 

estimation of each method’s accuracy using cross-

validation, are presented in Table 1. 

According to the results, the Ordinary Kriging 

method with a half-shift function of the Holl Effect 

and the lowest RMSE was selected as the best 

method for precipitation interception in the Urmia 

Lake Basin. In this way, its interpolation map is 

shown in Figure 5. 
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Table 1: Implementation of Various Methods of 

Rainfall Interpolation for the Urmia Lake Basin. 

Preglednica 1: Izvajanje različnih metod 

interpolacije padavin za porečje jezera Urmia. 

Interpolation method RMSE 

IDW (Inverse Distance Weighting) 4.63 

RBF (Radial Basis Function) with the 

Inverse Multi-Quadric kernel function 

4.43 

GPI (Global Polynomial Interpolation) 4.62 

LPI (Local Polynomial Interpolation) with 

Exponential kernel function 

5.02 

Ordinary Kriging with Hole Effect Half 

Effect Function 

4.15 

Simple Kriging with Stable Shift 4.31 

Ordinary Kriging with a Half-Circle 

Change Function 

5.67 

Co-Kriging with Exponential Half-Effect 

Function 

4.31 

Simple Co-Kriging with Hole Effect Half-

Effect Function 

4.33 

Co-Kriging with a Half-Spherical Change 

Function 

4.72 

 

 

Figure 5: The Urmia Lake Basin reconnaissance 

map by the ordinary Kriging method. 

Slika 5: Karta porečja jezera Urmia z metodo 

navadnega Kriginga. 

 

4.5 Spatial Data Analysis and Analysis of the 

geostatistical of Precipitation in the Urmia 

Lake Basin 

In this section, rainfall distribution in the Uremia 

Lake Basin is studied using geostatistical analysis. 

To apply these analyses, the data from the Urmia 

Lake Basin zoning map must be used (Figure 5). 

4.6 Spatial Distribution Analysis of Observation 

Points 

The rainfall pattern analysis in the Urmia Basin 

using the mean of the nearest neighboring method 

indicates that the annual rainfall pattern of Lake 

Urmia is a dispersed pattern with a high average of 

the nearest neighboring point of 1.476. This result is 

obtained due to the value of z > 96.1 and due the 

magnitude of this value, which is in the sequence of 

z distribution in the red region of Figure 6 and its 

value is 187.832, and the P-value statistic is zero. 

Also, the average value of the observed distance is 

greater than the mean of the expected distance, 

which is more evidence of the pattern of 

precipitation dispersion in the Urmia Lake Basin. 

 

Figure 6: Analysis of the rainfall pattern at Lake 

Urmia with the Average nearest neighborhood. 

Slika 6: Analiza vzorca padavin ob jezeru Urmia z 

metodo najbližjih sosedov. 
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Figure 7: Analysis of Lake Urmia’s precipitation 

pattern using the Gi statistic. 

Slika 7: Analiza vzorca padavin na jezeru Urmia z 

uporabo statistike Gi. 

 

4.7 High/Low Clustering (Getis-Ord General 

G) 

The analysis of precipitation patterns in the Uremia 

Lake Basin using Gi statistics reveals a high 

concentration of cluster patterns in its annual 

precipitation. This result was obtained based on the 

standard statistic z > 96.1, indicating a significance 

level higher than 96.1% and placing it in the red 

region of Figure 7. Additionally, the p-value, along 

with zero variance, signifies a high-focus cluster 

pattern. The Getis-Ord General Gi* statistics are 

also very close to zero, with both the expected and 

observed values almost reaching zero. If the 

standard statistic z is situated on the left-hand side 

of the distribution with a negative value, this pattern 

exhibits low-cluster behavior. The median of a bell-

shaped graph indicates a random or statistically 

insignificant pattern. 

 

4.8 Multi-Distance Spatial Cluster Analysis 

Index 

The Multi-Distance Spatial Cluster Analysis 

index shows a cluster pattern in the Lake Urmia 

Basin’s precipitation behavior. As seen in 

Figure 8, the red line of observed data is at all 

distances above the expected blue line. 

 

Figure 8: Multi-Distance Spatial Cluster Analysis 

(Ripley’s K) for precipitation data of Lake Urmia 

Basin. 

Slika 8: Analiza prostorskih grozdov z več 

razdaljami (Ripleyjeva K funkcija) za podatke o 

padavinah povodja jezera Urmia. 

 

4.9 Spatial autocorrelation analysis of general 

Moran's I 

General Moran spatial autocorrelation analysis 

shows that the Lake Urmia Basin's annual 

precipitation has a high concentration of clusters. As 

seen in Figure 9, the value of the standard statistic z 

> 96.1 is 1% higher than the number 96.1, and it is 

located in the sequence of z's distribution in the red 

region of Figure 9. So, the p-value at zero represents 

a high-focus cluster pattern, and the universal 

Moran statistic was 99.9%. The Moran statistic is 

expressed by a correlation coefficient, and its value 

varies between -1 and +1. This means, if the amount 

of Moran statistics moves to +1, it shows a high 

cluster pattern concentrated in most of the study 

area. And if the Moran statistic moves to -1, it 

indicates a dispersed annual precipitation pattern. A 

value close to zero indicates a random and irrelevant 

pattern at the desired confidence level. 
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Figure 9: Spatial Autocorrelation Analysis of 

Precipitation Data of Lake Urmia Basin with 

general Moran. 

Slika 9: Prostorska avtokorelacijska analiza 

podatkov o padavinah v porečju jezera Urmia s 

splošno Moranovo statistiko. 

 

4.10 Mapping clusters analyzing 

In this section, we utilize two methods of analysis, 

namely Cluster and Outlier Analysis (Anselin Local 

Moran's I), and Hot Spot Analysis (Getis-Ord Gi*), 

to extract and map clusters. The objective is to shed 

light on the relevance and insights gained from the 

cluster analysis of rainfall data in the Urmia Lake 

Basin. 

Cluster and Outlier Analysis conducted with 

Anselin Local Moran's I statistics (Figure 10) 

reveals distinctive spatial patterns. High-high 

clusters, representing areas with the most 

precipitation, are prominently located in the lake’s 

southern and southwestern regions. Conversely, the 

central Urmia Lake Basin, as well as two isolated 

locations near the Sarab and Salmas stations, are 

identified as low-low clusters, indicating areas with 

the least precipitation. Additionally, other areas 

displayed as gray spots on the map exhibit no 

statistically significant patterns when assessed from 

the high-high, low-low, high-low, and low-high 

perspectives. 

This cluster analysis provides valuable insights into 

the spatial distribution of precipitation patterns 

within the Urmia Lake Basin, aiding our 

understanding of the areas with the highest and 

lowest levels of rainfall. 

 

Figure 10: Cluster and Outlier Analysis (Anselin 

Local Moran's I) for precipitation data of Lake 

Urmia Basin. 

Slika 10: Analiza grozdov in odstopanj (statistika 

Anselin Local Moran I) za podatke o padavinah v 

povodju jezera Urmia. 

Also, with the aid of Hot Spot Analysis (Getis-Ord 

General Gi*), (seen in Figure 11), it can be 

concluded that hot spots have more areas in the 

south and southwest of the study area in terms of 

values with high clusters. This represents high 

precipitation in terms of spatial autocorrelation 

analysis. The concentration of clusters with a 

relatively lower concentration than the higher 

clusters in the red range of precipitation distribution 

also appears in some of the areas. Cold spots located 

in the range of 90 to 99 percent are significant in the 

north and central parts of the Urmia Basin, and two 

spots are located in the Sarab and Salmas areas. 

Cold spots with a low concentration show 

precipitation and a cluster pattern. Other regions did 

not follow a specific spatial pattern and are not 

statistically significant. 
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4.11 Spatial modeling of precipitation 

In the fifth step of our analysis, where we employ 

the least squares regression method to model the 

spatial relationships of rainfall in the Urmia Lake 

Basin, we included several explanatory variables 

and the dependent variable, rainfall. The selection 

of these specific variables was not arbitrary but 

based on prior considerations and a preliminary 

analysis. Before conducting the regression analysis, 

we conducted a thorough pre-analysis to determine 

which variables could potentially influence rainfall 

patterns in the Urmia Lake Basin. These variables 

were carefully chosen based on their known or 

hypothesized impact on rainfall. For instance, 

latitude and longitude are often considered, as they 

denote geographic location, which can influence 

weather patterns. Elevation is another crucial factor, 

as it affects temperature and atmospheric 

conditions, which, in turn, influence rainfall 

(Behzadi and Jalilzadeh, 2020). Variables like 

gradient, average temperature, and annual wind 

were selected due to their established associations 

with precipitation patterns in previous studies. In 

summary, our variable selection process was 

informed by existing scientific knowledge and a 

comprehensive pre-analysis to ensure that we 

included factors that are likely to influence rainfall 

within the Urmia Lake Basin. 

The value of R2 indicates how much the dependent 

variable of precipitation can be explained by 

independent variables. According to the results, the 

value of R2 is equal to 60%, which is relatively 

reasonable. The significance level (sig) in this 

problem is also less than 0.05, which indicates that 

the regression model can significantly predict the 

variation of the dependent variable. 

 

Figure 11: Hot Spot Analysis (Getis-Ord Gi*) of 

rainfall data in Lake Urmia. 

Slika 11: Analiza vročih točk (Getis-Ord Gi*) 

podatkov o padavinah v jezeru Urmia. 

 

As seen in Table 2, the constant value and all 

independent variables in the model are meaningful 

with concerning the Sig. value. With the help of the 

beta column, the relative contribution of each 

variable is obtained for predicting the dependent 

variable. Variables with the greatest effect on the 

dependent variable are determined. The latitude 

variable has the highest effect, and longitude and 

wind speed have the most negligible effect on 

rainfall in the Urmia Basin. 

Table 2: Coefficients of regression model for rainfall prediction in the Urmia Lake Basin. 

Preglednica 2: Koeficienti regresijskega modela za napovedovanje padavin v porečju jezera Urmia. 

Coefficientsa 

 Unstandardized 

Coefficients 

Standardized 

Coefficients 

  Collinearity 

Statistics 

Model B Std 

Error 

Beta 
t 

Sig. Toleranc

e 

VIF 

1   (constant) 302.952 3.432  88.277 0.000   

X -0.545 0.039 -0.072 -13.915 0.000 0.359 2.785 

Y -6.724 0.056 -0.801 -119.851 0.000 0.215 4.658 

Elevation 0.002 0.000 0.147 43.564 0.000 0.840 1.191 

Slope -6.27E-8 0.000 -0.018 -5.404 0.000 0.825 1.212 

Wind speed 0.674 0.105 0.047 6.447 0.000 0.177 6.642 

Average temperature -0.354 0.008 -0.145 -43.979 0.000 0.878 1.138 

a. Dependent Variable: Precipitation 
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Figure 12 also shows an almost normal distribution 

of residues from the OLS model. This figure shows 

that the regression model can be applied to this 

problem. 

 

Figure 12: Histogram of residues obtained from 

the OLS model. 

Slika 12: Histogram ostankov, dobljenih z 

modelom OLS. 

 

In Table 2, column B shows the coefficients of the 

regression model; as a result, the regression 

equation for rainfall prediction in the Urmia Basin 

is: 

𝒑𝒆𝒓𝒄𝒊𝒑𝒂𝒕𝒊𝒐𝒏 =  𝟑𝟎𝟐. 𝟗𝟓𝟐 
−  𝟎. 𝟓𝟒𝟓 
×  (𝑳𝒐𝒏𝒈𝒊𝒕𝒖𝒅𝒆) –  𝟔. 𝟕𝟐𝟒 
×  (𝑳𝒂𝒕𝒊𝒕𝒖𝒅𝒆)
+  𝟎. 𝟎𝟎𝟐 ×  (𝑯𝒆𝒊𝒈𝒉𝒕) –  𝟔. 𝟐𝟕𝟖 
×  𝟏𝟎−𝟖  ×  (𝑺𝒍𝒐𝒑𝒆)
+  𝟎. 𝟔𝟕𝟒 ×  (𝑾𝒊𝒏𝒅) –  𝟎. 𝟑𝟓𝟒 
×  (𝑻𝒆𝒎𝒑𝒆𝒓𝒂𝒕𝒖𝒓𝒆) 

 

Figure 13: Estimated map with OLS model. 

Slika 13: Karta ocenjena z modelom OSL. 

The estimation map (rainfall estimation) in the 

Urmia Lake Basin by using the OLS method is 

shown in Figure 13. The model estimation is more 

or less than the actual in all regions. However, the 

estimate lower than the actual value is greater than 

the estimation higher than actual value. 

 

5. Discussion 

In the study, we explored 10 different traditional 

and geostatistical interpolation models to identify 

the optimal approach for precipitation model. The 

result showed that "Ordinary Kriging with Hole 

Effect kernel function" is the most accurate method 

for modeling precipitation in the study area. The 

amount of RMSE for this model was 4.15 . Among 

the models, the "Universal Kriging with Semi-

Variogram Circle kernel function" model had the 

lowest accuracy . The RMSE value for this model 

was 5.67 . However, the accuracy obtained from 

these models is nearly identical; in other words, the 

range of RMSE changes is almost one unit. The 

close proximity among RMSEs shows that the 

precipitation model is independent of the 

mathematical model, and each of these is 

appropriate for producing a precipitation model . 

Therefore, the "Ordinary Kriging with Hole Effect 

kernel function" model was selected as the best for 

precipitation, and it was used to obtain the 

precipitation model in the study area. 

In the second part, the relationship between the 

precipitation model and spatial phenomena such as 

longitude, latitude, height, slope, wind and 

temperature was investigated. The implementation 

results showed that the height and wind speed are 

directly related to the precipitation. The higher the 

height and wind speed, the higher the level of 

precipitation. On the other hand, the temperature is 

inversely related to precipitation. The higher the 

temperature, the less precipitation. Another result 

was that the slope did not have much effect on 

precipitation. In other words, the impact of slope on 

precipitation can be considered zero. More 

interestingly, latitude and longitude are the 

variables most influential for precipitation. Latitude 

was identified as the most significant factor in 
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precipitation. The dependency between latitude and 

precipitation is up to 80%.  

The high dependency observed indicates that the 

precipitation model is influenced by various spatial 

variables. As latitude and longitude change, a 

multitude of spatial factors also undergo alterations, 

consequently impacting precipitation patterns. 

The results of this study show that geostatistical 

methods have better accuracy than the traditional 

methods for modelling the rainfall in the Urmia 

Lake Basin. On the other hand, the dependent 

variables and environmental factors considered in 

the previous articles mainly included the elevation, 

latitude and longitude variables, while in this paper, 

factors such as slope, temperature, and wind speed 

are considered dependent variables along with the 

previous elements. As observed within the Urmia 

Lake Basin, our analysis indicates that latitude plays 

a prominent role in influencing rainfall patterns in 

this particular region. In addition, this paper 

introduces an innovative approach to modeling 

spatial relationships of rainfall data within the 

Urmia Lake Basin. While our primary emphasis has 

been on presenting the results of our analysis, we 

acknowledge that there is room for more in-depth 

statistical and analytical examination of the 

presented results to provide a deeper understanding 

of the patterns and relationships observed in the 

data. 

The results can be summarized as: 1) Interpolation 

of rainfall data of Urmia Lake Basin and the choice 

of the ordinary Kriging method as the best 

interpolation method in this region; 2) Pattern and 

clustering analysis of precipitation data in Lake 

Urmia; 3) The analysis of precipitation data in Lake 

Urmia reveals distinct spatial clusters. Specifically, 

it highlights the south and southwest regions as high 

precipitation clusters (hot spots), signifying areas 

with the most rainfall in the Urmia Lake Basin. 

Conversely, it identifies the northern and central 

parts of the Urmia Lake Basin, along with two 

isolated locations at the Sarab and Salmas stations, 

as low precipitation clusters (cold spots), 

representing regions with the least amount of 

rainfall in this area. 4) Identification of the northern 

and central parts of the Urmia Lake Basin as well as 

two isolated spots in the Sarab and Salmas stations 

as low-low clusters (cold spots) and least rainfall 

areas in this region; 5) Modeling the spatial relations 

of precipitation data in Lake Urmia by using 

regression; 6) Investigating the correlation between 

rainfall and explanatory variables such as latitude, 

longitude, elevation, slope, temperature, and wind 

speed on rainfall in the lake of Urmia as an 

independent variable; 7) Identification of "latitude" 

as the most effective dependent variable on 

precipitation in the Urmia Lake Basin; 8) 

Identification of longitude and wind speed as the 

variables with the least influence on precipitation in 

Lake Urmia Basin. 

Most previous studies for estimating precipitation 

were based on statistical analyses, while in this 

study, spatial statistical methods were used for 

better and more accurate analysis of the subject of 

research. In this study, we compared our findings 

with previous research, focusing on a spatial 

perspective in climatology. Additionally, we aimed 

to investigate variables that have received less 

attention in prior studies. 

For further evaluation, the results of this study were 

compared with other related research. Both the 

present study and Baykal et al. (2022) showed the 

same result. Although the study area of these two 

studies was different, Kriging and IDW are 

promising methods for estimating the amount of 

precipitation. This shows that the Kriging and IDW 

methods are independent of the region and can be 

used for any area and provide acceptable results.  

The same issue is also observed in Longo-Minnolo 

et al. (2022) and in Jalilzadeh and Behzadi (2020). 

In Longo-Minnolo, interpolation methods were also 

used to compensate for the lack of ground data. 

However, Jalilzadeh and Behzadi emphasized that 

satellite images cannot compensate for this 

deficiency. 

In Zou et al. (Zou et al., 2021), different Kriging 

interpolation methods were used to estimate the 

amount of precipitation. The input layers of the 

current study are almost similar to those of Zou et 

al., with latitude and longitude introduced as 

additional variables to the model. This addition 

highlighted the significance of latitude as a critical 

criterion in the estimation process, which was not 
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explored in Zou et al. This finding underscores the 

importance of considering latitude in precipitation 

estimation. 

 

6. Conclusion 

In this study, the rainfall in the Urmia Lake Basin 

was comprehensively analyzed using a variety of 

spatial data mining methods. First, the best 

interpolation of rainfall was selected among the 

various types of traditional and geospatial 

interpolation methods using cross-validation. Then, 

distribution, cluster, and patterns of rainfall were 

evaluated in the study area. Next, their spatial 

relationships were modeled using the least squares 

regression method. By identifying high and low 

clusters of rainfall in the study area, managers can 

make numerous plans for optimal water resource 

management.  

Some key recommendations for future research 

include: 1) Exploring and incorporating additional 

dependent variables into the rainfall regression 

model to improve estimation accuracy; 2) 

Expanding data collection efforts by including more 

barometric and synoptic stations across the study 

area to enhance result precision; 3) Employing 

advanced mathematical transformations to mitigate 

data coherence and correlation issues, and 

considering the use of geographically weighted 

methods for a more precise modeling of spatial 

relationships in precipitation data as compared to 

the conventional OLS model. 
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