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Received:

Two approaches for bidding in games are presented: knowledge-based approach and simulation-based
approach. A general knowledge-based decision model for bidding in games with its strategy encoded in a
Bayesian network was designed. A program for playing four-player tarok was implemented incorporating
a specialised instance of the decision model and a simulation module for bidding. Both approaches were
compared. The knowledge-based decision model was further compared to human experts, showing that it
performs on par with them.

Povzetek: V članku predstavljamo in primerjamo dva pristopa k reševanju problemov licitiranja v igrah:
pristop s predznanjem in pristop s simulacijo.

1 Introduction

Bidding is a part of various card games, for example bridge,
poker, tarok and whist. Before the actual card play, players
offer to play more and more difficult types of games with
the one making the most ambitious offer choosing the type
that will be played. Bidding involves exchange of informa-
tion between partners (e.g. in bridge) or not (e.g. in tarok
or poker). The winner of bidding is the one who actually
scores in the game. Since bidding requires the prediction
of the final outcome of each type of a game, it is in a way
more difficult than card play itself.

In this paper we present and compare two approaches
to bidding in tarok [9]: knowledge based-approach and
simulation-based approach. For the purpose of compari-
son and evaluation we developed the Tarok7 program [10]
for four-player tarok. The program uses both (i) an imple-
mentation of a decision model based on Bayesian networks
and (ii) simulation for bidding. We also examined the pro-
gram’s performance under different bidding strategies, and
compared it with human experts.

The paper is organized as follows. Rules of bidding in
general and in four-player tarok and the most common ap-
proaches to bidding in computer games are presented in
Section 2. An overview of related work is given in Sec-
tion 3. Complexity of different games with bidding is dis-
cussed in Section 4. The decision model is described in
Section 5. Section 6 presents bidding with simulation as it
is performed by Tarok7 program. Section 7 describes the
comparison of the two approaches and evaluation of the de-
cision model compared to human experts. A conclusion is
presented in Section 8.

2 Bidding in Games

In bidding, players bid in a sequence divided into rounds.
In one round each player makes one bid. Each bid must
be higher than the previous one. Bidding is finished when
all players but one pass i.e. do not continue with higher
bids. The remaining player is called the declarer. With
each type of bid a particular type of game is associated: the
higher the bid, the greater the difficulty and the score of
the game. The game that corresponds to the last bid of the
declarer is played after bidding. These rules hold for most
card games such as bridge or tarok. From the strategic point
of view, a player has to determine the most difficult type of
game which he expects to be able to win according to his
strength.

In four-player tarok, one of the most common games in
central Europe, a declarer can play against the other three
players teamed together, or choose one partner, depending
on his last bid. Teams of players are formed after bidding,
which means that players do not know their partners at bid-
ding time. Bids influence formation of teams, and set the
type of game to be played after bidding. Each type of game
has a score bonus which is positive when the declarer wins
and negative when he loses. There are 13 types of bids in
four-player tarok. We describe 7 of them; others are played
rarely. Bonuses are written in parentheses; the higher the
bonus, the higher the bid:

– three (10), two (20), one (30): after bidding the de-
clarer is obliged to exchange the corresponding num-
ber of cards with talon. Talon consists of six cards,
which remain face down on the table after dealing.
The declarer determines a partner as the one with the
king card of the declarer’s choice;
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Player The hands of cards
GEORGE T : 13, 11, 10, 8, 3, 1 H: K, Q, 4 C: 8 S: B, 9
RINGO T : 19, 17, 12, 5, 2 H: C C: K, B, 10 D: C S: K, 8
PAUL T : 22, 21, 20, 18, 9, 6, 4 D: K, B, 1, 2, 3
JOHN T : 16, 15, 7 H: B, 2 C: Q, C D: Q, 4 S: Q, 10, 7

Table 1: The hands of cards.

Player 1st round bids 2nd round bids 3rd round bids
GEORGE three pass already passed
RINGO two one pass
PAUL one solo three -
JOHN pass already passed -

Table 2: An example of bidding.

– solo three (40), solo two (50), solo one (60), solo zero
(80): the corresponding number of cards is exchanged
with talon. The declarer plays alone.

An example of bidding in a four-player tarok game is
presented in Table 2. The hands of all players are presented
in Table 2. The symbol T stands for trumps called taroks,
H stands for hearts, C for clubs, D for diamonds and S for
spades. Abbreviations K, Q, C and B mean the cards king,
queen, cavalier and boy respectively.

In the example bidding, Paul holds the strongest cards
followed by Ringo and George with John having the weak-
est hand. Bidding begins with George, who bids ‘three’,
which is obligatory for the first bidder. Ringo bids higher
choosing ‘two’. Paul raises to ‘one’. John passes. At the
beginning of round two George passes also. Ringo esti-
mates that his advantage over Paul is high enough, so he
continues bidding. Since his first bid was before Paul’s first
bid, the rules of tarok allow him to continue with the same
bid as Paul. Paul decides that he can play a solo game and
raises to ‘solo three’. In the third round Ringo passes also,
which ends the bidding. Paul becomes the declarer. Note
that the described bidding for all players was performed by
our Tarok7 program.

The strategy of a bidder is to choose the most appropri-
ate bid according to the strength of his hand and the esti-
mated strength of his partners and opponents. Generally,
the types of games associated with high bids require the
bidder to have a higher advantage over the opponents to
win the game. The strength of the opponents can be esti-
mated from their previous bids. Another important task for
the bidder is to find an appropriate level of risk. Prior esti-
mates of the quality of other players from previous games
must also be considered.

In general, there are two ways of solving bidding prob-
lems: knowledge-based and simulation-based approaches.
In knowledge-based systems prior human knowledge
serves as the basis for decision making. A knowledge base
can be represented by a hand-crafted set of bidding rules, a
decision structure built manually or with help of various

machine learning algorithms. Simulation-based systems
use game search. A bid determines the type of game to be
played. When a bidder has to make a decision, the system
internally simulates several games for each bid. Simulation
yields expected final scores for each bid and the bid which
leads to the best score is chosen by the bidder.

The advantages of knowledge-based systems are in their
better explicability. Decisions of simulation-based systems
usually cannot be easily understood and consequently these
systems are difficult to modify. Another advantage is the
speed of the decision process. In highly complex non-
perfect information games simulation-based systems con-
sume a lot of time. Since the amount of time to make a
decision is limited in real games, usually the number of
simulated games has to be reduced. This directly affects
the quality of decision making.

On the other hand it is a lot easier to build a simulation-
based system, because no knowledge acquisition and im-
plementation is needed. The game program that plays the
part of the game following bidding itself can be used as a
simulation engine. A system using simulation is not con-
fined to hard-coded knowledge and can adapt to new oppo-
nents easily. Simulation can also find solutions which were
not foreseen by the designer of a knowledge-based system.

3 Related Work
Bridge is probably the best-known game with bidding and
GIB [5] the best-known bridge-playing program. GIB
uses a database of bidding strategies, but its principal bid-
ding mechanism is simulation. The results of simulation,
though, can only serve for determining the strength of the
hand of cards. A very important aspect of bidding in bridge
is information exchange with the partner. By choosing a
particular bid, the bidder conveys a certain message about
his cards to his partner. This cannot be adequately mod-
elled with a simulation so GIB uses the database of bid-
ding strategies to incorporate decisions about message ex-
change. Another well-known program for playing bridge
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is Bridge Baron, described in [15], where authors do not
discuss bidding. There are also some other programs
for playing bridge such as Quick bridge [12] and Q-plus
bridge [13]. Due to their commercial nature it is not know
publicly how they work.

Whist is also a card game that includes bidding. [7] de-
scribes a program for playing whist that uses game search
for card play. Experiments to perform bidding with simula-
tion have been performed. The author reports poor results
so bidding was not included in the program. Two further
examples of programs for playing whist, both commercial,
are Bid Whist [2] and Nomination Whist [11].

Betting in poker is also a form of bidding. Poki, a pro-
gram for playing poker described in [1] bases its decisions
on simulation aided by statistical modelling of opponents.
The program Monash BPP [8] uses Bayesian networks to
represent (i) the relationships between current hand type,
(ii) final hand type after the five cards have been dealt and
(iii) the behaviour of the opponent. Thus the posterior
probability of winning a game is obtained. The approach to
playing poker that has had most success lately is approxi-
mating game-theoretic optimal strategies. It is used by both
PsOpti [3], the successor of Poki, and GS2 [4].

Another game that includes bidding is three-player
tarok. Silicon tarokist, a program for three-player tarok de-
scribed in [9, 16], also employs simulation for bidding.

4 Complexity of Games with
Bidding

Average and worst-case complexity of different games are
presented in Table 4. In general, complexity is measured by
the number of possible courses of a game. Tarok and bridge
are split into two parts: bidding and card play. We consider
card play in tarok to include the part of the game imme-
diately following bidding: choosing a partner (four-player
tarok only), exchanging cards with talon, announcements
and counter-announcements. A game of poker is treated as
a whole.

The average complexity of bidding in four-player tarok
and bridge was approximated by the average number of
real-game choices to the power of the average length of
bidding process. The source of data for all the categories,
average and worst-case, for three-player tarok is [9]. The
source of data for four-player tarok were several hundreds
of games played by the Tarok7 program, while for bridge
we examined several tens of games played at World Cham-
pionships in Montreal, Canada in 2002 [17].

The worst-case complexity of bidding was calculated by
taking into account all bids allowed by the rules. We cal-
culated the worst-case complexity of bidding in bridge and
four-player tarok with a special-purpose program. Bidding
is most complex in bridge and least complex in three-player
tarok.

The complexity of card play in four-player tarok was cal-
culated according to the same principles as in three-player

tarok. The average complexity was again computed from
several thousands of games of Tarok7 program, while the
worst-case complexity was calculated by constructing such
hands of cards that yield the largest number of possible
courses of card play allowed by the rules. The source of
figures for bridge is [15]. Card play is most complex in
three-player tarok and least complex in bridge.

The overall complexity of a game is the product of the
complexity of bidding and card play. The least complex
game according to [1] is poker.

Since we are dealing with imperfect information games,
simulation is even more difficult than the figures in Ta-
ble 4 suggest. In bridge this is somewhat alleviated by
the fact that one player’s cards are visible to all others.
In four-player tarok, there is even more uncertainty at the
time of bidding since the declarer’s partner is only re-
vealed during card play. In addition, the complexity of card
play in tarok is significantly higher than the complexity of
card play in bridge and the overall complexity of poker.
Since using simulation for bidding means that several en-
tire games have to be played out, this approach, while suc-
cessful in bridge and poker, might not be suitable for tarok.
A knowledge-based approach might be more appropriate
than simulation.

5 Decision Model for Bidding Using
Bayesian Networks

5.1 Bayesian Networks

Figure 1: An example Bayesian network.

Bayesian networks with the inference rules are com-
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Bidding Card play Overall
Average Worst Average Worst Average Worst

Three-player tarok ≈ 20 506 ≈ 1030 2.6 · 104 ≈ 1031 1.3 · 1047

Four-player tarok ≈ 100 1.3 · 106 4.7 · 1023 2.0 · 1041 ≈ 4.7 · 1025 2.6 · 1047

Bridge ≈ 105 ≈ 1.4 · 1013 5.6 · 1019 1.6 · 1031 ≈ 5.6 · 1024 ≈ 2.3 · 1044

Poker - - ≈ 1018

Table 3: Complexity of bidding.

Figure 2: Decision model for bidding using Bayesian network.

monly used when dealing with probabilistic events [14, 6].
An example in Figure 5.1 illustrates an application of
Bayesian networks in bidding. The network represents a
particular situation from bidding, where the bidder has to
decide whether a certain bid is suitable, i.e. whether it is ex-
pected to win the game associated with the bid or not. The
bidder estimates his strength and the strength of the oppo-
nents. The top-level nodes represent the bidder’s knowl-
edge about his strength and the strength of the opponents.
The bottom-level node represents the expected final result
of the game.

With each node one random variable is associated. Each
of the variables SB and SO can have two values: ‘high’ (h)
and ‘low’ (l). The variable B can have the values win and
loss. For example, in our case the bidder estimates that the
opponents’ strength is high with probability 0.8. The links
between the nodes determine the way the probabilistic vari-
ables are conditionally related. In the conditional probabil-
ity table (CPT), there are the conditional probabilities that
quantify the relation between the random variables. They
are set by the designer of the network, and together with
the structure of the network reflect the general knowledge
about bidding. At the time of bidding decision, prior prob-
abilities in top level nodes are set according to the current
state of the game and the probabilities of loss and win are
computed by Equation 1.

If loss is more probable than win, this bid should not
be chosen. In this particular case the probability of a win
would be 0.37, which indicates that the bid might not be
sensible.

P(B = win) =P(B = win|SB = h, SO = h)
· P(SB = h ∧ SO = h)
+P(B = win|SB = l, SO = h)
· P(SB = l ∧ SO = h)
+P(B = win|SB = h, SO = l)
· P(SB = h ∧ SO = l)
+P(B = win|SB = l, SO = l)
· P(SB = l ∧ SO = l)

(1)

5.2 Description of the Model

The knowledge-based decision model for bidding is pre-
sented in Figure 5.1. The top-level nodes represent the state
of the game at the moment when a player has to make a bid.
The mid-level nodes semantically integrate the attributes in
the top-level nodes. They are not strictly necessary, but
they make the network more compact and easier to design.
Each bottom-level node represents one of possible bids and
therefore the type of game associated with that bid. The
random variables associated with the bottom-level nodes
represent the final scores of the game.

To determine the optimal bid, the prior probabilities of
all top-level are set according to the current state of the
game. Assume that the node N , ‘Bid of opponent A’ has
three possible values: ‘pass’ (pa), ‘low bid’ (l) and ‘high
bid’ (h). If the opponent’s last bid was a high bid, then
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P (B = vb) = (2)
∑

j1=1...n1,...,jk=1...nk

P (vb|M1 = vj1
M1

, . . . , Mk = vjk

Mk
)P (M1 = vj1

M1
) . . . P (Mk = vjk

Mk
)

P (N = pa) = 0, P (N = l) = 0, P (N = h) = 1. Proba-
bilities of the other top-level nodes are set in the same way.

Posterior probabilities of the values in the bottom-level
nodes are calculated according to the inference rules of
Bayesian networks. The values of the bottom-level nodes
are assigned discrete numeric values ranging from -1 to
1. Expectations of probability distributions of bottom-level
nodes are calculated. The bid that is associated with the
highest expectation is chosen. If all expectations are nega-
tive, pass is the reasonable choice. The algorithm for deter-
mining the optimal bid with the Bayesian network is pre-
sented in Figure 5.2

The particular structure of the Bayesian network allows
us to use an adapted version of general inference rules.
Let vb be a value of a bottom-level node B. Let M =
{M1,M2, ...,Mk} be the set of k parent nodes of the node
B. Let Vmi = {v1

Mi
, ..., vni

Mi
} be the set of ni values of the

parent node Mi. P (B = vb) is then calculated by Equation
(2). Probabilities of mid-level nodes are calculated recur-
sively with the same formula.

5.3 Tuning the Decision Process
The model incorporates three essential factors of bidding
decisions: (i) the strength of players (in the mid-level
nodes, which summarise bidder’s cards and previous bids
of other players), (ii) the values of the types of the games
associated with bids and (iii) the level of risk. The second
and the third factor are incorporated in the probability dis-
tributions in the CPTs of the bottom-level nodes.

Figure 4: Four basic cases of probability distributions in
the bottom-level nodes.

Figure 5.3 illustrates how the model deals with the fac-
tors (i) and (ii) with four simple cases regarding the advan-
tage of a bidder over his opponents (low/high; i) and the
game value (low/high; ii). Each of the probability density
functions represents the discrete probability distribution in
a bottom-level node, as calculated in the decision process.
To make the example more informative we present it using
continuous values, although discrete values are used in the
real model.

On the horizontal axis r there are expected game scores.
The lower and the upper score limits are denoted by rmin

and rmax. Probability density functions associated with
these scores are on the vertical axes and are denoted by
p(r). The expectations are denoted by µ. Note that this
is only a schematic representation of probability distribu-
tions and that actually the following equation would have
to hold:

∫ rmax

rmin

p(r)dr = 1

Two decision situations are depicted in Figure 5.3. In the
left column, the bidder and his partner are slightly stronger
or at least not much weaker than the opponents; in the right
column the bidder estimates that together with the partner
they possess much better cards than the opponents. In both
situations the bidder can choose a low-value bid where low
negative or positive scores are expected, a high-value bid
with high scores expected or pass.

The bidding decision is performed in two steps: First,
a particular situation, e.g. ‘Low advantage’ is determined.
Then, µ for the low-value bid (a) and µ for the high-value
bid (b) are computed. The bidder will evidently choose the
bid corresponding to higher value of µ. If µ is negative,
pass is the reasonable choice.

Over multiple games, e.g. in the course of a tournament,
new information is obtained to change the bidder’s strategy.
This can be easily modelled by modifying the probability
distributions in the CPTs of the bottom-level nodes, making
bidding more or less aggressive. An example in Figure 5.3
shows two distributions, encouraging less (a) or more (b)
risky bidding.

As we have already mentioned in Section 1 and Sec-
tion 2, bidding in some games include information ex-
change among players. Our model does not cover this as-
pect of bidding. If we wanted to use it for a game like
bridge, it would have to be augmented to deal with infor-
mation exchange properly.
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* B: {BID1, BID2,..., BIDn}

* Expect: array [1..n]

* #Array of expectations of probability distributions for each bid

* PostrProb(value)

* #Function calculates the posterior probability of a value

*
* Set values of top-level nodes

* foreach BIDi ∈ B

* foreach value of BIDi

* Expect[BIDi]:= v · PostrProb(value) + Expect[BIDi]

*
* if ∃ BIDi ∈ B such that Expect[BIDi]>0

* choose BIDi: ∀ BIDj ∈ B: Expect[BIDi] >= Expect[BIDj]

* else

* pass

Figure 3: The optimal bid algorithm with Bayesian network.

Figure 6: Bidding decision model for four-player tarok.

Figure 5: Modelling of risk.

5.4 Implementation of the Model for
Four-Player Tarok

To evaluate the decision model we derived a special imple-
mentation of it for bidding in four-player tarok as presented
in Figure 5.4. Only mid-level and bottom-level nodes are
presented in detail. The tarok decision model is part of
Tarok7 program.

The top-level nodes are presented as groups (‘Nodes-
attributes of bidder’s cards’,...). In the tarok decision model

on the right side of Figure 5.4, these nodes represent con-
crete attributes of bidder’s cards and previous bids of other
players.

In four-player tarok partners and opponents are not
known at the time of bidding. This makes modelling part-
ners’ and opponents’ strength more difficult. To simplify
the decision process we have decided to omit the nodes de-
scribing bids of partners in the tarok decision model. The
strength of other players is thus reflected in the nodes de-
scribing opponents.

The node ‘Strength of bidder’ can have five values rang-
ing from ‘very low’ to ‘very high’. The node ‘Strength of
opponents’ can have the values ‘low’ and ‘high’. Imme-
diately after bidding, exchange of cards with talon - a set
of six cards - is performed by the bidder. Seven special-
purpose nodes ‘exchange with talon X’ were added to the
model related to exchanging cards with talon. They can
have values ‘not suitable’, ‘suitable’, ‘very suitable’. These
nodes do not influence the bidder’s strength directly.

The values of the bottom-level nodes are discretised to
‘high defeat’, ‘moderate defeat’, ‘moderate win’ or ‘high



Informatica 30 (2006) 467–476 473

SOB SOP EWT P(HD) P(MD) P(MW) P(HW)
VL H S 70 30 0 0
VL H VS 65 35 0 0
L L NS 50 39 11 0
L L S 45 43 12 0
L L VS 40 47 13 0
L H NS 65 34 1 0
L H S 60 38 2 0
L H VS 55 42 3 0
M L NS 55 10 5 30

Table 4: CPT of the node ‘Bid solo three’.

Figure 7: Graphical representation of a conditional proba-
bility distribution.

win’. In order to calculate expectations of scores for each
bid, the values are assigned the numbers -1, -1/3, +1/3 and
1, respectively. In total in the tarok decision model there
are seven nodes of the type ‘exchange with talon X’ and
seven bottom-level nodes representing bids. Only two of
each type are presented in Figure 5.4.

In Table 5.4 we present a part of the CPT of the node
‘Bid solo three’. The first three columns represent con-
ditions ‘Strength of bidder’, ‘Strength of opponents’ and
‘Exchange with talon’ with their possible values. The other
four columns represent the conditional probabilities of the
values of the node expressed in percentages. A simplified
way of understanding, for example, of the fifth row of this
CPT would be: if strength of the bidder is low, strength
of the opponents is also low and exchange of cards with
talon is very suitable, then the probability of a high de-
feat, moderate defeat, moderate win and high win are 40%,
47%, 13% and 0%, respectively. The first 4 and the last 17
rows of the CPT with values of the condition SOB ‘VL’,
‘M’, ‘H’ and ‘VH’ are missing. The conditional probabil-
ity distribution for the fifth row is presented graphically in
Figure 5.4. This is a concrete example of the case which is
presented schematically in Figure 5.3 c).

6 Simulation
Another approach to bidding is simulation. To estimate
whether a bid is suitable, the bidder internally simulates

the part of the game following bidding assuming that he
won the bidding and the type of game associated with his
bid is played. The problem is that the bidder does not know
the cards of the other players. In the case of known cards
of the other players it would theoretically be possible to
generate all the possible moves for each of the other play-
ers and build the whole game tree. The final outcome of
each bid could then be determined exactly. However, such
an approach is practically impossible due to far too many
possibilities.

Monte Carlo method makes simulation reasonably effi-
cient, meanwhile retaining its statistical significance. Sev-
eral games are internally simulated by the bidder, all start-
ing at the end of bidding assuming that the bid under con-
sideration was successful. Each game the other players are
dealt a randomly selected set of cards excluding those in
the bidder’s hand. Over many games a statistically signifi-
cant distribution of cards can be achieved. The more games
are simulated, the more representative are the results.

In the program Tarok7 we also implemented simulation
for bidding decisions. The bidder simulates other players
using the same strategy he does. Since simulation is time
consuming, we combined it with the tarok decision model
described in Section 5.2. The bidder first uses the tarok
decision model to calculate the expectations of the game
scores for each bid allowed by the rules. Then the bidder
runs a simulation of 10 games for those 3 bids which ap-
peared the most promising according to the decision model.
The bid that yields the best results in simulation is chosen
at the end. If all bids result in a negative average score,
pass is the reasonable choice for the bidder. In Figure 6
the simulation algorithm is depicted.

7 Evaluation
For evaluation purposes we used the Tarok7 program. Bid-
ding was implemented with the tarok decision model de-
scribed in Section 5.2. Card play was realised with the min-
imax algorithm [10]. We performed three tests described in
the following sections.

7.1 Bidding with Simulation
In this test we compared our knowledge-based decision
model and simulation at bidding. The basis for compari-
son of the approaches was their impact on the final game
score. The test was performed with four computer play-
ers: one of them was normal, while the other three were
perfectly informed players (PIP). A PIP in our case uses
the same playing strategy as the normal player, but during
card play he can see the cards of the other players. Thus,
he actually plays a perfect information game and therefore
provides a stable reference point. The player observed in
the test was the normal player compared to the PIP imme-
diately succeeding it in the order of card play.

The normal player made bidding decisions based partly
on the results of the decision model, partly on simulation.
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* B: {BID1, BID2,..., BIDn}

* InitExp: array [1..n];

* FinalExp: array [1..3];

* tarok_dec_model(params. of current game state);

* # Function returns expectations for all possible bids

* simulate_game(bid)

* # Function simulates one game. It returns weighted

* # game score in the interval [-1,1]

*
* InitExp:= tarok_dec_model(params. of curr. game state)

* Bsim ⊂ B such that

* |Bsim| = 3 and

* ∀BIDi ∈ Bsim, ∀BIDj ∈ B-Bsim: InitExp[BIDi]>=InitExp[BIDj]
*
* foreach BIDi ∈ Bsim

* foreach [1..10]

* FinalExp[BIDi]:= simulate_game(BIDi)/10 + FinalExp[BIDi]

*
* if ∃BIDi ∈ Bsim such that FinalExp[BIDi]> 0

* choose BIDi: ∀BIDj ∈ Bsim: FinalExp[BIDi]>=FinalExp[BIDj]
* else

* pass

Figure 8: Simulation algorithm.

First the tarok decision model was used to calculate the ex-
pectations of the game scores for each possible bid. Then,
simulations of 10 games for the three most promising bids
were run. From the results of the simulation another set
of game score expectations was calculated. The results of
simulation and the decision model were then combined to
yield the final decision.

Let us illustrate these calculations with an example. Sup-
pose that the decision model yielded the following game
score expectations (µm): 0.15, 0.25, 0.28, 0.30, -0.1, -0.3
and -0.8 for the bids ‘three’, ‘two’, ‘one’, ‘solo three’, ‘solo
two’, ‘solo one’ and ‘solo zero’, respectively. Note that the
value -1 means the highest possible defeat and the value 1
the highest possible win. Then simulations were run for the
bids ‘two’, ‘one’ and ‘solo three’, which resulted in expec-
tations (µs) 0.28, 0.31 and 0.25. Expectations µm and µs

were then combined with a special coefficient ks which de-
termined the weight of simulation in the decision process.
The greater the coefficient, the greater the influence of the
simulation. Final expectations µ were then calculated by
the formula: µ = ksµs + (1 − ks)µm Let ks in our case
be 0.7. This means that the bidder chose the bid ‘one’ with
the greatest final expectation µ = 0.30.

In Table 7.1 we present the results of the test. We con-
ducted five experiments. In experiment A simulation was
not included and 30,000 complete games, bidding and card
play were played. In each of the other experiments only
1,000 complete games were played, because simulation is
a time consuming process. In each experiment we chose a
different value for ks which is written in the first row. This

Experiment A B C D E
ks 0 0.25 0.5 0.75 1

pc − ph 2.0 2.2 3.4 3.7 3.6

Table 5: Simulation in the decision process at bidding.

way we changed the influence of simulation. In the second
row is the measure of quality of play which we calculated
the following way: for each experiment we determined two
values: (i) the average number of points per game achieved
by the normal player ph and (ii) the PIP immediately suc-
ceeding the normal player pc. The measure of the quality
of the normal player is the difference pc − ph. The smaller
the difference, the better the play.

When comparing results of experiment A to the result of
any other experiment, standard error equals approximately
1. We can thus conclude with more than 67% certainty that
player A is better than players C, D and E. Comparison
with player B is not statistically significant. The results of
the test show that in our case it is not sensible to use simu-
lation for making bidding decisions. One possibility to get
better results would be to significantly increase the number
of simulated games. This probably would not be feasible
in practice because of the response time constraints.

7.2 Estimating the Optimal Risk at Bidding

This test was performed to estimate the optimal risk at bid-
ding. The framework for the test was the same as in the
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Experiment A B C D E F
w/d 0.75 0.73 0.65 0.64 0.60 0.57

pc − ph 3.1 2.5 2.0 2.0 2.5 2.9

Table 6: Estimating optimal level of risk.

test described in Section 7.1: four computer players, three
of them were PIPs, the fourth one was a normal player. We
observed the quality of play of the normal player and com-
pared it to the PIP immediately succeeding it in the order
of card play. The normal player was evaluated under dif-
ferent risk strategies. The test consisted of six experiments.
In each of them the normal player played with different
risk at bidding. Setting the risk is described in Figure 5.3.
Meanwhile, the PIPs were always the same. In each exper-
iment 30,000 complete games, bidding and card play, were
played.

The results of the experiments are presented in Table 7.2.
The level of risk is shown in the first row as the ratio w/d,
where d is the number of games where the normal player
was the declarer, and w is the number of these games that
he and his partner also won. The measure of the quality of
the normal player shown in the second row is pc − ph and
was calculated the same way as in the test in Section 7.1.

The standard error of the difference between the average
scores per experiment is 0.25. Statistically one can be 95%
sure that the normal players in the experiments C and D
play better than those in B and E, and more than 99% sure
that they play better than the normal players in A and F. It
seems that the bidding parameters of normal players in the
experiments C or D are close to optimal.

It is worth mentioning that the level of risk which ap-
pears to be the best in the test can only serve as an estimate
in real games where the opponents are also normal players.
In fact, it is impossible to find a particular level of risk that
would always be appropriate. A player has to adapt the risk
to every particular opponents.

7.3 Tarok7 Compared to Human Experts

In this test, four computer players and an expert human
player were bidding at the same time. When it was the
fourth player’s turn to bid, first the expert made a bid fol-
lowed by the fourth computer player. In this way the hu-
man and the computer player were put in exactly the same
position at bidding.

Table 7.3 summarizes the results of the test. Bidding of
Tarok7 is compared to three human experts: A, B and C.
Expert A made 500 bids, while the other two made 100
bids each. The percentages in the first row denote the pro-
portion of bids when the program and the humans chose
the same action. The result 100% would mean complete
match. The second row represents the cases when the dif-
ference between the program’s bid and the expert’s bid was
more than one degree, for example, when the program bid
‘three’, and the expert bid ‘one’. For the cases when the ex-

Expert A B C
Matching of the program with
the experts

92% 82% 80%

Percentage of the bids with dif-
ference of more than one degree

1% 2% 2%

Percentage of the program’s
more aggressive bids when the
program and the expert bid dif-
ferently

35% 75% 72%

Table 7: Comparison of bidding of the Tarok7 program
with human experts.

perts and the program bid differently, the fourth row shows
the percentages of bids when the program bid higher than
the human. The value 100% would mean that the program
always bid higher than the expert when they bid differently.

Bidding of Tarok7 is more similar to expert A than to the
other experts, which was expected since expert A designed
the decision model for bidding. According to the results in
the fourth row, expert A bid slightly more aggressively than
the program, while the other two experts were less aggres-
sive. Overall, there are very few cases when the experts and
the program disagree strongly in their decisions.

8 Conclusion
In this paper we presented a comparison of two approaches
to bidding in four-player tarok one of the most common
games in central Europe: the knowledge-based approach
and the approach with simulation.

In our tests the knowledge-based model significantly
outperformed the simulation. Compared to simulation-
based techniques, our decision model offers two additional
advantages. First, it does not use any time consuming
search for making decisions. This is probably the main
reason why it performs better than the simulation. The de-
cision model seems to be suitable for any game with bid-
ding regardless of how complex its game-play is. Second,
the structure of the model is clearly explicable, so it is easy
to fine-tune, as we have shown in Section 5.3, when we ex-
plained how to achieve the appropriate level of risk. The ca-
pacity for fine-tuning and adapting to the opponents could
be further exploited by trying to learn the conditional prob-
abilities of CPTs automatically. The feedback for a learn-
ing algorithm would be bids and scores of games played
under these bids.

Other experiments have shown that the program plays
quite similarly to human experts and that it is easy to opti-
mize for particular opponents. The source code of the de-
cision model and the Tarok7 program can be obtained from
the authors.

In our opinion the knowledge-based approach is partic-
ularly suitable for four-player tarok, because bidding less
informed than in other games and the complexity of card
play makes simulation particularly time-consuming. Ex-



476 Informatica 30 (2006) 467–476 D. Marinčič et al.

periments of some other authors [1] indicate that simula-
tion might be better for other games.
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