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ABSTRACT

When the mitochondrial network within the cell is in a fragmed state, it resembles a spatial distribution of
prolate spheroids of various shapes, sizes and oriengafidris paper presents a maximume-likelihood scheme
for inferring the distribution of spheroidal shapes, siagsl orientations from the observed distribution of
elliptical sections. We also present a parametric bogisttatable for inferring confidence intervals for the
parameters describing the shape and size distributioregheroids.
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INTRODUCTION Nevertheless, assuming the particles are prolate
spheroids, it is possible to infer 3-dimensional
The motivation for this paper comes from the studyinformation from the statistics of the 2-dimensional
of conformational changes in mitochondria associatedections.
with cell death. During a late stage of apoptosis

(programmed cell death) the cell’s mitochondrial _ o
network fragments into individual mitochondria. address here. Wicksell (1925; 1926) dubbed this “the

Cross-sections of these particles observed in electrdiPTPuscle problem.” He was motivated by the study of
micrographs suggest that they have an oblong Shap%(_econdary follicles embedded in the lymphatic tissue
The particles originate in a process that is reminiscerft! the spleen. More recently the problem has become
of the way sausage is made, in that the fragmentgnown as the “unfolding problem.” An excellent
apparently result from the pinching off (fissioning) history and set of references can be found in St(_)yan
the cylindrical tubes that make up the mitochondriat al- (1987). A complete treatment of stereological
network. Since the tubes are cylindrical, we expect th@€thods with an emphasis on practical problems can
fragments, being sacks of fluid, to adjust to a roughly’€ found in the two volumes of Weibel (1979; 1980).
spheroid shape. In our study we approximate thes¥lost recently, the general problem, involving 3D size,
particles by prolate spheroids. Low resolution visuafhape and orientation, was treated by td.(1996).

evidence from three-dimensional confocal microscopy  The pasic mathematical problem is to relate the
(Frank et al, 2001) argues against the presence Ofjisyrinutions of observable quantities in 2D cross-

oblate structures. Moreover, in section "A samplegeciions to the distributions of desired quantities that
application to mitochondria” we show that the 5re gescriptive of the 3D particles. Typically this
sectioned data itself argues similarly. takes the form of an integral transform expressing,
These particles are believed to undergo changdsr example, the distributiort¥ of cross-sectional
over time in shape and size due to disruptiordiameters in terms of the distributio® of particle
of inner membrane function and possible resultandiameters. The practical problem is then to use this
swelling. While confocal light microscopy is able machinery to work from data in the form of a sample
to partially document this process, the resolution igrom W to a description ofb. Two approaches were
limited to values comparable to the particle sizeproposed in Wicksell’s original papers and have been
Quantitative information on size and shape is obtainethken up by subsequent authors (De Hoff, 1962; Cruz-
from electron micrographs, which usually showorive, 1976; Franklin, 1977; Satet al., 1996). First,
only 2-dimensional cross-sections of the particlesthe integral transform can be used to derive a recursive

It is this stereological problem that we propose to
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scheme that expresses the momenté$ah terms of
those ofW. Secondly, in some cases, it is possible
to invert analytically the transform and to solve for
® in terms of W and its derivatives. Both of these
approaches suffer when the data setis not large enough
to provide a clear picture d¥. In the first approach,
statistical moments from the data are only estimates of
W's true moments, and the associated statistical error
is propagated through the transform. Similarly, in the
second approach, estimates of the derivatived dfy
finite difference methods introduce uncertainties that
are difficult to quantify.

Four distinct additional approaches have been
identified (Blodneret al, 1984); among these is the
parametric method that we propose to apply. The
parametric approach has been used to predict a veRjg. 1.Drawing of sliced spheroid: 1) Axis of spheroid.
precise distribution of sphere diameters from circula) Prolate spheroid. 3) Slicing plane. 4) Tangent plane.
cross-sections (Keiding and Jensen, 1972). In the) Elliptical cross section.
present paper we describe a parametric approach, wwe take the slicing plane to be horizontal, a
which does not seem to have been used by previoygstancesfrom the center of the spheroid. We tafkéo
authors in the context of the full unfolding problem pe the angle between the axis of the spheroid and the
described by Sato, involving simultaneous predictiongertical. The spheroid is described by its semi-minor
of the distributions of Size, Shape and orientation. W%Xis r, its Semi_major axis:’ and its eccentricitwo_
propose parametric models for desired distributiongimilarly, the elliptical section, is described by axes
for ®, and use a maximum-likelihood approach toanda, and eccentricitye. The axes and eccentricities
optimize the parameters. Teethod of parametric gre related bye% =1-r2/c2 ande? = 1—h?/a%. The
bootstrap(Efron and Tibshirani, 1993) was used tofigure shows a cross-section through the spheroid’s
determine confidence regions for the parameters.  axis. The following equations are easily established

In the next section we set out the geometricaf’md summarize the relationships among the variables
framework, define the quantities studied, and statE:eqUIreol for the analysis in the next section.

the relations among them. In the section following e=eysing, 1)
that we apply the method of Sato to derive the

machinery expressing the distributions of cross- b—r 175_2 )
sectional size and shape in terms of the hypothetical h2’

or desired distributions of particle size, shape, and 1—e(2)sin26

orientation. The three sections beginning with the hery  ° (3)
Maximume-likelihood Scheme present a description of 1— e(z)

our method. We describe the parametric models used

for the hypothetical distributions and the maximum-Geometricallyd can be considered to vary from O
likelihood scheme used to determine values foands, from —o to +o!. Nevertheless, the distribution
the parameters. We also describe how to set upf 8 is understood to be symmetric about the value
a parametric bootstrap for determining confidencer/2. Similarly, s is distributed symmetrically about
regions for the values of the parameters. The lafd. These symmetry considerations allow us, in the
section presents the results of applying the method tiollowing analysis, to restricO to [0,71/2] ands to

a set of data derived from electron micrographs. [0, 00).

GEOMETRICAL PRELIMINARIES RELATIONS AMONG THE
DISTRIBUTIONS
In this section we summarize the geometrical
relations among the slicing plane, the spheroid, andthe Our goal is to extract information on the
elliptical cross-section. See Fig. 1. distributions ofey, r, andf from observed distributions

10f course an elliptical slice is obtained only wheh< h.
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of e andb. To that end we propose a model for thewhere
joint density functionQ(b, e s, 0,r,e) from which a

marginal distribution I(b,er,e) =
/2 poo
(b,e) = / ®(0)Z(s|8,r,e0) A(b,e|s,0,r,e)dsdO .
1 poo pTT/2 poo (7)
/// /Q(b,e,s,e,r,eo)dsdedrdeo. 4)
oJo Jo Jo

The integrall can now be simplified. Geometrical
Apart from the geometrical constraints given inconsiderations will dictate the form of the conditional

Egs. 1-3, the principal element of our statistical modeFIenS't'eS.’z and A. (;_c)n5|derz first. We con§|der
is the assumption that the variables r, and 6 are equally likely all positionss that actually result in an

distributed independently. This allows us to facfor intersection, so we may take

as follows:
5(s/6,r,e0) O { 1o O=ssh@re), g
®p(0) P1(r) Do(ey) Z(s|0,r,60) A(b,e|s,0,1,€p) , ' '

) . "
where = and A are conditional densities. We will Next considen. Onces, &, r, and@ are specified,
eventually propose simple parametric modelsdgy Egs. 1-3 shovv_that the vaI_LJeszJandb are de_termlned,
@1, and®d,. See Egs. 18-21. SO we may write, using Dirac’s delta function

Some remarks are in order to justify the A(b,e|s,0,r,ey) =
assumptions of independence. First, there are a priori
reasons for believing that and ey are independent. S(e—epsin(6))-& | b—ry/1— & . (9)
The mitochondrial fragments arise as a result of h2
the fissioning of long tubular networks of roughly
constant width or diameter. Consequently, the resulting  |ncorporating Egs. 8 and 9 into Eq. 7, we have
fragments would be expected to have roughly the same
minor axis, or, equivalently, that the distribution of 1/2
the minor axis would be relatively sharply peaked. |(b,er e) = Do (6)0(e— epsin(0)) x
Any correlation that might exist between this size 0
parameter and shape would be very small and difficult /h5 (b—r /1_ f) dsd6. (10)
to tease out of the data by the indirect methods we are 0 h2 i
proposing. Secondly, a consequence of the assumption
of independence of ande is Eq. 14 below, which The integration oves can be carried out explicitly.
says thatb and e should also be uncorrelated. This ForO< b < r the result is '
was found to be true of the data before any substantive
analysis was attempted. It seemed likely thatif ourdata ,n 2 bh(8,r,ep)
showed no discernable correlation betwdeand e, / o <br 1- W) ds= —=——
then, even if there were a slight correlation between “° rVre—b

r andey, our maximume-likelihood scheme applied to b /1—e%sinz(6)

our data was not likely to reveal it.

It is difficult to imagine what mechanism would v rZ*bZ\/ 1*9(2)
correlate orientation with size or shape. In any case, (11)
the assumption of independence here is made, frankly,
as a matter of convenience. Forr < bthe integral is zero. The last equality uses

Returning now to the analysis of Eq. 4, it is Eq. 3. Eq. 10 becomes

convenient to separate out the integration avand

6 to obtain I(b,er e) = %bz On/zdbo(e)é(eeosin(e)) X
W(b,e) = /11— sirk(8
1 e ﬂde, (12)
L[ 1(bere) @un) dafer)drden. (6 1-¢
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for 0 < b <r, and zero forr < b. Finally, the recorded the semi-minor axis and the eccentricity
integration overd can be carried out, producing, for e (bs,e1),(b2,€),...,(bm,em). The data is separated
r >bande > €, into D1 = {by,by,...,bn} andDy = {el,ez,...,a“}z.
D1 will be used to infer®4(r) through Eq. 15, and
bv1— € ®g(sin *(e/ep)) (13) D2 will be used separately to infabo(6) and ;(eo)

I(b,er e) = ,
7 02, /1-&,/& ¢ through Eq. 16.
If the distributions®y, ®1, and ®, in Egs. 15
and the value zero for all other valuesradndey. and 16 were a true description of the population

This result, together with the limits on the variables.Of spheroids, therD; would be a collection ofm

: ; ."“independent choices from the distributigh (b), and,
r andeo,_ can be substituted into Eq. 6 and the resultln%im”zrly D,, a collection fromWs(e) Thbé?e(zfgre we
double integral factored to give 22! 2= i

can formulate the likelihood of each data set as a

W(b,e) O Wy(b) - Wa(e) . (14)  product
m m
where . L1i(D1) = []Walby),  La2(D2) =[] Wa(e))-
)= [ 2004 as) 1 1
b Vr2—b2 (17)
and Maximizing these likelihoods over the space of
parameters on which the densiti®g(6), ®4(r), and
W) = /.1 /T— & do(sinL(e/ep)) Da(en) o ®2(ep) depend determines values of those parameters

: that optimally fit the observed data. This completes the
¢ V1= & V &€ algorithm by which predictions for the distribution of
(16)  spheroids is made. For exampte;, will be modelled
We caution the reader thab; and W, are not by a normal distribution with the usual parameters

probability densities, because they have not beeH @nd 0. Then, for the given dat@, L, becomes

normalized. Normalization is not required to set up® function ofu and 0. The valuesy, and o, that

the likelihood functions described in the next section™aximize Ly then describe the most likely normal

However, as we will see later, these functions are thg'0del for @, that is consistent with the daf. A

basic tools for simulating a slicing experiment. In thatSiMilar process with. is used to obtain predictions of

case they must be normalized before they can play thito(€) and®2(&o) from the dateD,.

role. We now describe and discuss the parameter-
dependent statistical models recommended for the

®’s. In each case the simplest appropriate model was

THE MAXIMUM-LIKELIHOOD chosen. We do not regard these models as strictly
valid, or as having been justified by some independent

SCHEME AND PARAMETRIC experiment. Rather, they should be regarded as probes

MODELS of the first- and second-order features of the statistics

we are trying to study.

We have yet to assign statistical models for
the densities®y(6), ®1(r), and P,(ey). Once that
is done the parameters in those models beco
the basis for varying the hypothetical distribution
of spheroids so as to optimally fit the 2D data.
In this section we first formulate the likelihood of

a dataset given the hypothetical set of paramete;— : . :
) L o - or bothdg(0) and® , since theta is confined to
dependentd’s. Maximizing the likelihood optimizes the intervgf[o)n] ang(e?)is confined to the interval

the fit and completes the prediction. We then turn to : furth . bel
description of and rationale for the statistical modelip’ 1]. .% requires further comments, given below.
here is a symmetry that sets the mearfadt 77/2.

recommended for thé’s. These were chosen for the , .~ resultd, becomes a 1-parameter density. The

application described in the last section. remaining parameter characterizes the spread, which,
Suppose we have collected data in the form ofs explained below, can be interpreted as a measure of
m elliptical cross-sections. For each section we havéhe deviation from isotropic orientation.

The statistical model suitable for probing the first
tgvo moments of an unknown statistics is the normal

m . o . .

or Gaussian density; we find that appropriate for

®4(r). The usual 2-parameter choice for modelling

the statistics of a naturally bounded variable is the

beta distribution or density; we find that appropriate

2As we have remarked, for the data we collected, there wassuemtiable correlation betwebrande. That result is consistent with
equation (14), and, thus, with our assumption thaimdey for the spheroids are independent. Hence, the separatibie dita.
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Concretely, the models that we propose are asonnection between the shape of the elliptical section
follows. @, is modeled by a normal density. and the shape amatientationof the spheroid. Eq. 16
5 shows how their distributions are intertwined in the
1(r— :
exp<§ (r Uél) > . as8) unfolding process from 2D to 3D.

1
¢1(r|l-l,0) = \/ZTO'

@, is modelled by a beta density,

We now explain our choice ofbp and how we
propose to quantify the anisotropy. For a purely
isotropic distribution of points on a sphere, the

r . colatitudes (corresponding to the an@§leof the points
2 (eo|p,a) = %e{? 1-e)?™,  (19) havethe density functio(8) = 3sin@ on [0, 1. This
density has an easily calculated variancérgf—8) /4.

for which the mean and variance are given by A variance smaller than this is indicative of something
called a “girdle” or “equatorial” distribution. As
= L7 g2 — qu . (20) presentedin the literature (Selby, 1964; Watson, 1965),
P+q (P+a)*(p+a+1) it is a distribution of points with a higher concentration

For the densitydg, describing the orientations of the near the equator, a!”d one _that.is symm_etric about
¥Po g &e equator. This is the situation we find when

spheroids, we use a simple 1-parameter beta densi o . . . ) ;
P P P nsidering the orientation of spheroid particles with

scaled to the interv40, rr: a slight preference for the horizontal. In our case, the

r(2a+2 symmetry is a built-in artifice, i.e., a spheroid whose

Po(6]a) = I—(ail)zn.z(erl 6% (m—08)“.  (21) axis is not perfectly horizontal is represented both by
the angle9 andmr— 6.

The case o, the angle between the spheroid’s. Ve expect our modebo to quantify the anisotropy
major axis and the vertical, requires more discussioff! the following way. Leto? be the variance of the
because of the special role it plays in the type Opartlc_ulard)o deter_mlned_by our maX|mum-I|keI|hood
data we are studying. First of all, the mitochondrial@/gorithm. We define an index of isotropy:
spheroids are presumably floating freely in the
cytoplasm, so why assume anything other than a o 20 22)

) S . . : liso=— =
purely isotropic orientation for their major axes? The 7 Giso m™—8

micrographs are horizontal sections through a cell thathis has a ready interpretation as the ratio of the
is adsorbed to a horizontal plane surface. Therefore W&hserved Spread in the po|ar ang|e to the isotropic

have no reason to expect anisotropy in the horizontajpread. It has a value ranging from 0 to 1 for equatorial
plane. However, there is reason to expect anisotropy ifistributions.

the vertical orientation. The basis of this expectation

is related to the origin of the spheroids. The spheroids ?‘”. ?ne”needs n olrder to c?pture this ta_nlzlotro.riy
result from the fragmentation of an extensive tubulaf> & 'ally ali-purpose, L-parameter, Symmetric density.

network as explained in the introduction. Since the cel fhr:rpf_rtz(:a?:g;g (r)#or dcer:gI:‘:OGr vgaﬁgok;g? d?;?:rtl)%l#éong
is strongly attached to a horizontal surface, there is ave beepn ronosed. and would qrobabl serve equall
flattening of the cell from its normal state. Confocal brop ’ P y ‘equally

. well as models fordg. For example, one prominent
microscopy, our own as well as that of Fraakal.

(2001), demonstrate the flattening and indicate th h0|cg am°”9 these is the Dlrproth-Watson model
: ardia, 1972; Batschelet, 1981):

the tubes in the network show some preference fo

the horizontal. As a result the tubes in the network ®(0) :Ce—KCOSZGSinQ (23)

may show some preference for the horizontal. When here C | itabl lizati tant F

the tubes fission, producing the spheroids, a trace gyhere L 1S a suitable normalization constant or

that preference may linger in the orientation of thek = 0 it ref)resents el:)quatorlaldd(ljstrlbutlons. Here
spheroids. For that reason we structure our model stge parameterk. can be regarded as a measure
f anisotropy. However, except fox = 0, which

that it has the potential to detect and quantifty amgorres onds to isotropic, its numerical value has
anisotropy that might exist. P PIC,

no compelling interpretation. One could claim that

The ability to quantify this anisotropy is not the this model has the advantage that the isotropic case
most important reason for including the distributionis included in the family. However, that is not a
of spheroid orientation in our scheme. If anisotropy isporactical advantage over Eq. 21. Remarkably,doe
present and we do not account for it in our likelihood1.16072, Eq. 21 is virtually indistinguishable from
machinery, our results on the distribution of spheroickin®, uniformly over the interval0, 7}, and, hence
shape will be distorted. Eq. 1 reveals the intimaténcludes the isotropic case as well.
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THE PREDICTOR AND THE W, (e). Thus, thesIMULATOR s the algorithm whose
SIMULATOR input is a set of hypothetical valuégo, 0o, po, do, o)

and whose output is a set of datdy;,...,bny)
ﬁmd (e1,...,em) representing the result of an ideal
slicing experiment with the population of spheroids
d whose distribution is described by the parameters

In the first three paragraphs of the previous sectio
we have described an algorithm for which timput
is data(bs,ey),...,(bm,en) in the form of observe
elliptical sizes and shapes, and for which the put (Ho, 9o, Po, do, o).
is a set of predicted valudgt,, 0, p,d., a.) for the To see how thsIMULATOR bears on the problems
parameters that describe the most likely population obf reliability and the accuracy of our method, consider
spheroids to have produced the input data in a slicinghe following. Suppose theIMULATOR is applied
experiment. Let us call this algorithm tR®EDICTOR  to the hypothetical values(uo, do, Po,do,do) N
As a result of the factorization in Eq. 14, there aretimes (a large number) in a Monte Carlo scheme.
actually two algorithms:PREDICTOR that predicts Each of theN simulated data sets can be fed to
the parametergp,,o.) for the size distribution of the PREDICTOR to produceN different predictions
prolate spheroids from the dalla = (b, ...,bm), and  (uy, 01, p1,01, 1), - .., (Un, O, PN, ON,AN). I our
PREDICTOR that predicts the paramete(p,,q.,a.) method is highly accuratewe would expect the
for the shape and orientation distributions from thepoints (t, 01, p1,01,01),..., (N, ON, PN ON, ON)
dataD, = (ey,...,em)- to be closely clustered about the poifyto, 0o, po,

Qo, 0lp) representing the “true” distribution. Indeed,
the uncertainty of our method will be measured by
'&]uantifying this clustering.

Note that the statistical role of tiRREDICTORIS to
provide a most likelypoint estimatdor the unknown
parameters consistent with a given set of data.
complete statistical analysis requires, in addition, some We will address this uncertainty in the next section,
measure of the uncertainty of the method in the fornbut first, let us point out that, just as tiREDICTOR
of a region, containing the point estimate, withinsplits into two algorithms, the same is true of the
which the true values of the parameters are believediIMULATOR. That is, SIMULATOR; takes as input
to fall with some specified level of confidence. Forhypothetical valueg i, do) for the size distribution
that purpose it will be important to define a secondf spheroids, and, in a Monte Carlo scheme, produces
algorithm, the SIMULATOR, which uses the same a large numbeN of new sets of data, which in turn
apparatus as therREDICTOR but which, in a sense, produceN predictions(ps,01), ..., (Un,On). This can
reverses the process. be pictured as a two-dimensional scattergram of points
- . .. whose center of mass should closely approximate the
ccpon el a1 st of the eea SICMShoit .0y Fig. 8 shows hat scatergra or e
mathematical machinery of the two previous sectionsexamIOIe in the last section. S'm”armMU"ATQRZ n

a Monte Carlo scheme produces a three-dimensional

Suppose that we know (or hypothesize) that thescatter of PoINt$p1, a1, 1), .., (P, G, A ) from the

spheroid population is described by the parametel . e A
. othetical descriptiofpg, go, ag) of the distribution
values (o, 0, Po, do. do)”. These values specify the o?‘/ghapes and orierrl)tati?)pr?sqgf tk?g spheroids.

distributions®q(0), ®1(r), andd,(ep) by way of Egs.
18-21. Egs. 15 and 16 then uniquely determine the

distributions W, (b) and W,(e), which describe how

we expect any(d)ata obtai(nt)ed from the hypothesized QUANTIFYING THE

population to be distributed. As remarked earliy, UNCERTAINTY

and W, are presented in non-normalized form, which

makes them suitable for a likelihood function, but  As remarked above, we must establish a region
not suitable as probability densities. L#(b) and  within which we believe the true values of the
Wy(e) represent these distributions after they haveyarameters will fall with some specified level of
been normalized so that their integrals are unityconfidence. The method described here is called a
These densities are the tools by which the ideaparametric bootstrapEfron and Tibshirani, 1993);
slicing experiment can be simulated. A simulationthe essential idea is as follows. Numerous samples
producingm elliptical sections is effected by choosing (of size m) are simulated from the ideal distribution
numbers (by,...,bm) according to the distribution represented by our point estimatgs, 0., etc., of the
W;(b), and numbersey, ..., ey) from the distribution parameters. Maximum-likelihood estimates foland

3In the next section we will take these hypothetical value®acthe maximum-likelihood values,, o, etc., predicted from the
observed data.

16



Image Anal Stereol 2009;28:11-22

o, etc. are then calculated for each of these samplethat falls within the regioiir. This is precisely what we
The statistics of these estimates provide a basis fanean by a 90% confidence region.
determining approximate confidence regions for the

T ; : Unfortunately, x, as defined above, is not
original point estimates.

accessible without repeating our expensive experiment

An ordinary variant of bootstrapping may alsoN times. Nevertheless, we can simulate the experiment
be used to obtain robust confidence regions. In thats many times as we like by taking the most likely
case, the numerous samples required are obtain@gediction(L,o,) from our single experiment as the
not from the ideal distribution, but by sampling with input to SIMULATOR;. Since in this case we are taking
replacement many times from the original empiricalonly our most likely predictioniut,, 0. ) as our estimate
sample. We chose to use the parametric variamf the “true” values — Lo, dp), this will produce only
outlined above and described below. an approximation of the confidence region.

Although the method can be applied to any To summarize, our approximation to the 90%
confidence level, for the sake of definiteness, we takeonfidence region is determined as follows. The
that level to be 90% confidence for this discussion anéhaximum-likelihood predictiont,, o) from the data
for the example presented in the last section. is supplied as input tGSIMULATOR; to produceN

. sets of simulated dateREDICTOR then produces
_Also, for purposes of describing the method we;  prediction for each of those sets of data:
will focus on the size problem, usinBREDICTOR (H1,01), ...,(HNn,On). The 90% confidence region

and SIMULATOR; in a Monte Carlo scheme 10 5 then determined by the inequaliLD(u, o) <
describe the two-dimensional confidence region in thg - \here x is the 90th percentile of the numbers

space(u,0). The case of shape and orientation is | p(;, 01),...,LLD(in, On).
conceptually similar, but the discussion in the example e ’
will reflect the three-dimensional character of the

region. A SAMPLE APPLICATION TO
Now the only tool we have for assessing a given

prediction is the likelihood functiorL; in Eq. 17 MITOCHONDRIA

obtained from our real set of dath,...,by). L1 is

regarded as a function of the parametérso) of

the prediction. It is convenient to standardize this a

a likelihood ratioLs (., 0,)/L1(u,0), where(LL,, O;)

In the section on the Maximum-likelihood Scheme
we discussed our reasons for believing that the
3D structures we are studying exhibit anisotropy
in vertical orientation. However our evidence for it

is the maximum-likelihood prediction. As a practical ., neq from three-dimensional confocal microscopy
matter in the implementation of the method we use thg 4 is yisual rather that quantitative. It would have

logarithm of the likelihood function, so we define the been desirable to have sectioning from a number of

log-likelihood-difference (L D) by different angles (besides just horizontal) in order to
Li(,, ) quantify the anisotropy directly from the sectioned
LLD(u,0) =In <¥> data. However, the cells whose mitochondria are being
La(p,0) sectioned are grown on a flat surface and are very
=In(L1(MUs,0.)) —In(L1(p,0)). (24) thin. Non-horizontal sectioning in this circumstance is
technically difficult; in fact for this study, prohibited.
ion ir{\Ievertheless, the parametelin our statistical model
lprovides us with an indirect confirmation of the
presence of anisotropy as well as a quantitative
measure.

We can now define the 90% confidence reg
the (i, 0)-plane. Our analysis is of a single data se
(b1,...,bm) for which we have a single maximum-
likelihood prediction (L., o,). We consider that the
experiment of collecting this data set is a relatively  In the introduction we promised a direct empirical
expensive affair. Nevertheless, suppose, contrary targument in favor of the prolate hypothesis for the
fact, that we were able to collect many, s&; shape of the spheroid particles. Weibel (1979) states
real data sets, all of the same sigge collectively two rough empirical tests that can be performed on the
producing many prediction(gt1,01),...,(Un,On). Let  sectioned data to decide between prolate and oblate.
X represent the 90th percentile of all the number&s a first test, consider the diametdr,of the profile
LLD(t,01),...,LLD(un, on). Clearly, the inequality of largest area among the 5% most circular profiles.
LLD(u,0) < x establishes a regioR of the (u,0)-  For comparison, consider the largest diametaraad
plane with the property that, with probability 0.90, anythe smallest diameterb2of the profile of largest area
repetition of our experiment will result in a prediction among the 5% most elongated profiles. Weibel agrues
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that ifd ~ 2b, the 3D structures are most likely prolate; For the data that we analyzed, a simple constraint
if d ~ 2a, they are most likely oblate. In our cagsez of a < 5 for the parameter inby(6|a) was found
340 nm, 2 = 890 nm, and B = 270 nm, pointing to sufficient to guarantee a single well-defined interior
the prolate hypothesis. As a second test, Weibel poinggeak for the likelihood functiond; and L,. This

out that, in the case of prolate spheroids, we expeconstraint rules out any spheroid population with a
the near circular profiles to be more numerous than thetandard deviation o less than 25.0 degrees. That
highly elliptical profiles. This can be checked using thes, if more than about 68% of the spheroids are so
axis ratio,r, of an elliptical profile, which is defined flattened that their axes rise no more than 25.0 degrees
as the ratio of the largest diameter to the smallest. Iabove horizontal, then the results we have obtained
our case, for the sectioned data, the median value @fay not be valid. While we consider this highly

r is 1.52. When this is compared with the minimumunlikely, it has to be recognized as a limitation of this
(1.02) and maximum (5.70) values gfthe test again method.

confirms the prolate hypothesis. We generated a set of micrographs of the group of

As discussed in the introduction, the motivationcells described above and in the Ph.D. thesis of one

for this research derives from the desire to analyz€f the authors (Sun, 2007). The outer membranes of
conformational changes, particularly changes in shap@ total o'f 231 mltochqndrlal sections were traced in
of mitochondria undergoing apoptosis. The motivatiorfh€se micrographs using the program ImageJ, which
is to construct a tool for quantifying the progressionéllipticized each trace yielding minor and major axes,
of shapes after the tubular mitochondrion splits intd™@m which a semi-minor axib and an eccentricitg
fragments which eventually become spherical. Oufould be determinédFig. 2 shows a typical electron
method could be used to monitor those change&icrograph used in our tracings.

guantitatively. We apply our method to a group of
HelLa cells in BO»-induced apoptosis.

As it turns out, the “proof of concept” presented
here is not an idle exercise. Some remarks are in
order concerning the priori feasibility of the task :
that we have set out. There is a sense in which
the mathematical problem we have formulated has a =
fundamental ambiguity that may rear its ugly head in
certain contexts. Consider two extreme populations of
prolate spheroidsii) a distribution of nearly perfect
spheres with their major axes oriented horizontally,
and (i) a distibution of highly elongated spheroids
with all of their major axes nearly vertical. In both
cases (since our sectioning plane is defined to be F&=
horizontal) the 2D sections are nearly perfect circles. |
There is thus no information in the shape of the
sections that can be used to infer the 3D shape of the
spheroids. This example illustrates the type of problem  1000nm
that can arise when trying to unfold 3D information _. . .
on both shape and orientation from 2D sections. Thg'g'_ 2. Typical eIectrqn micrograph of_a Hela cell
presence of such an ambiguity is revealed in th&aving undergone 0, induced apoptosis.
behavior of the likelihood function that is computed  Sunet al. (2007) contains a description of how
from the data. The likelihood function could havethe thin sections were prepared. The thickness of
several peaks that are not well separated and/or thiie sections, 80 nm, represents about 15% of a
are of roughly the same height, or it may havetypical particle diameter. Any thoroughgoing effort
an ill defined peak. In these cases this method a® use our method would need to address the
it is formulated cannot be applied without bringing standard stereological problems of “lost caps” and
in additional information about the population of overprojection associated with the finite thickness of
spheroids that would permit a resolution of thethe sections (Weibel, 1979; 1980). We did not do so
ambiguity. in this study for two reasons. First, we anticipate that

4ImageJ, (Image Processing and Analysis in Java, httpififenih.gov/ij/) uses the “best fit ellipse” algorithm meatch the moment
of inertia of the region traced to determine an equivaleips.
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in our case the corrections would have a minor effect 0.01
on the results. Secondly, the scope of our enterprise

did not extend beyond laying out the theoretical
apparatus and testing the feasibility of the full-scale 0.006-

0.008F

.0

unfolding problem of size, shape and orientation 0.004.
of spheroids. Handling the corrections above for

nonspherical particles is not well developed and would 0.002¢
have been, for us in this effort, a theoretical distraction. 0

0 100 200 300 400 500
r [nm]

' We noyv recall in outl'ine the proce_dure describeq:ig_ 4. The maximum likelihood spheroid size
in the previous three sections for handling the data, angistribution (black) and the 90% confidence region
we summarize the results as applied to the data derivggreen).

from our micrographs. The p_redipted size distribution The predicted spheroid shape and orientation are
®,(r) of the prolate spheroids is dependent on th?ound in a similar manner. Egs. 16, 17, 19, and 21

parametersyy,or, which describe the most likely 516 combined to produce the likelihobg( D2|p, g, o),
normal distribution of the semi-minor axis. To  which is then optimized overp,q and a. The
produce a likelihood in terms df;, or, Egs. 15 and parametersp and q describe a Beta distribution,
17 are combined to give while o determines the orientation distribution. By
applying Eq. 20 the optimal, g yield the eccentricity
statisticspg, = 0.875 andog, = 0.091. Fig. 5 shows
2L [ by @a(r|pr, o) the projection of the 90% confid ion. Fig. 6
Li(D1ur, 07) = I—l/ dr (25) the projection of the 6 confidence region. Fig.
=1/bj r2_ p2 illustrates the optimal Beta distribution (in black) as
: well as the continuum of Beta distributions found
within the 90% confidence region (in green).
in terms of the 231 semi-minor elliptical axes
b1,...,bp31 obtained from the micrographs.

0.22
0.21

Fig. 3 shows the contour of; that surrounds .l

the 90% confidence region fqr, oy, as well as the o1al
point marking the maximum-likelihood values. Fig. 4 ",

0.16p

displays the maximume-likelihood distribution in black. o4l

The 90% confidence region is suggested by the green  oosl

region surrounding the black curve. It is the result of 0.06f

superimposing all of the distributions whose parameter 0.04f ‘ ‘

values lie in the 90% confidence region shown in 0.7 08 H, 0.85 0.9
Fig. 3.

Fig. 5. The maximum likelihood point and the 90%
confidence region for the mean and standard deviation

ol ‘ ‘ ‘ ‘ ‘ ] of the spheroid eccentricitype
60k 12
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— 55
g 8
©" 50 E’: 6
-]
45t “
2
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Fig. 3. The maximum likelihood point and the 90%Fig. 6. The maximum likelihood spheroid eccentricity
confidence region for the mean and standard deviatiodistribution (black) and the 90% confidence region
of the semi-minor axis, r, of the spheroid. (green).
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Fig. 7. The maximum likelihood spheroid orientation
distribution (black), a uniform distribution (dashed-

blue) and the 90% confidence region (green). Fig. 8. Graphical depiction of uncertainty in the

method, showing predictions @f and g; obtained
from 5000 simulations of the sampling experiment (231

The predicted orientation distributio®(6]a)  Sections each) based on a population of spheroids
occurred fora = 2.26. This value ofr corresponds to With parameters corresponding to the data-based,

0o —32.82 degrees and an isotropy index, from Eq. 22r"naximum-likelihood prediction (shown in center).
of liso = .838. The predicted distribution of orientation 8
is seen in Fig. 7. Also shown for comparison is the 4
distribution corresponding to perfect isotropy. The
90% confidence analysis shows that our measured
anisotropy is statistically significant.

4] o
T T

N
T

Log-likelihood Difference

S\

The 90% confidence regions shown in Figs. 3and 5
were determined by performing a parametric bootstrap i e
as described in the previous section. Explicitly, in o S il 0 . o |
the case of spheroid size (semi-minor axis,Fig. Confidence Level

3) the maximume-likelihood valueg, = 244 nm and

[

, Fig. 9. The log likelihood difference as a function of
0. = 524 nm were taken to determine the modele confidence level. The dashed red curve is obtained
distribution ®4(r) from Eq. 18 and the associated from the likelihood ratio test. The solid blue curve is
predicted distribution for elliptical cross-section size obtained from the parametric bootstrap.

W1(b) after normalizing Eq. 15. A Monte Carlo The second curve in Fig. 9 (red, dashed) is
scheme to simulate the slicing experiment was iterateghown for comparison. If we had chosen not to
5000 times N = 5000). Each iteration involved perform the bootstrapi.e. not to collect statistics
sampling 231 f = 231) values ofb from the on the performance of our method, we could have
distribution W1(b) and interpreting that sample as use]gldthe so-called leelldho”od Satlo Test to ?St?EI'Sh
data for a new prediction oft and g. These 5000 confidence regions (Ke.n all an Stuart,_1983, Hilborn
- . . ..and Mangel, 1997). This is an asymptotic result (large
predictions were then processed as explained in tt}(ﬁ) stating that under certain conditiond.D/2 is
previous section. Fig. 8 shows the raw collection Ofyjstributed like a chi-square statistic of one degree
predictions in th&u, o)-plane, clustering nicely about of freedom. The associated percentile curve is shown
the original maximume-likelihood prediction (shown in in red. The discrepancy between these two curves
the center). illustrates the necessity, in the case of our method,
to base uncertainty results on actual performance

statistics, rather than assuming the conditions required
The blue curve in Fig. 9 is an empirical plot, for for the Likelihood Ratio Test.

all 5000 iterations, of LD versus rank in the form of A similar parametric bootstrap was performed for
percentile. As explained in Sec. 6, the valugbD (= egyits on spheroid eccentricity and orientation. In

3.3) determines the boundary of the 90% confidencghis case the parameter spage,( O, a) is three-
region. This is the contour shown in Fig. 3. dimensional and so is the 90% confidence region.
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