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SIMPLE REPARAMETERIZATION TO
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Simple reparameterization to improve convergence in linear
mixed models

Slow convergence and mixing are one of the main prob-
lems of Markov chain Monte Carlo (McMC) algorithms applied
to mixed models in animal breeding. Poor convergence is to a
large extent caused by high posterior correlation between vari-
ance components and solutions for the levels of associated ef-
fects. A simple reparameterization of the conventional model
for variance component estimation is presented which improves
McMC sampling and provides the same posterior distributions
as the conventional model. Reparameterization is based on the
rescaling of hierarchical (random) effects in a model, which
alleviates posterior correlation. The developed model is com-
pared against the conventional model using several simulated
data sets. Results show that presented reparameterization has
better behaviour of associated sampling methods and is several
times more efficient for the low values of heritability.
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1 INTRODUCTION

Mixed models are abundantly used in the field of
animal breeding and genetics with the aim to infer genet-
ic values of animals given some phenotypic and pedigree
information (Henderson, 1984). In it simplest form the

mixed model can be written as:
y=Xb + Za + e, (1)

where y is a vector of phenotypes, b is a vector of effects
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Enostavna reparametrizacija za izboljSanje konvergence line-
arnih meSanih modeloy

Pocasna konvergenca je eden najveéjih problemov upo-
rabe metode Monte Carlo z Markovimi verigami (McMC) za
me$ane modele napodro¢ju genetike in selekcije domacéih Zivali.
Slaba konvergenca je v veliki meri posledica visoke posteriorne
korelacije med komponentami variance in reSitvami za ravni
pripadajocih vplivov. Predstavljamo enostavno reparametriza-
cijo obi¢ajnega modela, ki izboljsa lastnosti metode McMC in
daje enake posteriorne porazdelitve parametrov modela kot
standardni pristop. Reparametrizacija temelji na standardiza-
ciji hierarhi¢nih (nakljuénih) vplivov v modelu, kar posledi¢no
spremeni posteriorne korelacije med parametri. Oba pristopa
smo primerjali na ve¢jem setu simuliranih podatkov. Rezultati
kazejo, da reparametrizacija vodi do bolj uéinkovitih metod
McMC vzoréenja in je nekajkrat bolj u¢inkovita za analizo last-
nosti z nizko heritabiliteto.

Kljuéne besede: statistika / meSani model / bayesovska
analiza / McMC / reparametrizacija / konvergenca

like sex, breed, age, etc., a is a vector ofindividual addi-
tive genetic effects and e residual, p(e|a’)~N(o,Ia?%),
while X and Z are design matrices linking effects to phe-
notypic records. Pedigree information is included in the
model hierarchically with prior distribution ofindividual
additive genetic values, p(a|A,a’)~ N(o,Aa’). Hend-
erson (1972) developed the so called mixed model equa-
tions (2) to efficiently obtain joint solutions for b and a,
where G =Aa? and R=1Ta?%:
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Use of mixed model equations assumes known vari-
ance components ¢, and c. . Standard procedure is
to estimate these variance components using restricted
maximum likelihood method (REML; Patterson and
Thompson, 1971) and to use these estimates in mixed
model equations (2) ignoring the error of estimation in
variance components.

Another approach to statistical inference, Bayesian
approach, treats inference of all model parameters joint-
ly. Although conceptually very appealing, Bayesian ap-
proach leads to formulas that are computationally intrac-
table. This can be avoided by sampling methods such as
Markov chain Monte Carlo (McMC; e.g., Gelman, et al.,
2004). Wang et al. (1993) showed how McMC methods
can be used with linear mixed models in animal breed-
ing applications. In the case of linear mixed models all
McMC computations follow from the posterior distribu-
tion (3):

‘exp(-i(y - Xb-Za'R

p(b, a, ¢ My © [R|

G ? exp(- iafG'a)

'(y - Xb- Za). x (3)

where prior distributions for and both variance compo-
2 .
nents c, anc? a, were assumed uniform (e.g., Gelman
2

et al., 2004). Given that cr, and a are a priori correlated
due to the prior definition of a, the a posteriori correla-
tion between them is expected to be high. This leads to
high autocorrelation between consecutive samples, mak-
ing McMC method inefficient. Autocorrelations can be
really problematic with low or near zero values for some
variance components (e.g. additive genetic variance).
This is caused by the shrinkage of a towards zero and in
a next round of sampling variance component will again
be close to zero, which can make the sampler stuck for
quite some time at the values near zero (Gelman et al,
2004).

Chib and Carlin (1999) proposed block sampling
of some parameters in (2) to improve convergence.
Autocorrelation has also been alleviated by the use of
centered models (Gelfand et al, 1995), parameter ex-
panded models (Liu and Wu, 1999; Gelman et al., 2003;
Gelman, 2004) and data augmentation based models
(Meng and van Dyk, 1997; van Dyk and Meng, 2001).
These methods have been applied both to accelerate the
Expectation-Maximization (EM) algorithm and to al-
leviate the autocorrelation of McMC algorithms. In this
work a reparameterization will be employed where addi-
tive genetic values will be a priori uncorrelated with ¢, .
This approach will be compared against the conventional
model of Wang et al. (1993).
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2  METHOD

Let us consider a simple animal model y = Xb +
Za + e with the following distributional assumptions:

P | b, a, 02)~ N(Xb + Za, 10°,)
p(a\A,0*)~N(0o,A0”%) 4)

p(elo’)~ N(o, I0%,)

For this particular case and assuming uniform pri-
ors for b and both variance components, p(b) x const.,

pCa )X const, and p(c" )<x const., the equation (3)
becomes:

MMACTAy([I"f exp”iy-Xb-ZLgy-Xb* *
&)1“1) a'Aa

where n is the number of records and g the number of
animals. Full conditionals of the posterior (5) can be
sampled using the coefficient (left hand side) matrix of
the mixed model equations (2), sums of squares, normal
and scaled central deviates (Wang et al., 1993).

Here another approach is proposed, which allevi-
ates the autocorrelation of samples from (5). It is based
on the reparameterization of the model in the terms of
a new augmented variable u, a = uc,. Such a model has
been already proposed by Foulley and Quaas (1995) in a
heterogeneous variance EM-REML context. To simplify

2

)

the notation, c, is used instead of yc, , but the model
Hosfill coupideged cWritienyivh e R wing dhgripadiohiy
assumptions:

oy )~ N Xb + Zua,,IK>

P(u | A) ~N(0,A), (6)
ple K*)~ N(o,I*)

The joint posterior distribution, assuming again
uniform priors on b and both variance components, is:

pgb,u,a;‘,akl\yjAK E 2\éI;<p!-(" (y—xn—LuaHT(y—xn—LuaA Ix @)
expp u'Au

Note that in (7) variance component ¢, drops out

from the last part, but ¢, comes in the sum of squares of

residuals. The full conditional distributions for the levels

ofboth b and a are univariate normal distributions as in
the conventional model, but considering a = uc,:

- c b -
2 2 s 2yt g g Ly
p{bl"v-l'utawe it N . ,t (8)
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where both s and c,j are closely related with the conven-
tional mixed model (2) but modified as:

c-(X'X X' Zi,

f v
s= XY " (0
Z"Xa, 71" r

+ ANltlZe y A ay

2
The full conditional distribution of a. can be sam-

pled from scaled inverted chi-square distribution with
n - 2 degrees of freedom as in the conventional model:

4r*|b,ua’, y)~ (y - Xb - Zuo, ) (y - Xb - Zua, )z . (11)

2
After some algebra the full conditional of a, is

o u'U(y-X"

a, +a
u'Z'Zu "

P ~'bu,r,y “p ) (12)
u' Z" Zu

from which a truncated normal distribution can be rec-
ognized when presented in terms of a, with mean

"4‘\1—”2 B i and truncation point at 0:
— i > variance | gy, > p .

Lip,u, ", y)~TNf{—"zXb),—T, ,0 13
\a'P M) ed) 1{ —ZZ¥ZU) Ly (13)

When the full conditional distribution of ai does
not involve the neighbourhood ofzero, it is a scaled non-
central xX distribution with 1 degree of freedom, with a
scale parameter , 1z . and noncentrality parameter

_u"Z" (y-Xb)(y-Xb)" Zu
2u" 2" Zia,

2

A
a'® y) ~v g, X' (u). (14)
For cases where the posterior distribution of a’
is close to zero, the Metropolis-Hastings algorithm with
positive proposal can be implemented, where the natural
logarithm ofthe conditional density derived from (12) is:

-2z<], t+a,

Infpb, wa’, 'y ))=- (15)

where T represents mean and p variance from (13).

3  APPLICATION

Seven simulated datasets were used to compare the
length of burn-in period and Monte Carlo variance of
the model y = Xb + Zucrs + e against the conventional
sire model y = Xb + Zs + e. All datasets consisted of
10,000 records, 100 herds (b) and 500 unrelated sires (s).
Records were randomly assigned to herds and sires, i.e.,
having on average 100 records per herd and 20 records
per sire. True phenotypic variance was 100 and sire vari-
ances for each simulated case were: 0.25, 0.5, 1.25, 2, 3.75,
5, and 10.

Markov chain Monte Carlo method was imple-
mented using Gibbs sampler for the full conditional dis-
tributions described in (8, 9, and 11), while Metropolis
sampler was used for sampling from (15). The length of
burn-in period was determined by the use of coupling
argument (Johnson, 1996; Garcia-Cortés et al., 1998),
where the tolerance of difference between two chains
for the sire variance component was set to 10, After
the burn-in period, chains with 20,000 samples were
produced. Monte Carlo error was calculated empirically
after 50 replicates for each simulated dataset. Presented

Table 1: Average (+ standard deviation obtained empirically from
50 replicates) burn-in length by model and true heritability (h’)
Preglednica 1: Povprecna (£ standardni odklon, pridobljen
empiricno iz 50 ponovitev) dolZina ogrevalne faze glede na model
in dejansko vrednost heritabilitete (h’)

True A’ Conventional model Reparametrized model
0.01 569.6 £ 266.1 9.8 +6.4
0.02 332.7 + 165.2 8.4+3.9
0.05 1739 + 37.1 7.8 £2.6
0.10 162.4 + 41.2 7.8 £2.9
0.15 551+ 58 6.8 +£2.4
0.20 42,6 £ 2.7 7.4+£22
0.40 252+ 3.6 8.4+3.5

results show the rate of convergence in the terms ofburn-
in period (Table 1) and after burn-in period (Table 2) for
the conventional model (4) and the new reparameterized
model (6).

Reparameterization of the model resulted in sub-
stantial reduction in burn-in phase of McMC procedure
(Table 1), especially with the low values of heritability.
Inspection of trace plots (not shown) showed that in the
case of low heritability values for additive genetic vari-
ance were very close to zero as well as individual additive
genetic values, which is expected. However, conventional
model was prone to stuck in that configuration, while
reparameterized model more easily explored wider pa-
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Table 2: Posterior mean (+ standard deviation obtained empiri-
callyfrom 50 replicates) for the component of variance between
sires by model and true heritability (W)

Preglednica 2: Posteriorno povprecje (£ standardni odklon, pri-
dobljen empiricno iz 50 ponovitev) komponente variance med
oceti glede na model in dejansko vrednost heritabilitete (h’)

Conventional Reparametrized

True O™ True 4’ model model

0.25 0.01 0.39 £ 0.03 0.38 £0.01
0.50 0.02 0.91 £0.03 0.98 £0.01

1.25 0.05 1.45 +0.02 1.44 £ 0.01
2.50 0.10 1.69 + 0.02 1.69 +0.01

3.75 0.15 439 £0.01 439 £0.01

5.00 0.20 6.02 £ 0.01 6.03 £ 0.01
10.00 0.40 13.03 £ 0.01 13.05 £ 0.02

rameter space, which in turn leads to faster convergence
to stationary distribution (e.g., Gelman et al., 2004).

Both models gave the same posterior mean on aver-
age (Table 2) for variance between sires. Only results for
this effect are reported as this is one of the parameters
that are hard to accurately estimate in linear mixed mod-
els (e.g., Gelman et al, 2004). Posterior means for vari-
ance between sires were larger than the true value. This
can be attributed to skewed posterior distributions for
this effect. Monte Carlo variance obtained after 50 rep-
licates of conventional analysis was sensitive to the value
of the true heritability, while this was not the case for
reparameterized model. In addition, Monte Carlo vari-
ance was higher with conventional model for heritabili-
ties up to 0.1. More stable behaviour of reparameterized
model was due to the possibility of easier escape from the
neighbourhood of zero value for variance between sires.
This means that reparameterized model is ofa great value
when traits with low heritability are analysed.

4 DISCUSSION

The new data augmentation scheme resulted in an
algorithm faster than the conventional Gibbs sampler for
linear mixed models. Estimates for variance components
do not suffer from getting stuck when visiting values close
to zero and then the rate of convergence does not depend
on the true value of heritability. When new model was
applied to data sets with small heritability, Monte Carlo
variance was around five times smaller. Therefore, the
new model needs about twenty five times shorter chains
to get the same Monte Carlo variance as the conventional
model of Wang ef al. (1993). The new model can be easily
implemented in existing programs for the conventional
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model - slightly modifying the mixed model equations
according to (10) and using the Metropolis algorithm to
sample from the full conditional density of cr, .

Our procedure is very similar to the parameter
expanded models presented in (Liu and Wu, 1999; Gel-
man et al, 2003; Gelman, 2004) among others for both
the most frequent EM and Bayesian McMC. Their ap-
proach also standardizes the additive genetic values,
but in terms of a = wa, where a represents an extra
augmented variables in the model, while our approach
standardizes breeding values with its hyper-parameter,
i.e., 0,. The data augmentation scheme presented here
can be understood as a particular case of that presented
in van Dyk and Meng (2001), which is based on linear
transformations of random variables, such as y = Xb +
Zp+ e, where p = Yu + y. In our case Y = Icr-' and y = 0,
is the simplest case having a significant reduction of the
Monte Carlo variance.

Reparameterized model has been tested with a sire
model example. Further research is necessary for ani-
mal models or multiple trait models (Henderson, 1984),
where the amount of missing information may be higher
causing more stringency in standard McMC samplers. In
such cases reparameterization in terms of u is expected
to provide even better results than presented here.

5 CONCLUSION

In summary, reparameterization of hierarchical ef-
fects resulted in a feasible Markov chain Monte Carlo al-
gorithm that accelerates the convergence of the conven-
tional sampling methods for Bayesian analysis of linear
mixed models. This procedure requires a little program-
ming effort for implementation by researchers who have
experience with the conventional sampling methods.
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