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The necessity of efficient and controlled processes has increased the demand by employing optimization methods to the most diverse 
industrial processes. For these cases, the Global Criterion Method is described in literature as a technique indicated for multi-objective 
optimizations. However, if the problem presents correlations between the responses, this technique does not consider such information. 
In this context, the Principal Component Analysis is a multivariate tool that can be used to represent correlated responses by uncorrelated 
components. Given that to negligence the correlation structure between the responses increases the likelihood of the optimization method 
in finding an inappropriate optimum point, the objective of this work is to combine the GCM and PCA in a strategy able to deal with problems 
having multiple correlated responses. For this reason, such strategy was used to optimize the 12L14 free machining steel turning process, 
characterized as an important machining operation. The optimized responses included the mean roughness, total roughness, cutting time and 
material removal rate. As input parameters, the cutting speed, feed rate and depth of cut were considered. Response Surface Methodology 
was employed to build the objective functions. The GCM based on principal components was successfully applied, presenting better practical 
results and a more appropriate location of the optimal point in comparison to the conventional GCM.
Keywords: multi-objective optimization, global criterion method, principal component analysis, free machining steel turning

0 INTRODUCTION

In industrial environments, it is becoming more and 
more important that items can be produced to satisfy 
several requirements simultaneously, and many of 
them are related to its cost, quality and productivity. 
Thus, considering that the manufacturing processes 
must be configured to obtain the best results for a set 
of characteristics, the interest in employing multi-
objective optimization techniques has been increasing 
[1] and [2].

Among the optimization methods contemplating 
multiple responses, the desirability function [3], the 
multivariate integration [4] and the capacity indexes 
MCpm and MCpk [5] and [6] are listed as examples. 
Rao [7] describes the Global Criterion Method (GCM) 
as an interesting strategy. According to the author, 
the multiple objectives are optimized at the same 
time when the individual objective functions are 
combined in only one function, defined as the global 
optimization criterion of the process.

However, if the problem presents multiple 
correlated characteristics, the Global Criterion 
Method, as well as other conventional techniques, 
does not consider the correlation structure between 
the responses. This negligence, according to some 
researchers, may conduct the results to inadequate 
optimum points [8] and [9]. Paiva et al. [10] argue 
that the transfer functions used to represent the 
process outputs are strongly influenced by significant 
correlations existing between the responses of interest. 
Therefore, considering that the mathematical models 

are of great importance to the problem formulation, 
non-consideration of the correlation structure will 
affect the optimal point location.

In attempt to offer a more adequate treatment to 
the optimization problems with multiple correlated 
responses, the Principal Component Analysis (PCA) 
has been shown as a good alternative [11] and [12]. 
The PCA consists in a multivariate statistical tool 
that concerns in explaining the variance-covariance 
structure of a data set, using linear combinations of 
the original variables. Thus, the original correlated 
responses are represented by new uncorrelated 
variables, called principal components.

Given that the Global Criterion Method 
is presented as a technique to multi-objective 
optimizations but does not take into account the 
correlation structure between the responses, the 
objective of this work is to incorporate the PCA in the 
original formulation for GCM described by Rao [7], 
and verify how this analysis influences in determining 
the optimal solution. For this, such techniques were 
applied on the 12L14 free machining steel turning 
process, characterized as one important operation in 
the modern industry.

Nevertheless, the study of manufacturing 
processes by optimization tools require that the 
mathematical relationships between the input 
parameters and the process responses be known. 
Therefore, before the optimization itself, such 
functions were modeled through Response Surface 
Methodology.
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1 THEORETICAL FRAMEWORK

1.1 Response Surface Methodology (RSM)

According to Montgomery [13], RSM is a collection 
of mathematical and statistical techniques that are 
useful for the modeling and analysis of problems in 
which a response of interest is influenced by several 
variables and the objective is to optimize this response.

The second order polynomial developed for 
a response surface that relates a given response y 
with k input variables presents the following format 
described by Eq. (1):

 y x x x xi
i

k
i ii

i

k
i ij

i j
i j= + + +

= = <

∑ ∑ ∑∑β β β β0
1 1

2 ,  (1)

where y is the response of interest, xi are the input 
parameters, β0, βi, βii, βij are the coefficients to be 
estimated, and k is the number of input parameters 
considered.

To estimate the coefficients stated in Eq. (1), 
the Ordinary Least Squares is the typically used 
algorithm. After the model building, the ANOVA 
statistical procedure is usually employed to check its 
significance and its adjustment.

1.2 Global Criterion Method (GCM)

A multi-objective optimization problem is one that, 
considering inequality constraints, can be stated as Eq. 
(2):
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where fi(x) are objective functions, and gj(x) 
constraints.

However, under various circumstances, the 
multiple responses considered in a process present 
conflict of objectives, with individual optimization 
leading to different solution sets. For this kind of 
problem, Rao [7] characterizes the Global Criterion 
Method as a strategy where the optimal solution is 
found by minimizing a preselected global criterion, 
F(x), such as the sum of the squares of the relative 
deviations of the individual objective functions from 
the feasible ideal solutions. The GCM formulation is 
given by:
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where F(x) is the global criterion, Ti is the target 
defined for the ith objective, fi (x) are objective 
functions, gj (x) are constraints, and p is number of 
objectives.

Thus, with targets defined for each response of 
interest, the multiple objectives are combined into an 
only function, which becomes the global optimization 
function for the process.

To obtain the optimal point from GCM 
formulation, several optimization algorithms can 
be applied. In this work, the Genetic Algorithm was 
used because it is considered an effective algorithm to 
global optimizations [14] and [15].

1.3 Principal Component Analysis (PCA)

Suppose that the objective functions f1(x), f2(x),..., 
fp(x), presented in Eqs. (2) and (3), are correlated 
with values written in terms of a random vector  
YT = [Y1, Y2,..., Yp]. Assuming that Σ is the variance-
covariance matrix associated to this vector, then Σ 
can be factorized in pairs of eigenvalues-eigenvectors  
(λi, ei),..., ≥ (λp, ep), where λ1 ≥ λ1 ≥ ... ≥ λp ≥ 0, such 
as the ith uncorrelated linear combination may be 
stated as PC e e Y e Y e Yi i

T
i i pi p= = + + +Y 1 1 2 2 ... ,  with  

i = 1, 2, ..., p. The ith principal component can be 
obtained as maximization of this linear combination 
[16]. This statistical technique is called Principal 
Component Analysis (PCA), one of the most widely 
applied tools to summarize common patterns of 
variation among variables retaining meaningful 
information in the early PCA axes [17] and [18]. The 
geometric interpretation of these axes is shown in Fig. 
1.

Generally, as the parameters ∑ e ρ are unknown, 
the sample correlation matrix Rij and the sample 
variance-covariance matrix Sij may be used [16]. If the 
variables studied are taken in the same system of units 
or if they are previously standardized, Sij is a more 
appropriate choice. Otherwise, Rij must be employed 
in the factorization. The sample variance-covariance 
matrix can be written as follows:
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Then, the elements of sample correlation matrix 
Rij can be obtained as:
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In practical terms, the principal component (PC) 
is an uncorrelated linear combination expressed in 
terms of a score matrix, defined as:
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Fig. 1. Geometric interpretation of principal components

1.4 Global Criterion Method Based on Principal 
Components

The global criterion F(x), as stated by Eq. (3), is 
formulated from the objective functions and the targets 
defined to each response of interest. If the objective 
functions are unknown, then they can be modeled by 
RSM from experimental data. However, when the 
responses are correlated, this strategy does not take 
into account the correlation structure between them. 

On the other hand, it has been seen in previous section 
that the principal components are characterized as 
uncorrelated representations of original correlated 
variables.

Considering that the principal components, 
through their scores, can also be modeled by RSM as 
functions of input parameters [10], then the Global 
Criterion Method based on principal components is 
written as:
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where FPC(x) is the global criterion based on 
principal components, ζPCi  is the target defined for 
the ith principal component, PCi(x) are quadratic 
models developed for the principal components, 
gj(x) are constraints, and k is the number of principal 
components considered.

The determination of the targets for principal 
components requires that the targets for original 
responses are previously defined. The ζPCi is then 
calculated as a linear combination between the 
eigenvectors of principal components and the 
standardized original responses in relation to their 
targets. This procedure is showed by Eqs. (8) and (9).

 ζ ζPCi ji j y
j

p
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where ζPCi is the target defined for the ith principal 
component, p is the number of objectives, eji are 
coefficients of the principal components’ eigenvectors, 
and Z(yj | ζyj) are the standardized original responses 
in relation to their targets, calculated as:

 Z y
y

j y
y j
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j
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where ζ y j
 are targets defined for the original 

responses, 
jy  are the means of responses, and σ y j

  
are the standard deviations of responses.

Analogously to the Eq. (3), the obtaining of 
optimal point for the formulation given in Eq. (7) is 
done by employing optimization algorithms. The 
Genetic Algorithm was also used in this work for this 
purpose.

Finally, for the Global Criterion Method based 
on principal components, it is important to highlight 
that this strategy combines the main advantages 
offered by GCM and ACP, since it continues being a 
technique for multi-objective optimizations, but now 
considering the correlation structure existing between 
the responses.

2 OPTIMIZATION OF THE 12L14 FREE MACHINING  
STEEL TURNING

With the aim of verifying the functionality of the 
GCM based on principal components in improving 

performance of manufacturing processes, such 
strategy was applied to the optimization of 12L14 free 
machining steel turning process.

This is described as a relevant operation 
within the current industrial context, since the 
free machining steels are developed to offer good 
machining conditions and excellent chip formations. 
For this process, other mechanical characteristics, as 
ductility, strength and response to heat treatments are 
considered as secondary factors. The free machining 
steels have been employed in production of elements 
that do not need to present structural responsibility, 
as appliances and components to pumps, plugs and 
connections.

Due to the fact that mechanical properties are not 
the most important requirements for the 12L14 free 
machining steel turning process, its optimization is 
mainly concerned with its productivity and surface 
quality. The surface quality was then optimized 
through the mean roughness (Ra) and total roughness 
(Rt). For the productivity, cutting time (Ct) and 
material removal rate (MRR) were the optimized 
characteristics. The cutting speed (V), feed rate (f) and 
depth of cut (d) were considered as input parameters.

Given that the objective functions between 
the input parameters and responses were initially 
unknown, such relationships were modeled using 
RSM. Thus, data were collected from turning 
experiments performed with work pieces of 12L14 
free machining steel (0.09% C; 0.03% Si; 1.24% Mn; 
0.046% P; 0.273% S; 0.15% Cr; 0.08% Ni; 0.26% 
Cu; 0.001% Al; 0.02% Mo; 0.28% Pb; 0.0079% 
N2), with dimensions of f40×295 mm. The machine 
tool used was a NARDINI CNC lathe, with 7.5 cv 
power and maximum rotation of 4,000 rpm. The hard 
metal inserts (ISO P35 code SNMG 090304 – PM, 
Sandvik class GC 4035) were coated with three layers 
(Ti(C.N), Al2O3, TiN) and a tool holder ISO code 
DSBNL 1616H09 was employed.

A central composite design with three factors 
at two levels (2k = 23 = 8), six axial points (2k = 6) 
and three center points was chosen as experimental 
matrix, which resulted in 17 experiments. The adopted 
value for axial distance α was 1.682. Table 1 presents 
the range defined for input parameters. To record 
the responses, mean roughness and total roughness 
were measured by a roughmeter. Cutting time and 
material removal rate were calculated. At the end of 
experiments, the experimental matrix (Table 2) was 
built.
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3 RESULTS AND DISCUSSION

3.1 Modeling of Objective Functions

Writing the response surface function stated in Eq. 
(1) for three parameters, the following expression is 
obtained:

 
y V f d V f

d Vf Vd fd

= + + + + + +

+ + + +

β β β β β β

β β β β
0 1 2 3 11

2
22

2

33
2

12 13 23     ..
 (10)

To estimate the coefficients defined in Eq. (10), 
the statistical software Minitab® was employed and, 
from the experimental data presented in Table 2, 
the full quadratic models were developed for each 
response of interest. Then, the significance of models 
was tested through ANOVA procedure. Table 3 
presents the coefficients for full quadratic models and 
the main results of ANOVA.

From Table 3 it can be observed that, considering 
a significance level of 95%, all models are adequate, 
since p-values were lower than 0.05. Furthermore, 

the adj. R2 values indicate high adjustments for the 
models, which means these expressions are reliable in 
representing the responses.

Finally, after non significant coefficients have 
been removed, the final models, or the objective 
functions for responses, were obtained. Eqs. (11) to 
(14) present these expressions.
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MRR V f d

Vf Vd fd
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26 600 5 679 5 082 6 997
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. . . .
. . . .  (14)

Table 1. Parameters and their levels

Parameter Symbol Unit
Levels

-1.682 -1 0 +1 +1.682
Cutting speed V [m/min] 180 220 280 340 380

Feed rate f [mm/rev] 0.07 0.08 0.10 0.12 0.13

Depth of cut d [mm] 0.53 0.70 0.95 1.20 1.37

Table 2. Experimental matrix

Test
Parameters Responses

V [m/min] F [mm/rev] d [mm] Ra [mm] Rt [mm] Ct [min] MRR [cm3/min]
1 220 0.08 0.70 1.36 9.49 2.11 12.32
2 340 0.08 0.70 1.65 10.70 1.36 19.04
3 220 0.12 0.70 1.78 10.08 1.40 18.48
4 340 0.12 0.70 1.84 10.41 0.91 28.56
5 220 0.08 1.20 2.22 14.71 2.11 21.12
6 340 0.08 1.20 2.20 13.47 1.36 32.64
7 220 0.12 1.20 1.82 11.13 1.40 31.68
8 340 0.12 1.20 2.24 13.20 0.91 48.96
9 180 0.10 0.95 1.90 12.51 2.06 17.10
10 380 0.10 0.95 2.08 12.49 0.98 36.10
11 280 0.07 0.95 1.85 10.73 1.89 18.62

12 280 0.13 0.95 1.85 10.78 1.02 34.58
13 280 0.10 0.53 1.68 8.89 1.32 14.84
14 280 0.10 1.37 2.30 13.37 1.32 38.36
15 280 0.10 0.95 2.32 12.57 1.32 26.60
16 280 0.10 0.95 2.23 12.84 1.32 26.60
17 280 0.10 0.95 2.26 12.92 1.32 26.60
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Table 3. Estimated coefficients for full quadratic models

Coeff.
Responses

Ra Rt Ct MRR

β0 2.272 12.757 1.324 26.600

β1 0.077 0.172 -0.315 5.679

β2 0.018 -0.254 -0.277 5.082

β3 0.212 1.418 0.000 6.997

β11 -0.107 -0.038 0.070 0.000

β22 -0.157 -0.655 0.048 0.000

β33 -0.106 -0.522 0.002 0.000

β12 0.026 0.301 0.062 1.140

β13 0.006 -0.090 0.000 1.500

β23 -0.123 -0.518 0.000 1.400

p-value 0.002 0.005 0.000 0.000

adj. R2 [%] 85.46 80.63 99.68 99.72

3.2 Optimization by Conventional Global Criterion Method

Before applying the GCM based on principal 
components to the optimization of 12L14 free 
machining steel turning, this operation was also 
optimized by conventional GCM, with the aim of 
comparing both results.

By taking the objective functions developed for 
the process responses, the GCM formulation can be 
built. However, for this formulation, it is necessary 
that the targets of original responses are defined. These 
specifications were made by experts and took into 
account that the process application could be satisfied 
with good levels of surface quality and productivity. 
Table 4 show the targets defined for responses and 
their respective specification limits.

Thus, the optimization problem was built as 
stated in Eqs. (15) to (17). All characteristics were 
considered with the same degree of importance.
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subject to: V, f, d ≥ –1.682 , (16)

 V, f, d ≤ 1.682 , (17)

where G is the global criterion, Ra, Rt, Ct, MRR 
are objective functions, and V, f, d  are the input 
parameters.

Finally, replacing Ra, Rt, Ct and MRR in Eq. 
(15) by their respective objective functions, the final 
formulation of the problem was obtained given by:
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subject to: V, f, d ≥ –1.682 , (19)

 V, f, d ≤ 1.682 . (20)

Table 4. Targets and specification limits for responses

Response LSL T USL
Ra 1.0 1.5 2.0
Rt 8.0 9.0 10.0
Ct 1.0 1.2 1.4
MRR 30 35 40

As can be observed, all optimized responses 
were established within the specification limits and 
relatively close to their targets, which suggests that it 
seems a good solution.

Table 5. Parameters used in Genetic Algorithm

Parameters Values
Iterations 1,000
Convergence 0.0001
Population size 150
Mutation rate 0.10

Table 6. Optimal results for 12L14 free machining steel turning 
obtained by conventional GCM

Responses
Ra [µm] Rt [µm] Ct [min] MRR [cm3/min]

Optimal 1.53 9.72 1.28 36.4
Target 1.50 9.00 1.20 35.0

The optimal point was found by applying Genetic 
Algorithm in the previous formulation. Microsoft 
Excel® was used for the mathematical programming 
of problem and the Solver Evolutionary supplement 
was employed. After some runs executed with random 
initial solutions and GA parameters given in Table 5, 
it was observed the optimal solution converged to the 
same point. Therefore, this was characterized as the 
global optimal point. Table 6 presents these results, 



Strojniški vestnik - Journal of Mechanical Engineering 58(2012)5, 345-353

351Global Criterion Method Based on Principal Components to the Optimization of Manufacturing Processes with Multiple Responses

obtained with a cutting speed of 218 m/min, feed rate 
of 0.13 mm/rev and depth of cut of 1.24 mm.

3.3 Optimization by Global Criterion Method Based on 
Principal Components

Table 7 presents the correlation structure for Ra, 
Rt, Ct and MRR. Since significant correlations were 
identified (p-value less than 0.05), the application of 
GCM based on principal components as optimization 
strategy is justified.

Table 7. Correlation structure of the responses

Ra Rt Ct

Rt
0.876
0.000

Ct
–0.283 0.030
0.272 0.909

MRR
0.613 0.506 –0.701
0.009 0.038 0.002

Cells: Pearson correlation
          p-value

Table 8. Principal Component Analysis

PC1 PC2 PC3 PC4
Eigenvalues 2.534 1.215 0.205 0.046
Proportion 0.634 0.304 0.051 0.011
Cumulative 0.634 0.937 0.989 1.000
Eigenvectors PC1 PC2 PC3 PC4
Ra 0.570 -0.289 -0.552 0.536
Rt 0.500 -0.529 0.143 -0.670
Ct -0.347 -0.732 0.421 0.409
MRR 0.551 0.318 0.705 0.312

Performing the Principal Component Analysis for 
these responses (Table 8), it can be noticed that 93.7% 
of data are represented by two principal components. 
So, these new uncorrelated variables were used to 
substitute the original correlated responses.

Then, the objective functions for principal 
components were modeled taking the scores of each 
component obtained in the PCA. For this, the same 
procedure described in section 3.1 was employed. 
Eqs. (21) and (22) present such functions for PC1 
and PC2, which showed adj. R2 values of 94.18 and 
92.81%, respectively.
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Through Eqs. (8) and (9), the PC’s targets were 
calculated using data in Table 9. It resulted in values 
of -1.153 for PC1 and 2.077 for PC2.

Table 9. Used data to calculate the targets for principal components

Ra Rt Ct MRR
Mean 1.974 11.781 1.419 26.600
Std. dev. 0.280 1.622 0.396 9.707
Target 1.5 9.0 1.2 35
Standardization -1.692 -1.715 -0.554 0.865
Eigenvectors Ra Rt Ct MRR
PC1 0.570 0.500 -0.347 0.551
PC2 -0.289 -0.529 -0.732 0.318

Finally, the formulation for GCM based on 
principal components was built, showing the 
following format:

 Min G PC PC
PC =

− −
−







 +

−







1 153 1
1 153

2 077 2
2 077

2 2.
.

.
.

, (23)

subject to: V, f, d ≥ –1.682 , (24)

 V, f, d ≤ 1.682 , (25)

where GPC is the global criterion based on principal 
components, PC1 and PC2 are objective functions 
for the principal components, and V, f, d are the input 
parameters.

Replacing PC1 and PC2 in Eq. (23) by their 
objective functions, the final formulation is written as:
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subject to: V, f, d ≥ –1.682 , (27)

 V, f, d ≤ 1.682 . (28)

The Microsoft Excel® worksheet with Solver 
Evolutionary supplement and the Genetic Algorithm 
with parameters of Table 5 were also used to find the 
new global optimal point. These results are presented 
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in Table 10, obtained for a cutting speed of 212 m/
min, feed rate of 0.13 mm/rev and depth of cut of 1.33 
mm.

Table 10. Optimal results for 12L14 free machining steel turning 
obtained by GCM based on principal components

Responses
Ra [µm] Rt [µm] Ct [min] MRR [cm3/min]

Optimal 1.40 9.38 1.33 38.0
Target 1.50 9.00 1.20 35.0

Again, all optimized responses were established 
within the specification limits and relatively close to 
their targets. However, the global solution obtained 
with GCM based on principal components presented 
better surface finishing (lower roughness) and 
higher material removal. Although cutting time was 
higher, this solution was characterized as a more 
appropriate optimal point in relation to one obtained 
with the conventional GCM. Furthermore, this new 
optimal point was calculated taking into account the 
correlations between the original responses.

Fig. 2. Overlaid contour plot for the optimization of 12L14 free 
machining steel turning

Fig. 2 compares both optimal solutions with the 
feasible region for this problem. As easily noticed, the 
optimal point obtained with the conventional GCM, 
although seems a good solution, was established out 
of the feasible region. On the other hand, the solution 
found by GCM based on principal components, in 
addition to showing better practical results, was 
able to locate the optimal point inside the feasible 
region. The main argument for this fact is because 
the correlation structure of responses was considered 
in the second analysis. Thus, when correlations exist 
and are significant, the use of optimization strategies 

that do not consider this information can conduct the 
problem to solutions that do not represent the best 
process condition.

4 CONCLUSIONS

This work presented the Global Criterion Method 
based on principal components as an alternative to 
optimize manufacturing processes with multiple 
correlated responses. From previous analysis, it 
was observed that the correlations are important 
information for this kind of problem and its negligence 
can direct the optimal point to inappropriate locations.

The GCM based on principal components was 
successfully applied to the optimization of 12L14 
free machining steel turning process. An optimized 
condition with good surface finishing and good 
material removal was found for a cutting speed of 212 
m/min, feed rate of 0.13 mm/rev and depth of cut of 
1.33 mm. All optimized responses were established 
within the defined specification limits.

In comparison to the optimal point obtained 
with the conventional technique, the GCM based on 
principal components showed an optimal solution 
with better practical results in terms of roughness 
and material removal, but with a higher cutting time. 
In relation to the feasible region of the problem, the 
GCM based on principal components directed the 
optimal point to inside this region, while the solution 
found by conventional GCM stayed out of it. Due 
to these reasons, the optimal point found with GCM 
based on principal components was characterized as a 
more adequate solution.

Although the technique presented in this work 
has been effective to the optimization of 12L14 
free machining steel turning, it needs to be tested in 
other processes. Therefore, it is suggested for future 
research works that this strategy is applied and verified 
in others turning applications and other manufacturing 
operations, like milling, cutting or welding.
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