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A convolutional neural network (CNN) is proposed to learn multiple useful feature representations for a classification from low
level (raw pixels) to high level (object). Convolutional kernels are initialized by the learned filter kernels that come from sparse
auto-encoders. Unlike some traditional methods, which divide the feature abstracting and classifier training into two separated
processes, a discriminative feature vector and a single multi-class classifier of softmax regression are learned simultaneously
during the training process. Based on the learned high-quality feature representation, the classification can be efficiently per-
formed. A real-world case of surface defects on steel sheet, which evaluates the classification performance of the proposed
method, is depicted in detail. The experimental results indicate that the proposed method is quite simple, effective and robust-
ness for the classification of surface defects on hot-rolled steel sheet.
Keywords: convolutional neural networks, classification, surface defects, steel sheet, convolutional kernels, sparse auto-encoder

Konvolucijska nevronska mre`a (CNN) je predlagana za u~enje {tevilnih koristnih predstavitev pri klasifikaciji od nizkega
nivoja (grobe slikovne pike) do visokega nivoja (predmet). Konvolucijska jedra so inicializirana z nau~enimi filtrirnimi jedri, ki
izhajajo iz redkih samoenkoderjev. Razli~no od nekaterih klasi~nih metod, ki delijo funkcijo abstrakcije in trening klasifikacije
v dva lo~ena procesa, se vektor nediskriminativne funkcije v enostavnem ve~razrednem klasifikatorju regresije softmax, u~i
hkrati med procesom treninga. Na osnovi nau~ene predstavitve z visoko kvalitetno funkcijo, se lahko klasifikacija u~inkovito
izvede. Primer iz resni~nega sveta povr{inske napake na jekleni plo~evini, ki ocenjujejo zmogljivost klasifikacije je prikazan v
podrobnostih. Rezultati eksperimentov ka`ejo, da je predlagana metoda razmeroma preprosta, u~inkovita in robustna pri
klasifikaciji povr{inskih napak na vro~e valjani jekleni plo~evini.
Klju~ne besede: konvolucijske nevronske mre`e, klasifikacija, povr{inske napake, jeklena plo~evina, konvolucijska jedra, redek
samoenkoder

1 INTRODUCTION

With the development of industrial automation, com-
puter vision and machine learning, a machine-vision-
based inspection system for surface defects of steel sheet
has becoming more and more prevalent in the iron and
steel industry. Classification accuracy is the main con-
sideration in the inspection system, while a discrimi-
native feature representation of surface defects is the
foundation. How to extract a set of better feature repre-
sentations and design the appropriate classifier for
surface defects has been a hot research topic for many
years.1–8 A lot of methods about feature extraction and
classification for image have been developed 9–17, M. X.
Chu et al.16 extracted features of geometry, gray,
projection, texture and frequency-domain of defect in
steel, then an enhanced twin support vector machine was
adopted to realize the classification. A. Cord et al.12

proposed a classification method of statistical learning
based on a textural feature for defect of metallic surface.
S. Ghorai7 derived a set of good-quality defect
descriptors from wavelet feature set and applied support
vector machine to the classification and detection of the
defects. These traditional methods usually use hand-

crafted features, such as geometrical shape11,13,15,16,
grayscale1,13,16, texture3,10–12, local binary pattern8, wavelet
transform4–7,9 or their combinations2,11,16, followed by a
trainable classifier, such as artificial neural
networks9,11,14, support vector machine6–8,13,15 and so on.
They mainly include three stages: 1) Locating the
position of surface defects (Detection). 2) Computing a
large number of feature representations of surface
defects. 3) Training a classifier via optimized feature
vector and then predicting a new pattern by the trained
classifier (Classification). Recently, computer vision has
been disrupted by the use of convolutional neural
networks (CNNs). CNNs have been shown to give
incredible result and record-breaking performance on
some challenging problems.18–23 J. Masci et al.14

presented the max-pooling convolutional neural net-
works for the classification of steel defects. Z. Q. Zhao et
al.24 introduced the growing of convolutional neural
networks for plant-leaf identification. K. Xu et al.15 ex-
ploited the unsupervised convolutional neural networks
for vehicle-type classification. As the availability of
large datasets, fast growth in computing power such as
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availability of GPU and efficient algorithms such as
dropout18,20, CNNs have been widely used.24,25

Although the traditional methods have achieved
moderate results by means of some advanced features
and classifiers, they have three main drawbacks: 1) ma-
nually designed features depend on powerful expert
knowledge and complicated design method. 2) the de-
sign of features is done separately from the design of the
classifier, so the designed features might not be the best
for the classifier. 3) the design of features and classifier
are varying for different tasks. In order to overcome the
above shortcomings, the paper uses the CNNs to classify
the surface defects of steel sheet, which can directly
learn some better representative features from the labeled
images of surface defects by supervised learning.

The rest of the paper is organized as follows: Section
2 describes the basic methodology. The experiments are
discussed in Section 3. Finally, conclusions are drawn in
Section 4. Throughout the paper, we denote scalars, vec-
tors, matrices as the non-bold lower case letters, bold
lower case letters, and non-bold upper case letters, res-
pectively.

2 METHODOLOGY

CNNs can be considered as a special instance of arti-
ficial neural networks (ANNs), which are inspired by the
concept of simple and complex cells in the biological
visual cortex.26 The visual cortex contains some cells that
are only sensitive to a local receptive field.21,23 In contrast
to traditional fully connected ANNs, neurons or units in
CNNs are arranged for a squared feature map, and each
neuron of the feature map in each layer is only sparsely
connected to a small set of neurons in the previous layer.
CNNs are an end-to-end auto-learning model with a
minimal need for human design. It constructs a trainable
architecture that combinations of feature extractor and
classifier and operates on raw pixels of two-dimensional
image directly. The extensive use of shared weight in
CNNs can reduce the number of parameters. As is well

known, higher-level features are class-sensitive, whereas
lower-level features are generic. Therefore, the high-
level feature representations are more useful and critical
for classification.23 CNNs are good at extracting and
forming the useful hierarchical feature representations
from low level to high level. These discriminative feature
representations can improve the classification perfor-
mance.28

2.1 Architecture of model

As shown in Figure 1, our model is a structure of 7
layers. A grayscale image of 40×40 is given as one
channel input to the first convolutional layer with 20
filter kernels of 5×5. The resulting 20 feature maps of
36×36 are then passed to the first max-pooling layer,
which takes the maximum over 2×2 spatial regions with
a stride of 2. The output is a set of 20 feature maps of
18×18. They are followed by the second convolutional
layer with 1000 filter kernels of 5×5. The resulting 50
feature maps of 14×14 are then passed to the second
max-pooling layer, which takes the maximum over 2×2
spatial regions with a stride of 2. The output is a set of
50 feature maps of 7×7. They are followed by the third
convolutional layer with 20,000 filter kernels of 4×4.
The resulting 400 feature maps of 4×4 are then concate-
nated into a 1D feature vector of 6400×1. This feature
vector is then fed into a classification layer that produces
a 1D output vector of 8×1, each element represents the
confidence of each class. There are four different kinds
of layer in the model as follows:

1) Input layer –
The input layer employs raw pixels of image directly.

2) Convolutional layer –
Convolutional layer achieves a two-dimensional con-

volution operation for previous feature maps. The activa-
tion of output feature maps is obtained by summing one
or more convolutional responses that are passed through
a pixel-wise activation function. Each convolutional
layer has many filter kernels that generate some different
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Figure 1: The schematic diagram of the architecture of the model. The width, height and depth of the block denote the width, height and numbers
of feature maps, respectively. The number above the solid black arrow indicates the size of the convolutional filter kernel.
Slika 1: Shematski prikaz zgradbe modela. [irina, vi{ina in globina bloka ozna~ujejo {irino, vi{ino in {tevilo funkcijskih zemljevidov. [tevilka
nad ~rno pu{~ico ka`e velikost filtra konvolucijskega jedra.



output feature maps, and different filter kernels can ex-
tract different feature representations, such as edges,
crossings and corners.28 As shown in Figure 2, there are
many kinds of activation function, such as sigmoid,
hyperbolic tangent and rectified linear units (ReLUs).18

ReLUs are only bound by their minimum value zero and
can represent any non negative real value. At the same
time, ReLUs have good sparsity properties, since having
a zero activation value, as well as limiting the saturation
of the output and diffusion of the gradient during the
training process. Unlike the traditional CNNs 22, the sim-
plest activation function of linear units (LUs) is em-
ployed in our model. The derivative of LUs is one that
can greatly reduce the calculation complexity.

3) Subsampling layer
A subsampling layer achieves a "pooling" operation,

which is a form of dimensionality reduction and non-
linearity. Feature pooling makes activation of a feature
map less sensitive to the exact location of the pixel of an
image and the specific structure of the model. Feature
pooling allows feature representations of a higher layer
to preserve the most critical feature information and
reduce the computational burden without losing too
much information.22,29 The output feature maps of the
subsampling layer are given by a certain activation of the
non-overlapping or overlapping square regions. There
are some pooling methods, such as average-pooling,
max-pooling and so on. In this paper, max-pooling is
employed.

4) Classification layer
The classification layer employs softmax regres-

sion.23 It produces a probability distribution over the
output classes and ensures each output can be interpreted
as the probability of a certain input belonging to a certain
class. For a given unlabeled input image, the label of the
maximum output corresponds to its class.

2.2 Learned filter kernel

The training of CNNs is a highly non-convex optimi-
zation problem, the initialization of weights largely
affects the accuracy and convergence speed of the train-
ing.21 The initialization of weights by a sparse auto-
encoder23 tends to set the model in a better initial state

than random initialization, leading to impressive gain in
the classification performance.29–31 A sparse auto-enco-
der of three layers is utilized to learn lots of the filter
kernels. A training set is generated by randomly sampl-
ing 5×5 image patches from the image of surface defects
of steel sheet, and 24,000 patches are sampled in total.
Figure 3 shows some typical patterns that refer to the
learned weights between the input layer and the middle
layer. As we expected, the learned filter kernels mainly
preserve the edges or corners at different positions and
orientations; this is consistent with much prior work.26,30

The sparsity regularization in the auto-encoder is
necessary for learning these edges or corners. With the
purpose of not being stuck in local minima and speeding
up convergence, the filter kernels of the convolutional
layer in our model are initialed by these learned filter
kernels.

2.3 Algorithm

There is a training dataset [x(m), y(m)] of N samples
with c classes, x(m)�Rd, y(m)�Rc. The structure of fully
connected ANNs of three layers is shown in Figure 4.

2.3.1 Back-propagation

1) Forward-propagation pass
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Figure 3: Visualization of the weights that were learned by a sparse
auto-decoder of three layers
Slika 3: Vizualizacija ute`i nau~ene z redkim samoenkoderjem treh
plasti

Figure 2: Four kinds of active function: a) sigmoid, b) hyperbolic tangent, c) ReLUs, d) LUs
Slika 2: [tiri vrste aktivnih funkcij: a) sigmoidna, b) hiperboli~na tangenta, c) ReLUs, d) LUs



For a single training sample, the forward-propagation
step is given by the following Equations (1), (2), (3) and
(4):
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where, f(·) denotes the activation function of a unit, bj
(l)

and bk
(l+1) denote the bias of the unit j in layer l and the

unit k in layer l+1, respectively.
In order to take better advantage of the parallelism in

matrix operations, a vectorization is employed. For N
training samples, the vectorization form is given by the
following Equations (5) and (6).

A f W A Bl l l l( ) ( ) ( ) ( )( )= +−1 (5)

A W A B Vl l l l( ) ( ) ( ) ( )exp( ) /+ + += +1 1 1 (6)

where, A(l–1), A(l), A(l+1), W(l), W(l+1), B(l) and B(l+1) are
nl-1×N, nl×N, nl+1×N, nl×nl-1, nl+1×nl, nl×N, nl+1×N
matrices, respectively. Each column of bias matrix B(l)

and B(l+1) is equal. For V of nl+1×N matrix, each element
in the same column equals l2 norm of each column of
exp(W(l+1) A(l)+B(l+1)), so exp(W(l+1) A(l)+B(l+1))./ V repre-
sents division element-wish for two matrices.

2) Back-propagation pass
The data matrix X contains the entire training dataset

by concatenating each training sample x(m) to form the
column of X, so X is a d×N matrix, the m-th column of X
corresponds to the m-th training sample. Suppose the
loss function is softmax regression, the overall loss func-
tion for N training samples is given by the Equation (7):
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Figure 5: Sample images of surface defects of hot-rolled steel sheet: a) crazing, b) folding, c) inclusion, d) original, e) patch, f) pitted surface,
g) rolled-in scale, h) scratch. Surface defects of steel sheet are different in direction, scale, etc.
Slika 5: Vzor~ni posnetki povr{inskih napak na vro~e valjani jekleni plo~evini: a) mre`a razpok, b) zavihek, c) vklju~ek, d) original, e) nalepek,
f) jami~asta povr{ina, g) uvaljana {kaja, h) raza. Povr{inske napake na jekleni plo~evini se razlikujejo v smeri, luske in tako naprej.

Figure 4: The structure of fully connected ANNs of three layers (bias
not shown). There are nl–1 units (blue), nl units (purple) and nl+1 units
(red) in layer l–1, layer l and layer l+1 respectively, where, suppose
layer l+1 is a classification layer. wji

(l) and wkj
(l+1) denote the

connection weight, ai
(l–1), aj

(l) and ak
(l+1) denote the output value of a

unit.
Slika 4: Struktura povezane ANN na treh plasteh (razlika ni prika-
zana). Predstavljene so enote nl–1 (modro), nl (vijoli~no) in nl+1
(rde~e) v plasti l–1, plasti l in plasti l+1, pri ~emer je plast l+1 do-
mnevno klasifikacijska plast. wji

(l) in wkj
(l+1) ozna~ujejo ute`i pove-

zave, ai
(l–1), aj

(l) in ak
(l+1) ozna~ujejo izhodno vrednost enote.
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where, the operator � denotes the Hadamard produce
operation (the component-wise multiplication), ||·||F
denotes the Frobenius-norm, the first term is the error
term, the second term is the regularization term that
decreases the magnitude of weights and helps prevent
overfitting of the model, � is the weight decay (sparsity
regularization) parameter that balances the relative
importance of these two terms in the optimization pro-
cess. The model parameters � (weights and biases) are
changed in a direction that will reduce the value of the
loss function. During the training process, the real out-
puts of the model are compared with the target output,
and any difference is used for training the � throughout
the network. Suppose the ground truth matrix (label
matrix) G is a c×N matrix, the m-th column gm = [0, ...,
1, ..., 0]T�Rc corresponds to the target output vector
(label vector) of the m-th training sample, each column
has only one non-zero element 1, the position of 1 indi-
cates its class label. The optimization of J is usually
non-convex and as large as the complex architecture of
CNNs, which needs to be trained from thousands or
millions of samples. Therefore, the minimization of J
often uses a variant of stochastic gradient descent,
which is called mini-batch stochastic gradient descent.32

For each unit in each layer, we want to compute the
sensitivity, which measures how much that unit is res-
ponsible for any error of output. Differentiating Equation
(7), the sensitivity of the unit is given by the following
Equations (8), (9) and (10):

Δ ( ) ( )( )l l

N
G A+ += −1 11

(8)

Δ Δ( ) ( ) ( ) ( )( ) ' ( )l l T l lW f Z= + +1 1 (9)

Δ Δ( ) ( ) ( ) ( )( ) ' ( )l l T l lW f Z− −=1 1 (10)

The partial derivative of weight is given by the
following Equations (11) and (12):

Δ ΔW A Wl l l T l( ) ( ) ( ) ( )( )+ + += +1 1 1� (11)

Δ ΔW A Wl l l T l( ) ( ) ( ) ( )( )= +−1 � (12)

where, �(l+1), �(l), �(l–1), �W(l+1) and �W(l) are nl+1×N,
nl×N, nl-1×N, nl+1×nl, nl×nl-1 matrix respectively.

Therefore, the weight update rule is given by the
following Equations (13) and (14):27,32

W W Wl l l( ) ( ) ( )= − ∇
 (13)

W W Wl l l( ) ( ) ( )+ + += − ∇1 1 1
 (14)

where, 
 is the learning rate.

2.3.2 Convolution and pooling

1) Convolution
Apply the filter kernel wji

(l) for the previous feature
map ai

(l–1) and then apply the activation function f(·), the
output feature map is computed as follows:
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where, the operator * denotes the two-dimensional con-
volution operation, Mj denotes the set of input feature
map, ai

(l–1) and aj
(l) denote the i-th feature map of layer

l-1, the j-th feature map of layer l, respectively, bj
(l) is

the basis for the j-th feature map of layer l. Suppose the
size of ai

(l–1) is W×H, the size of wji
(l) is F×F, stride is F,

so the size of aj
(l) is (W–F+S)/S×(H–F+S)/S. Suppose

the input feature maps I is a 3D tensor of H×W×m,
where H, W and m are the height, width and number of
input feature maps respectively. The convolutional
kernels K is a 4D tensor of F×F×m×n, where F is the
size of the convolutional kernel and n is the number of
output feature maps. We assume the convolution is
performed with no padding zeros and the stride is equal
to 1. Then, the output feature maps of a convolutional
layer O are given by the following Equation (16):
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where, j = 1, 2, ..., n, O is a 3D tensor of (H-F+1)×
(W-F+1)×n, which equals I*K.

2) Pooling
Let ak

(l+1) denotes the k-th feature map of layer l+1
and the size is W×H, the size of the pooling region R is
r×r, the stride is S, the output feature map is given by the
following Equation (17):

a f
n

a bk
l

j
l

k
l

i M k

( ) ( ) ( )) ( )+ +

∈
= +
⎛
⎝
⎜

⎞
⎠
⎟∑1 11

down ( (17)

where the operator down(·) denotes the down-sampling
operation, Mk denotes the set of input feature map,
bk

(l+1) is the basis for the k-th feature map of layer l+1.
Therefore, the size of ak

(l+1) is (W-r+S)/S×(H-r+S)/S.

3) Computing the gradients
Suppose layer l–1 is a subsampling layer, layer l is a

convolutional layer, layer l+1 is a subsampling layer,
�i

(l–1), �j
(l) and �k

(l+1) denote the sensitivity of the i-th
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Figure 6: The same image of the sample is polluted by Gaussian noise
with different values of SNR: a) SNR = 35 dB, b) SNR = 25 dB,
c) SNR = 15 dB
Slika 6: Ista slika vzorca je onesna`ena z Gaussovim hrupom, z
razli~no vrednostjo SNR: a) SNR = 35 dB, b) SNR = 25 dB, c) SNR =
15 dB

�



feature map of layer l-1, the j-th feature map of layer l,
the k-th feature map of layer l+1, respectively.
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where, the operator � denotes the two-dimensional cor-
relation operation, the operator up(·) denotes the
up-sampling operation, Mi denotes the set of connection
of the i-th feature map of layer l-1 and some feature
maps of layer l, wji

(l) denotes filter kernel between the
i-th feature map of layer l-1 and the j-th feature map of
layer l.33

After computing ∇wji
(l), the filter kernel wji

(l) are up-
dated by using gradient descent as follows:

w w wji
l

ji
l

ji
l( ) ( ) ( )= − ∇
 (21)

where, 
 is the learning rate.

3 EXPERIMENTS

The classification performance of the proposed
method was evaluated by using the practical surface
defects of steel sheet.

3.1 Dataset of surface defects

In order to evaluate and certify the classification
performance of our model, a dataset of surface defects
was built from a hot-rolled steel sheet production line.
As shown in Figure 5, the dataset of surface defects of
hot-rolled steel sheet comprises seven kinds of typical
surface defects (Crazing, Folding, Inclusion, Patch,
Pitted Surface, Rolled-in Scale and Scratch) and one
kind of zero surface defects (Original). There are 300
grayscale images per class and the size of each image is
200 pixels × 200 pixels. Each pixel of the image repre-
sents the grayscale value in the range of (0, 255).

3.2 Data augmentation and preprocessing

To avoid over-fitting and lead to a better generaliza-
tion ability, we artificially increased the size of the
dataset.18,20 We used three affine transforms as follows:
1) Rescaling: scale each image from 200×200 to 40×40;
2) Rotation: rotate each 40 × 40 image by 90°, 180°,
270° counterclockwise, respectively; 3) Flipping: flip
each 40×40 image for left and right, up and down, res-
pectively. Therefore, there are 1800 samples for each
class, 14400 samples for the whole dataset. As non-uni-
form brightness of image, each pixel of the image of
40×40 was normalized to have zero mean and unit
variance through the whole dataset. It is beneficial to
improve the stability of training and increase the conver-
gence speed.29

3.3 Training details

We evaluated our model with different numbers of
training samples, different sizes of image, different batch
sizes, different epochs, different filter kernels and diffe-
rent activation functions on the aforementioned dataset.
To evaluate the robustness against the failure of the
image, additive Gaussian noise was added to the image,
which simulated the failure behavior of the image. We
corrupted 10 % of the random test samples from each
class, every chosen image was added to Gaussian noise
with three different values of signal-to-noise ratio
(SNR), such as 35 dB, 25 dB and 15 dB. As shown in
Figure 6, the same image of the sample is polluted by
Gaussian noise with a different value of SNR.

All experiments were conducted using the open
source VLFeat’s MatConvNet library34 in combination
with NVIDIA’s cuDNN library.35 Training was done on a
standard desktop with a NVIDIA GTX 970 GPU card
with 4GB memory. To deal with random influence, we
did every experiment 10 times. The filter kernels of the
first convolutional layer were initialed with learned filter
kernels by the sparse auto-encoder, the other filter
kernels were all initialized by sampling from a standard
normal distribution and the biases of the feature map
were all initialized to zero. The model was optimized
using mini-batch stochastic gradient descent over the
whole training dataset with the following settings: a
learning rate was initialized at 0.001 and decreased by
50 % every 50 epochs, the momentum was set to 0.9 and
the parameter of the l2-norm weight decay was set to
0.0005.

3.4 Results

Some judicious techniques or tricks such as data
augmentation, pre-training, and sparsity, enabled us to
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Figure 7: The classification error versus training samples and epochs,
where the number enclosed in parenthesis is the test sample.
Slika 7: Napaka klasifikacije v odvisnosti od vzorca in trajanja, kjer je
{tevilo v oklepaju preizkusni vzorec.



train a large model with a relatively small dataset. In
Figures 7 and 8, the batch-sizes is 50. In Figure 9,
Tables 3 and 4, the training samples, the test samples
and the batch-sizes are 1000, 800, 50, respectively.

Table 1: The classification error versus batch sizes, train samples and
epochs, the number enclosed in parenthesis is the test samples. The
best result is in bold font.
Tabela 1: Klasifikacija napake v primerjavi z velikostjo serij, serijo
vzorcev in ~asom trajanja, {tevilo v oklepaju je vzor~no. Najbolj{i
rezultat je pisan krepko.

Batch Sizes Train
Samples Epochs

Error Rate (%)
Train Test

50

200 (100)

50 22.8250 21.5000
100 1.2300 5.9250
300 0 3.8250
500 0 3.5750

800 (1000)

50 1.8663 3.3734
100 0.0025 2.0438
300 0 1.6625
500 0 1.5484

1000 (800)

50 0.5675 1.3167
100 0 0.9292
300 0 0.7333
500 0 0.6292

200

200 (100)

50 85.4550 89.7000
100 73.9950 77.9750
300 2.2000 6.2250
500 0 4.4000

800 (1000)

50 39.8975 40.4734
100 4.5600 5.8750
300 0.0800 2.1594
500 0 1.8219

1000(800)

50 9.7658 8.1167
100 2.1042 2.7375
300 0.0500 0.8708
500 0.0192 0.8000

Table 2: The comparisons of classification error between learned and
random filter kernel, the number enclosed in parenthesis is the test
samples.
Tabela 2: Primerjave klasifikacij napak med nau~enim in naklju~nim
konvolucijskim filtrom, {tevilo v oklepajih je vzor~na vrednost.

Train
Samples

Batch
Sizes Epochs Kernel

Type
Error Rate (%)
Train Test

200 (100)
50 500

Learned 0 3.5750
Random 0 9.3500

1000
(800)

Learned 0 0.6292
Random 0 1.7917

As expected in Table 1 and Figure 7, the more
epochs and training samples, the lower the error we
obtain. In addition, the marginal utility of epochs dimi-
nished at about 500, so we only use 500 epochs in the
experiment. A smaller batch-size can improve the classi-
fication performance, but may cost more time. A
moderate batch-size is used to smooth out the iteration
and make better use of GPU. The model may bounce out
of some local minima from perturbations of smaller
batch-size. Therefore, a trade-off can be made between

precision and speed. Our model achieves approximately
99.9 % in the classification accuracy of the training and
approximately 99 % in the classification accuracy of the
test.

Table 3: The comparisons of classification error based on different
activation functions, the name of activation function enclosed in
parenthesis is used in the model.
Tabela 3: Primerjave kvalifikacijskih napak na podlagi razli~nih
aktivacijskih funkcij, v oklepajih je navedba aktivacijske funkcije, ki
je uporabljena pri modelu.

Method Error Rate (%)
CNNs (Sigmoid) 12.8721

CNNs (Hyperbolic Tangent) 18.1129
CNNs (ReLUs) 9.5018

Our Model (LUs) 0.6292

Table 4: The classification error versus Gaussian noise with different
value of SNR
Tabela 4: Klasifikacija napak v primerjavi z Gaussovim {umom z
razli~no vrednostjo SNR

SNR (dB) Error Rate (%)
35 0.9543
25 1.4092
15 5.7718

As shown in Table 2 and Figure 8, the performance
gap of the classification error of the test between learned
and random filter kernels is approximately 5.8 % when
the training samples are 200. When the training samples
are 1000, the gap is approximately 1.2 %. It shows that
unsupervised pre-training has a positive impact for
classification performance, especially when the training
samples are scarce. The learned filter kernels can sub-
stantially increase the classification result. Astonish-
ingly, random filter kernels can also achieve decent
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Figure 8: The comparison of classification error between learned and
random filter kernels, where the number enclosed in parenthesis is the
test samples.
Slika 8: Primerjava klasifikacije napak med nau~enimi in naklju~nimi
konvekcijskimi filtri, kjer je {tevilo v oklepajih vzor~no



performance, as long as the structure of the model is
moderate.

For the certain CNNs, the classification performance
varies with the size of the image. A larger size of image
needs more training samples to avoid overfitting, a
smaller size of image loses discriminative information of
different classes of the image. As the structure of the
model is fixed, these training samples are insufficient to
learn so many parameters for a larger size of image, so it
may be overfitting. Therefore, the classification error of
a larger size of image is higher than a smaller size of
image. As shown in Figure 9, the classification error of
40×40 is lower than 140×140 by approximately 9 %.

As shown in Table 3, our model with activation
function of LUs is able to obtain a lower classification
error than other activation functions.

As we can see from Table 4, although the classifi-
cation error has increased with the value of SNR drops,
our model achieves a moderate classification accuracy,
so it can be concluded that the proposed method is
robustness to failure of the image of the sample.

4 CONCLUSIONS

In the paper we present a simple model of CNNs to
tackle the familiar task for the classification of surface
defects of steel sheet. Unlike existing methods, our
approach achieves the dual goal of extracting features
and designing the classifier simultaneously. With experi-
ments on the dataset of surface defects of steel sheet, we
demonstrate our approach. The experimental results
show that with a small dataset and a small model, our
approach is able to achieve moderate accuracy in the
classification of surface defects of steel sheet, the avera-
ge classification accuracy can be up to 99 %. A user can
select some parameters, such as the number of layers, the
size of the image and so on, depending on the trade-off
between classification performance and computational

load. Although the results have been demonstrated in
hot-rolled steel sheet, it may be suitable for other
textured material such as wood, paper, plastic and fabric.
For future work, we will collect more kinds of surface
defect for other kinds of steel sheet, such as cold-rolled
sheet, silicon sheet, galvanized sheet, and develop an
on-line inspection system for the surface defects of steel
sheet for industrial application.
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