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A mathematical model and a numerical simulation of the directional solidification of a leaded red brass flange are presented.
The mathematical model is based on physically realistic assumptions and it is solved by the finite-difference method, implicit
alternating directions method. This method has great accuracy and is of second order with regard to the approximation of time
and space. The initial conditions are an analytical solution of the heat conduction equation in the case of the contact of two
semi-infinite media. The latent heat of fusion incorporated into the equation for the specific heat capacity of metal, and
temperature dependent thermophysical properties of all materials in the system mould–casting–core–chill, enables us to
accurately numerically represent the flange solidification, which is casting and a common example in foundry practice. The
simulation of the directional solidification is a modern and scientific way of pointing to casting points in which the defect
occurrence is possible, and how to prevent them using the chill.
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Predstavljena sta matemati~ni model in numeri~na simulacija usmerjenega strjevanja prirobnice iz rde~e svin~eve medenine.
Podlaga matemati~nega modela so realne fizikalne predpostavke, model pa je razvit z metodo kon~nih razlik, implicitno metodo
z alternativno smerjo. Ta metoda je zelo natan~na in je drugega reda glede na pribli`ek ~asa in prostora. Za~etni pogoji so
analiti~ne re{itve ena~be za toplotno prevodnost za primer kontakta dveh semineskon~nih medijev. Latentna talilna toplota, ki je
uporabljena za specifi~no toplotno kapaciteto kovine in termofizikalne lastnosti vseh materialov v sistemu forma – litje – jedro –
kokila omogo~ajo, da se numeri~no modelira strjevanje prirobnice, torej litje, kar je splo{en primer dela v livarni. Simulacija
usmerjenega strjevanja je moderna metoda, da se znanstveno opredeli mesta ulitka, kjer lahko nastajajo napake in kako te
napake s kokilo prepre~iti.
Klju~ne besede: matemati~ni model, usmerjeno strjevanje, prirobnica, svin~eva rde~a medenina, grafitna kokila

1 INTRODUCTION

The directional solidification of castings of a given
geometry may be obtained using risers or chills. Risers
are reservoirs of molten metal and feed the casting in the
liquid state. In the case of classical risers, only 17 pct. of
the initial volume of the riser is available for the feeding
of the casting 1. In contrast to risers, chills better lead
away the heat and in this way speed up the solidification.
Usually, they are used when the placement of risers is
impossible. However, in the case of nonferrous metals

this is not a rule. In this way, for example, in the inve-
stigated system of a leaded red brass flange, directional
solidification is obtained using a graphite chill. With the
placement of an appropriate chill, the hot spot is shifted
in areas of the casting which are later machined. This is
desirable because the hot spot solidifies last, and in their
place the occurrence of casting defects (e.g., shrinkage
cavity, porosity etc.) is possible. The investigated system
is complex because it consists of a flange, a mould core
and a chill, and it is shown in Figure 1. For a given
system the mathematical model of the solidification is
formulated and investigated.

2 MATHEMATICAL MODEL

In the development of the mathematical model, the
following partial differential equation of heat flow
corresponding to the flange (Figure 1) 2 should be
solved:
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Since for the horizontal axis of the flange symmetry r
= 0, equation (1) should be modified according to L’
Hospital’s rule considering the equation:
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Figure 1: Flange and graphite chill with the corresponding dimensions
Slika 1: Prirobnica in grafitna kokila z dimenzijami
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Initial conditions

The mould temperature and the temperature of its
outer side are equal to Ts, whereas the temperature of the
metal is equal to the casting temperature TL. The initial
temperature at the mould/casting boundary interface can
be obtained by solving Fourier’s differential equation for
heat flow through the contact area of two semi-infinite
media:
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The derivation of eq. (3) is given in Appendix 2.

Boundary conditions

The outer mould surface maintains a constant tem-
perature Ts. For the contacts mould/metal, metal/core,
mould/core, metal/chill, mould/chill and chill/core area
there are continuous heat flows for which the boundary
condition of the fourth type holds 3:
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Thermophysical properties of the material

It has been assumed that the thermal properties of the
mould, metal, core and chill are temperature dependent 4,
which is as shown in Figures 2 to 9.
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Figure 2: Temperature-dependent thermal conductivity of the leaded
red brass flange
Slika 2: Odvisnost toplotne prevodnosti od temperature za prirobnico
iz svin~eve rde~e medenine

Figure 4: Temperature-dependent thermal conductivity of the graphite
chill
Slika 4: Odvisnost toplotne prevodnosti od temperature za grafitno
kokilo

Figure 3: Temperature-dependent specific heat capacity of the leaded
red brass flange
Slika 3: Odvisnost specifi~ne toplotne kapacitete od temperature za
prirobnico iz svin~eve rde~e medenine

Figure 5: Temperature-dependent specific heat capacity of the graphi-
te chill
Slika 5: Odvisnost specifi~ne toplotne kapacitete od temperature za
grafitno kokilo



3 IMPLICIT ALTERNATING DIRECTION
METHOD

Differential heat-flow equations (1) and (2) with the
corresponding initial and boundary conditions have been
numerically solved using the implicit alternating
direction method 5,6. The method utilises the division of
the time interval into two steps.

In the first half of the time interval the equation is
solved implicitly for z and explicitly for the r direction.
The procedure is reversed in the second half of the time
interval.

Consequently, for the differential equation (1) and the
first half of the time interval �t/2 we have:
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Whereas for the second �t/2 we obtain:
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The numerical solution for the differential equation
(2) of the heat flow for the first �t/2 is:
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and for the second �t/2:
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The use of the implicit alternating direction method
results in a system of simultaneous linear algebraic
equations with the variables v1, v2,…, vn of tri-diagonal
form:

b1 v1 + c 1 v2 = d1

a2 v1 + b2 v2 + c2 v3 = d2

a3 v2 + b3 v3 + c4 v4 = d3

………………………
ai vi-1 + bi vi + ci vi+1 = di (14)
………………………
aN–1 vN–2 bN–1 vN–1 + cN–1 vN = dN–1

aNvN–1 + bN vN = dN

The special efficient algorithm for solving the
tri-diagonal system of equations is 7:
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Figure 9: Temperature-dependent temperature diffusivity of the core.
Slika 9: Odvisnost toplotne difuzivnosti od temperature za jedro

Figure 8: Temperature-dependent thermal conductivity of the core
Slika 8: Odvisnost toplotne prevodnosti od temperature za jedro

Figure 7: Temperature-dependent temperature diffusivity of the mould
Slika 7: Odvisnost toplotne difuzivnosti od temperature za formo

Figure 6: Temperature-dependent thermal conductivity of the mould
Slika 6: Odvisnost toplotne prevodnosti od temperature za formo
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The tri-diagonal coefficients that give the algorithm
of the flange solidification in a sand mould are presented
in Appendix 3. Based on the presented algorithm a
computer program was written in FORTRAN 77 and
solved on an Athlon AMD 64 computer.

4 FLOW DIAGRAM

A detailed flow diagram is shown in Figure 10a and
10b.

The main feature of the program is the use of two
temperature matrixes, namely T and T*. The first matrix
contains the temperatures at the start and the end of the
time step, and the second contains the temperature at the
end of first �t/2. Initial values are assigned to the
program variables and constants. The program module
TYP provides for the initial values of the temperatures,
of particular net points as well as for the standardization
of all the points in the mould, the casting, the chill core
and their boundary interfaces. The module PRINT 1
prints out the initial temperature distribution. The system
of tri-diagonal equations is then solved firstly, row by
row (module ROWS), and then column by column
(module COLS). The results are periodically printed
over the whole geometry of the casting, the mould, the
chill and the core (module PRINT 1) or over the casting
geometry only (module PRINT 2) until the prescribed
time tmax.

5 DISCUSSION

Leaded red brass (alloy C83600) has the following
composition: 85 % Cu, 5 % Sn, 5 % Pb and 5 % Zn 8.
The alloy C83600 is used not only for flanges, but also
for valves, pipe fittings, water pumps’ meter housings
and impellers, small gears, high-quality plumbing goods,
statuary and plaques. These applications are possible
because of its corrosion resistance, machinability,
strength, bearing properties, colour and the excellent
castability of the alloy.

The simulation of the solidification of the leaded red
brass flange in a sand mould is carried out by the space

steps �z = 15 mm and �r = 7 mm and the time step �t =
5 s to tmax = 600 s.

The casting temperature was 1180 °C and the initial
temperature of the mould, the core and the chill was 25
°C. The initial temperature at the sand/casting interface
was 1057 °C, on the casting/core interface it was 1013
°C, and at the casting/chill interface it was 577 °C. On
the basis of successive temperature print outs for particu-
lar net points, a solidification time of 367 s was obtained.
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Figure 10: Flow diagram
Slika 10: Flow diagram



Using the isosolidus (854 °C) shift, as seen in Figure 11,
it can be concluded that the potential defect site is
obviously the point of the final solidification of the heat
centre, i.e. in the vicinity of the core.

The accuracy of the simulation is limited, depending
on the assumptions used in the mathematical model, the
method of the numerical analysis and the values of ther-
mophysical material properties used. Several assump-
tions were used in the elaboration of the mathematical
model. The most important are as follows: the complete
heat-transfer rate, a casting temperature equal to the
initial temperature of the metal in the mould, and a
mould/casting interface with perfect thermal contact.
The first assumption restrains the analysis to the
mould-casting-core-chill system with heat conduction
only, i.e., partial heat flows associated with the mould
and core moisture are not considered. The second
assumption is the simplification introduced to avoid a
complex consideration of the metal flow through the gate
system and the mould cavity and the matching heat
transfer. The assumption of a perfect thermal contact on
the interface is acceptable because there is only a partial
appearance of a gaseous clearance, and therefore in the
mathematical formulation the boundary condition of the
fourth kind is usually taken as valid. The partial
differential equation for the heat flow is solved using a
numerical method of finite difference – the implicit
alternating direction method, which was chosen because
of its high accuracy during the approximation of both
time and space. Insufficient knowledge about the ther-
mophysical properties of the material, especially at high
temperatures, has a strong influence on the simulation of
the solidification. It holds especially with respect to the
thermal properties of the mould and the core material,
which can be determined only experimentally. Moreover,
the values for the thermal properties at higher tempe-
ratures show a considerable a dissipation.

6 CONCLUSIONS

A numerical simulation of the directional solidifi-
cation of a leaded red brass flange was carried out on the
basis of a suitable mathematical model. The complex
model system is composed of four materials: the mould,
the core, the chill and the casting of comparatively
complicated geometry. The mathematical model of soli-

dification was developed assuming thermal conduction
as only heat flow in the system, which is considered as a
physically real assumption. A differential equation for
the heat flow suited to the flange’s geometry was
modified and numerically solved by the use of implicit
alternating direction method. The temperature depen-
dence of the thermophysical material’s properties was
taken into account. Based on the obtained algorithm a
computer program written in FORTRAN 77 for an
Athlon AMD 64 computer was used for the simulation of
the solidification. It was determined that the complete
solidification takes 367 seconds. The progress of the
solidification as well as the hot spot, i.e., the site of any
potential shrinkage cavity, can be determined by a shift
of isosolidus.
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Appendix 1

Abbreviations used:
a –- temperature conductivity
ai, bi, ci, di – coefficients adjoining unknowns in a tri-dia-

gonal system of algebraic equations
cp – specific heat capacity at constant pressure
k – thermal conductivity
n – vertical direction
r – space coordinate
t – time
T – temperature
vi – unknown in system of simultaneous equations
z – space coordinate

Appendix 2

The following partial differential equation of heat
flow with the appropriate initial and boundary conditions
must be solved to derive the equation for the temperature
distribution at the mould/metal interface:
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Figure 11: Progress of the isosolidus (854 °C) after (150, 240 and
300) s
Slika 11: Napredovanje izotr. (854 °C) po (150, 240 in 300) s
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where M is a positive real constant.
The equation of heat flow should be solved for the

case of the contact of two semi-infinite media. The
partial differential equation (21) must be transformed
into a common differential equation by the Laplace
transform defined as 9:
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By passing from the Laplace region into real space,
we have:
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where the error function is defined as 10:
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The temperature gradient along the x-axis is:
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Two semi-infinite media (mould and metal) are in
interfacial contact and the boundary condition of the
fourth kind is valid:
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By including the proper temperature gradients:
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Finally, the initial temperature distribution on the
boundary mould/metal surface is obtained:
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Appendix 3

The constants, which in tri-diagonal coefficients, are:
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Tri-diagonal coefficients

1. Point (i,j) in the mould, metal core or chill
– first �t/2:
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