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Abstract. Condor, as a high-throughput distributed computing system, is used in a two-layered
Support Vector Machine (SVM) implementation of the classification problem. The complexity of the
SVMs training algorithm increases with respect to the number of samples. The data are split into
subsets and the solution described reduces the training time by optimizing the first layer SVMs

separately on a cluster of computers. As a result, a smaller subset of support vectors from partial

results is used to optimize the second layer SVM. For the experiments on a large data set (Forest
data), the distributed implementation of two-layered SVMs in Condor shows a significant

improvement of the training time by keeping or even improving the error performance of a single

SVM classifier.
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Izvedba dvo-nivojskega SVM Kklasifikatorja v sistemu

Condor

Povzetek. Predstavili bomo porazdeljen upravljalski
sistem Condor, ki je uporabljen za dvonivojsko izvedbo
modela SVM (Support Vector Machine) pri reSevanju
problemov klasifikacije. Kompleksnost optimizacijskega
algoritma SVM zelo hitro narasca s Stevilom ucnih
vzorcev. Ucni vzorci so nakljuéno razvrSceni v enako
velike podmnozice, ki so uporabljene za porazdeljeno
ucenje prvega nivoja modela SVM v gruéi ra¢unalnikov.
Rezultat prvega nivoja je bistveno manj$a mnozica u¢nih
vzorcev, imenovanih ’support vectors’, ki jo uporabimo
za ucenje drugega nivoja modela SVM.

S poskusi dvonivojskega modela SVM in uporabo sis-
tema Condor smo ugotovili, da lahko za obsezne mnozice
vzorcev (Forest data) bistveno skrajSamo ¢as ucenja in
v primerjavi z enim modelom SVM zagotovimo enako
natanc¢nost klasifikacije ali jo celo izboljsamo.

Kljuéne besede: porazdeljeno

racunanje, Condor

SVM, razvricanje,

1 Introduction

For many research projects it is common to have
problems that require days or weeks of computation
on personal computer to solve. There exist differ-
ent solutions and one of them is to use a cluster of
computers, workstations or all available resources in
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an organization connected by a local-area network
(LAN). This can be done by using the Condor soft-
ware system which enables a High Throughput Com-
puting (HTC) environment [1] which delivers large
amounts of computer power over a short period of
time. Condor can save time when a job must be run
many different times with hundreds of different data
sets and streamlines the scientist’s tasks by allowing
the submission of many jobs at the same time. In
this way, tremendous amounts of computation can
be done with very little intervention from the user
[2]. Moreover, Condor allows users to take advantage
of idle machines that they would not otherwise have
access to. Condor also provides other important fea-
tures for its users, because the source code does not
have to be modified in any way. Condor is a spe-
cialized workload management system for computer-
intensive jobs developed as the product of the Con-
dor Research Project at the University of Wisconsin-
Madison and is currently available as a free download
from the Internet [3].

Support Vector Machines (SVMs) are presented
as a machine learning method in classification and
also regression problems [9]. However, they require
the solution of a quadratic optimization problem
which means that with larger data sets the complex-
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ity of SVMs increases. The original Support Vector
Machine (SVM) is a linear classifier [6] in the input or
data space that is mapped into a higher dimensional
feature space, resulting in a nonlinear classifier. As a
result, SVMs have the property of encapsulating all
the information using a small number of data called
support vectors. In the last few years, several at-
tempts to classify large data sets with various SVMs
models have been published: the large quadratic pro-
gramming (QP) problem is broken down into a series
of smaller QP sub-problems [7], a parallel mixture
of SVMs [4] and the SVM! 9" fast implementation
algorithm [5]. All the experiments showed signifi-
cant time improvement by using more expert SVMs
trained on different subsets of data.

We introduce here the parallel implementation of
two—layered model of SVMs. The training data set is
randomly partitioned into data subsets of size N/M
(N is the number of input patterns and M is the
number of subsets). The first layer consists of M
Support Vector Machines (SVMs) optimized in pa-
rallel and as a result we obtain smaller sets of support
vectors (SVs) to use them as a second layer support
vector training set. Actually, the proposed approach
is presented as a two-layered model of SVMs, but
only the results of the second layer SVM are relevant
for the classification of new input data.

Experimental results described in the paper in-
clude traditional job execution on one machine as
well as different ways of job processing using Con-
dor’s dedicated cluster. Comparisons of results made
under different conditions of the cluster are given,
along with the use of the Condor software.

2 Condor software system

Condor is a specialized software system for computer
intensive jobs which effectively utilizes the worksta-
tions, dedicated clusters of workstations and personal
computers that communicate over a network. As a
batch system, Condor provides a job queueing mech-
anism, scheduling policy, priority scheme, resource
monitoring, and resource management. The three
powerful mechanisms used in Condor are:

e The Classified Advertisement mechanism (Clas-
sAd) which is an extremely flexible framework
for matching resource requests (jobs) with re-
source offers (machines).

e The Remote System Calls mechanism which as-
sures to run any applications on any remote ma-
chine of a given architecture.

e The Checkpointing mechanism transparently
records a current state of the executing program

in the checkpoint file in such a way that the pro-
gram can be later restarted from that state. It
also permits a job to migrate from one machine
to another machine.

Users submit their serial or parallel jobs to Con-
dor and Condor places them into a queue, chooses
when and where to run the jobs based upon a Clas-
sified Advertisement mechanism. While the jobs are
running, Condor carefully monitors their progress,
and ultimately informs the user upon completion.
The use of the Remote System Calls offers an added
benefit that a user submitting jobs to Condor does
not need an account on the remote machine where
it runs a job. When the job does a system call, for
example to do an input or output function, the data
is maintained on the machine where the job was sub-
mitted.

The basic system of the Condor pool in Fig. 1
is comprised of a single machine which is a central
manager, and an arbitrary number of other machines
which can act as submit machines or as execution
machines. There is only one central manager which
is very important part in the pool and it should be
reliable and is likely to be online all the time. If it
crashes, no further matchmaking can be performed.
Conceptually, the role of Condor is to match waiting
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Figure 1. Condor pool

requests with available resources which is done by
the match-making between available machines and
submitted jobs. Jobs want to find machines upon
which they can execute. The central manager acts
as a collector of information and the negotiator be-
tween resources and resource requests and performs
these services by two separate programs, named dae-
mons (Condor_Collector, Condor_Negotiator). Ma-
chines have specific resources available, such as the
platform and the amount of available memory. When
submitting a job, a separate ClassAd is produced for
each job and machine, listing all attributes. Con-
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dor acts as a matchmaker between the jobs and the
machines by pairing the ClassAd of a job with the
ClassAd of a machine and it will assure that the re-
quirements in both ClassAds are satisfied.

Any machine in the pool, including the central
manager, can be configured to execute Condor jobs
and also as a machine from where jobs can be submit-
ted. Here is important to mention that the resource
requirements for a submit machine are actually much
greater than the resource requirements for an execute
machine. Both machines perform their services with
controlling programs (Controlling Daemons) when
they are communicating with the central manager.
The execution machine running the users’ job also
performs the system call (Condor_SysCall_Library)
which is sent back to the submit machine where it is
managed by Condor_Shadow Process running when-
ever the job was submitted. A submitted job may
also prefer to execute on a machine with better float-
ing point facilities, or it may prefer to execute on a
specific set of machines. These preferences are also
expressed in the ClassAd. Further, a machine owner
has great control over which jobs are executed un-
der what circumstances on the machine. The owner
writes a configuration file that specifies both require-
ments and preferences for the jobs. Alternatively,
any of these may be expressed as a preference, for
example where the machine prefers the jobs of a se-
lect group, but will accept the jobs of others if there
are no jobs from the select group.

To illustrate simply how Condor works, we
present here four steps needed to prepare and run
the job:

e Code preparation includes an application that
runs in the background which is not able to do
the interactive input and output.

e Select the runtime environment, also called Con-
dor universe (standard, Vanilla, ...).

e Write submit description file with all the infor-
mation about the job running, the files to use,
how many times to run the job.

e Submit the job with the condor_submit com-
mand which takes as an argument the name of
the file called a submit description file.

For programs, running in a sequential and par-
allel way, where the input, output or execution of
one or more programs is dependent on one or more
programs, a directed acyclic graph (DAG) is used.
The programs are nodes in the graph and are linked-
up by the parallel or serial dependency. The Di-
rected Acyclic Graph Manager (DAGMan) is a meta-
scheduler and submits jobs to Condor in an order de-
fined by DAG and returns the result. The DAG is

described in an input file which includes all Condor
submit description files with their execution depen-
dencies and parameters. Each node in a DAG is a
unique executable file and each has a unique Con-
dor submit description file. The jobs used in DAG
are submitted using the program condor_submit_dag

which takes as an argument the name of the input
file.

3 Two-layered Support Vector Machine

Support Vector Machines (SVMs) [9], [6] have been
applied to many classification problems, generally
yielding good performance and acceptable execution
times for smaller data sets. The original SVM is
a linear classifier where the input vectors are sepa-
rated by a hyperplane, while the non-linear SVMs
map the input vectors from the original space into a
high—dimensional feature space, where they become
linearly separable and there construct an optimal hy-
perplane [9].

The output function of nonlinear SVMs for classi-
fication problem with training data given as x € R”,
y € {+1,—1} is then defined as

N
y=> aigiK(x,x;) +b (1)
i=1
where K(x,x;) is a kernel function, x is the input
vector of a test example, y;, is a class label and x;
is the input vector for the i—th training example, N
is the number of training samples, @ = {a1,...,an}
and b are the parameters of the model. To find the
coefficients a;, ¢ = 1, ..., N, it is sufficient to solve
the optimization problem in the dual space by finding
the minimum of the objective function

N 1 X
Qa) = ;az 3 ;; alylaJyJK(xlaxj)' (2)

Because training vectors will often repeat, the soft
margin optimal hyperplane is usually determined
with the upper bound U on the parameters «;, and
the optimization from (2) is computed as subject to
the constraints

N

» aiyi=0 and 0<o; <U,i=1,...,N.

i=1
Actually, the performance of nonlinear SVMs de-
pends on the kernel function. By the use of a kernel
function, the mapping operation and all calculations
associated with it are actually carried out in data

space. Very often a Gaussian Radial Basis function
(RBF) defined as

Kxx) = {-EXEL g

o2
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with common variance ¢ is used.

Further, we introduce a two-layered organization
of SVMs shown in Fig. 2. The first, parallel layer
of SVMs is used only in the training phase while the
second layer SVM is used for finding the final deci-
sion hyperplane and output function that satisfy the
training data set. A set of input samples or train-
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Figure 2. Two-layered SVM model

ing data are given as x € R, y € {+1,-1}, and
is partitioned into M training subsets xs(k) € R",
ys(k) € {+1,-1}, k = 1,2,..., M. The number
of subsets M = 2,3,... should depend on the size
of data set and is experimentally determined. In the
two-class classification problem, the training data set
consists of N7 input samples from class C7, and Ny
input samples from class C>. Samples are selected at
random and placed into M training subsets (x;(k)),

ys(k), k = 1,2... M. The number of training sam-

. . Ny N
1 h subset h — + —.
ples in each subset is chosen as = + v

We now describe our training approach as a two-
layered training algorithm. The first layer includes
parallel training of SVMs over all M subsets. Af-
ter training the first layer SVMs with subsets x;(k),
k=1,2,...,M we get M sets of support vectors
Xsp (1), Xs0(2), ..., Xsp(M) with a relatively small
number of input samples in comparison to whole data
set of N input samples and they form a set of support
vectors x(1) = X4, (i) with outputs y(1) = ysu (),
i = 1,2,..., M used as training set for the second
layer. Finally, we get a new set of support vectors
with learning parameters and we use the second layer
SVM as a single classifier to evaluate training set and
testing set.

4 Experimental work

To show a general use of the proposed two-layered
SVMs and to run the program as a distributed com-
puting with Condor software system, we performed
the experiments on part of the UCI Forest data set
[8]. The classification problem of 7 classes was mod-
ified in a binary classification problem where class 2
was separated from the other 6 classes. From more
than 500000 samples with 54 attributes, we prepared

several data sets which range from 16000 (16T) sam-
ples to 512000 (512T) samples. For each data set the
input samples were divided into two sets: the train-
ing set (90%) and the test set (10%). Finally, the
training sets were divided into subsets with the num-
ber of subsets M = 2,4,8,16,32. We performed the
experiments on six data sets (16T, 32T, 64T, 128T,
256T and 512T) obtained from the described Forest
data. For each training data set we prepared the dis-
tributed application with different number of subsets
(M =2,4,8,16,32).

All experiments for single SVM were made di-
rectly with SVM!9ht implementation of Support Vec-
tor Machines [5]. The same SVM'4"* implementation
was used in two-layered SVM model where it was ar-
ranged in a hierarchical mode. First layer was de-
fined with M SVM!9" implementations where the
support vectors were generated during the training
phase. Thereafter, they were combined in a new
training set of support vectors which was used on
the second layer SVM!4"t implementation. The ac-
curacy of the proposed implementation was measured
by using only the second layer SVM'9"t optimization
parameters.

Since SVM‘9"t implementations with a radial ba-
sis function was used, Gaussian kernels with variance
(6=4) and regularizing parameter (U=5), were ob-
tained by 10—fold cross validation on two additional
data sets with 5000 and 20000 samples. We kept here
a test set of 10% examples in data set to compare the
best two-layered SVM model to the single SVM and
we also had a validation set of 10% of examples from
the training data set to define the parameters used
in experiments.

To run the two-layered SVM classifier, we pre-
pared the DAG applications for the Condor pool. It
consisted of several submit machines and of a cluster
of 16 machines. One of the machines in the cluster is
the Central Manager and runs using the Linux oper-
ating system, while the other 15 machines are used
as execution machines, running on Windows XP op-
erating system. All computers in the cluster are Intel
Pentium 4, 3GHz machines with 1GB memory and
80 GB discs. The submit machines in our Condor
pool are personal computers connected in the local
area network.

4.1 Distributed DAGMan applications

The DAGMan application consists of an input file
which describes the directed acyclic graph (DAG),
and several submit description files for each program
which represents the execution of the node in the
DAG. Fig. 3 shows the directed acyclic graph for
training two-layered SVM model with M=4. For the
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DAGMan Job 3797.0 status at Thu Mar 16 13:33:06 2006

Figure 3. Directed acyclic graph (DAG) defined for
M j—

presented DAG (data set = 32T, M=4), the input
file specifies at the beginning all jobs for the training
of subsets performed in parallel.

job L1 learn.sub

job L2 learn.sub

job L3 learn.sub

job L4 learn.sub

In each job, the variables define the name of the
training set (class), the number of subsets (nsets) and
the index of subset used in particular job (n=1),
1=1,2,3,4 are defined.

vars L1 class="forest32t’ nsets = '4' n="1"

vars L2 class="forest32t’ nsets = '4' n="2’

vars L3 class="forest32t’ nsets = '4' n="3'

vars L4 class='forest32t’ nsets = '4' n="4’

The second job JCE performs the second layer
SVM training, where all subsets of first layer support
vector (SV) are used as a training data. The variables
used are called class and nsets.

job JCE learnl.sub

vars JCE class='forest32t’' nsets = '4’

When the second layer training is finished, the
model performance is obtained by classifying the
training and test sets with two jobs C1 and C2 which
are executed in parallel.

job C1 classifysvmtrain.sub

job C2 classifysvmtest.sub

vars C1 class="forest32t’

vars C2 class="forest32t’

At the end, we define the dependencies in the
DAG by defining jobs as parent and as child.

parent L1 L2 L3 L4 child JCE

parent JCE child C1 C2.

Each job which is executed by DAGMan has its
own submit file. In the submit file we define:

e the universe used is vanilla with the File Transfer
mechanism on Windows platforms,

e execution machine requirements with the oper-
ating system (opsys == "WINNTS51’) and the

name of the machine in Condor pool (machine
== ’slave2.clusterl.laspp’),

e executable, input and output data files which
refer to the program in the DAG nodes,

e if Condor transfers output files and when to
transfer them,

e names of error and log files which include all the
information about the job execution.

We have the same submit and execution files in all
DAGMan applications and only the input files de-
scribing the DAG differ due to the names of the input
files and the number of subsets.

4.2 Classification performance and training
time

Now, let us first show the results of two-layered SVM
classifier in comparison to single SVM classifier.

Table 1. Classification results (M=4)

Data Single SVM Two-layered SVM

Training Testing Training Testing
16T 98.46 92.18 98.53  91.93
32T 98.60 95.19 98.51  95.03
64T 98.73 96.95 98.74  96.91
128T 98.07 96.91 98.17  96.99
256T 97.38 96.26 97.58  96.39
512T 96.70 96.10 96.95  96.27

In case of two-layered SVM model we obtained
very similar results for all experiments with different
numbers of subsets. In Table 1 we present only the
best results for M =4. As can be seen, for larger data
sets, the classification results of two-layered SVM
model are slightly better than the classification re-
sults of a single SVM.

Table 2. Execution time in seconds

M Data
16T 32T 64T 128T  256T 512T
1 195 604 1455 6359 29865 153362
2 164 483 926 4401 18488 92002
4 442 360 819 3144 14063 74547
8 675 503 782 3461 15349 77870
16 969 631 1142 3762 15720 83986
32 1234 1029 1743 4092 17512 93958

The training time as a function of the number
of subsets (M) which is obtained by proposed DAG-
Man applications presented in Table 2 shows that the
two-layered SVM model outperformed a single SVM
(M=1) in the case of all data sets. The improve-
ment for larger data sets is more evident in case of
the number of subsets M=4.



In Fig. 4 we can see the comparison of the train-
ing time based on the number of subsets (M) on three
different data sets. In the case of the first data set
(16T) there is a small improvement in the training
time for M =2 and there is an improvement on the
other two data sets (32T, 64T) for M=4. For all
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Figure 4. Training time (16T, 32T, 64T)

other data sets with a larger number of training sam-
ples (128T, 256T, 512T) the best training time results
are also obtained using M =4.
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Figure 5. Training time (512T)

With larger numbers of subsets (M) the execution
time starts to increase faster for small data sets in
Fig. 4 and more slowly for larger data sets (512T)
which is shown in Fig. 5.

5 Conclusion

In this paper, we presented a parallel implementation
of the Support Vector Machine as a two-layered clas-
sification model. The performance of the proposed
model trained with a large data set on several num-
bers of subsets is comparable with the single SVM
model trained on the whole training set, but is signifi-
cantly better in terms of the training time. Extensive
comparisons suggest that we can define training pa-
rameters by 10-fold cross-validation on smaller data
sets and use them on larger data sets. The number
of subsets has an important impact on the training

time. If the number of subsets is small, the number
of support vectors will be relatively small and the
second layer training time is small. The opposite oc-
curs when there is a large number of subsets where
we have a larger number of support vectors which
increases the second layer training time. In our ex-
periments, the best selection is four subsets in terms
of accuracy and also training time.

We can conclude that the use of the proposed two-
layered SVM, based on data set partition into data
subsets, is a very promising method when applied to
larger data sets because we have comparable perfor-
mance results and the first layer SVMs can run in a
distributed computer system.
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