Scientific paper

Tautomerism of (3-Phenyl-allyl-) (5-pyridin-2-yl-[1,3,4]thiadiazol-2-yl) amine

Leokadia Strzemecka

Department of Organic Chemistry, Faculty of Pharmacy, Medical Academy of Lublin, Staszica 6, 20-081 Lublin, Poland * Corresponding author: E-mail: leokadia.strzemecka@am.lublin.pl

Received: 19-02-2007

Abstract

The radical and ionic structures of (3-phenyl-allyl-) (5-pyridin-2-yl-[1,3,4] thiadiazol-2-yl)-amine $2A(I) \Leftrightarrow 2A(I)' \Leftrightarrow 2A(I)' \Leftrightarrow 2A(II)'_a$, $2A(II) \Leftrightarrow 2A(II)' \Leftrightarrow 2A(II)'_a$ have been determined by means of its ¹H (100 MHz, 500 MHz) ¹³C and ¹⁵N NMR spectra and B3LYP/6-31G** computations. The tautomeric equilibrium of $2A(I)' \Rightarrow 2B'$, $2A(II)' \Rightarrow 2C(II)'$ has been observed in the ¹H NMR spectra (100 MHz)

Keywords: (3-phenyl-allyl-) (5-pyridin-2-yl-[1,3,4] thiadiazol-2-yl)-amine; electronic structure, tautomerism

1. Introduction

(5-Pyridin-2-yl-[1,3,4] thiadiazol-2-yl)-amine bearing allyl-(1) and (3-phenyl-allyl-) (2) substituents, type **a** tautomer exist as ionic and radical forms due to the changes of the electronic structure of the endocyclic nitrogen atoms of 1,3,4-thiadiazole and pyridine rings (Figs 1-3)¹.

The XRD data confirm only one tautomer (\mathbf{a} -type) in the crystals of both compounds 1 and 2. In the solid state the *exo*-amino form \mathbf{a} is stabilized by different H–bonds, and the differences in the total energy between \mathbf{a}

and **b** tautomers, are equal to -35.6 and -34.3 kJ/mol for **1** and **2**, respectively according to the DFT level of theory calculations². The ¹H, ¹³C–and ¹⁵N NMR studies on the structure of allyl- (5-pyridin-2-yl-[1,3,4] thiadiazol-2-yl)-amine **1a** support the changes of the aminetype **a** nitrogen atom N-6 to pyridine-type **A** and pyrrole-type **A**(**I**). Previous 100 MHz ¹H NMR investigations of **1** in the solution in the range from δ 8.665 to 7.233 of the chemical shift of N–H proton support the tautomeric equilibrium between allyl-(5-pyridin-2-yl-[1,3,4] thiadiazol-2-yl)-amine **1A 1A'**, 3H allyl- (5pyridin-2 yl-[1,3,4] thiadiazol-2-ylidene)-amine **1B 1B'**

Strzemecka: Tautomerism of (3-Phenyl-allyl-) (5-pyridin-2-yl-[1,3,4] thiadiazol-2-yl) amine

Fig 2: The tautomers a' and b', c' of allyl- (1) and (3-phenyl-allyl)- (2) (5-pyridin-2-yl-[1,3,4]-thiadiazol-2-yl) -amine with atom numbering.

and 4H-allyl-(5-pyridin-2-yl-[1,3,4] thiadiazol-2-ylidene) amine **1C**¹.

The intensities of the signals of N-H proton point to the interconvertions of the $1A'_5 \Rightarrow 1B_3 \Rightarrow 1C'_4$ as well as to the balance of $1A'_7 \Rightarrow 1B'_7$ and $1A'_7 \Rightarrow 1C'_7$ tautomers and support pyridine-type nitrogen atoms N-10 N-4 N-6 and the amine-type nitrogen atoms N-4 N-3 of 1,3,4-thiadiazole ring¹, respectively.

The aim of the present paper was to describe the electronic structure of the nitrogen atoms of 2a tautomer in the range from δ 13.64 to 7.233 of the chemical shifts of the N-H proton and its interconvertions to the imino forms in the solution in order to gain further insight into the structural features which determine biological activity. The 6-N and/or 5-substituted 2-amino[1,3,4]thiadiazole derivatives have exhibited activity against the leukemia, melanoma, lung carcinoma. They are also applied as the carbonic anhydrase inhibitors, and some of them show the antimycobacterial, anesthetic, antidepressant and anxiolytic activity³⁻¹³. The 2-amino-[1,3,4] thiadiazoles are used as herbicides¹⁴, acting *via* inhibition of the imidazoleglycerol phosphate dehydrase, as well as the corrosion inhibitors¹⁵. The screening biological test of 3phenyl-allyl- (5-substituted-[1,3,4] thiadiazol-2-yl)-amine has been performed under the auspices of the Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute, Bethesda, Maryland, USA. They have been tested against the P 388 Leukemia Tumor Test System (3PS31): Leukemia Screening Test Result (LSTR) Raport and Screening Data Summary (SDS) Raport. The presumptive activity has been confirmed by SDS Raport but they have been inactive at dose levels tested, LSTR Raport. They have been tested for in-vitro anti-HIV activity, they have been inactive.

Fig 3: The resonance structures of allyl- (1) and (3-phenyl-allyl)-(2) (5-pyridin-2-yl)-[1,3,4]thiadiazol-2-yl)-amine

Strzemecka: Tautomerism of (3-Phenyl-allyl-) (5-pyridin-2-yl-[1,3,4] thiadiazol-2-yl) amine

2. Experimental

2.1 General

The product **2** was prepared according to the published method¹⁶ and its NMR spectra (¹H, ¹³C, ¹⁵N) were recorded under various conditions on Tesla BS 677 A and Bruker AM 500 spectrometers.

The ¹H NMR spectra 7–10 of product **2** were measured with Tesla BS 677 A spectrometer (100 MHz with T.F.) in CDCl₃ or DMSO solutions at room temperature with TMS as the internal standard. The ¹H (spectrum 8_6), ¹³C and ¹⁵N NMR measurements of **2** were taken in CDCl₃ and in DMSO-d₆ solutions, respectively on a Bruker AM 500 spectrometer, operating at 500.18 MHz for hydrogen, 125.76 MHz for carbon and 50.68 MHz for nitrogen, using standard conditions. The 2D spectra of ¹H ¹³C HMQC, ¹H ¹³C HMBC, ¹H ¹H COSY have been recorded in CDCl₃ solution at 500.18 MHz according to procedure given in Brucker programme library. Chemical shifts are given in δ scale.

The ¹H NMR spectra 8_{1-4} have been recorded, applaying various concentration of product **2** in a DMSO or CDCl₃ solution:

- in a DMSO solution, the concentration of product **2** amounts to (1:3) spectra $8_1 8_2$, respectively
- in CDCl₃ solution, the concentration of product **2** amounts to: 9 mg/0.5 ccm, spectrum 8_3 , 18 mg/ 0.5 ccm, spectrum 8_4 .

The ¹H NMR spectra 7–10, 8_5 , 8_6 have been recorded in a CDCl₃, 8_7 in DMSO–D₂O solutions without any determination of the concentration of **2** product.

The molecular geometries and properties corresponding to the local minima of the energy were calculated ² at the DFT level of the theory with the B3LYP functional and the 6–31G** basis set.^{17,18} The same basis set and functional were used for the ¹H, ¹³C and ¹⁵N NMR shielding constants calculations by applying the GIAO CPHF methods. The atomic charges were taken from the ESP fit using Breneman model (CHELPG). The Gaussian 98 package¹⁹ was employed for these calculations.

3. Results and Discussion

The calculated chemical shifts of the nitrogen atoms ¹⁵N for type **a** and type **b** tautomers of allyl- (1) (3-phenylallyl-) (2) (5-pyridin-2-yl-[1,3,4] thiadiazol-2-yl)-amine occur in different ranges: from about δ - 309 to about -23 for type **a** tautomer and from about δ - 225 to about -80 for **b** - one (Table 1, Fig. 4).²

The amino N-6 atom is strongly shielded in **1** (about δ - 308) but in **2** the shielding decreases of a few ppm (to about δ - 304). The shielding constants for the N-3 and N-10 atom in the 1,3,4-thiadiazole and pyridine rings, respectively are almost equal whereas N-4 atom is much less shielded.²

Table 1: Calculated $^{15}\text{N-}$ and $^1\text{H-NMR}$ chemical shifts δ [ppm] of type a and b tautomers

Comp.	¹⁵ N		¹ H	
1a 2a	-309	23		
1a	N6	-131.57	H14	8.125
	N3	-77.78		
2a	N10	-86.0	H6	7.5
	N10	-72.36	H6	6.45
	N6	-133.98		
1b 2b	-225			

Fig 4: The linear regression of shielding constants σ [ppm] versus chemical shifts δ [ppm] for 1a and 2a

In the ¹H NMR spectra of **2** the nitrogen atom N-6 appear as amine-type **a**, pyridine-type **A**, pyrrole-type **A**(**I**) and in sp hybridization **A**(**II**) tautomers (Figs 1–3). The calculated chemical shift value for the proton of N–H group at $\delta 6.45$ (Table 1)² points to the amino proton of **2a** tautomer slightly shifted by the weak intermolecular interactions of the solut-solvent type. The signal of the nitrogen atom ¹⁵ N appears at δ - 304.07. The calculated chemical shift of N-6 at δ - 133.98 (Table 1)² supports pyridine-type nitrogen, **2A** tautomer. The calculated chemical shift of N–H proton at δ 7.5 (Table 1)² supports sp² or sp hybridization of N–6, **2A**, **2A**(**I**), **2A**(**II**) tautomers and the lack of the charges over 1,3,4-thiadiazole ring.

The coupling constants $J(H_7H_8)$ 6.2 Hz (500 MHz),² $J(H_8H_{9B})$ 15.8 Hz, $J(H_{9B}H_8)$ 15.8 Hz, $J(H_8H_{9A})$ 12.6 Hz, $J(H_{9A}H_8)$ 12.6 Hz (100 MHz)²⁰ confirm pyrrole-type nitrogen atom N-6, **2A(I)** tautomer whereas $J(H_{7D}H_{7C})$ 1.4 Hz (500 MHz),² $J(H_8H_{9B})$ 15.9 Hz, $J(H_{9B}H_8)$ 15.9 Hz (500 MHz),² $J(H_8H_{9B})$ 15.9 Hz, $J(H_{9B}H_8)$ 15.9 Hz (500 MHz),²¹⁰ the sp hybridization of N-6, **2A(II)** tautomer. The coupling constants $J(H_{7C}H_8)$ 5.9 Hz, $J(H_{7D}H_8)$ 5.7 Hz and $J(H_{7C}H_8)$ 9.5 Hz, $J(H_{7D}H_8)$ 9.2 Hz (100 MHz)²⁰

support the transformation of $sp^2 \Leftrightarrow sp$ hybridization of N-6 of the rigid structures.

The ¹³C NMR resonances of 3-phenyl-allyl radical C-9 at δ 133.52, C-8 at δ 123.83, C-7 at δ 49.07 and of the benzene C atoms C-16 at δ 136.20, C-19 at δ 127.97, C-18, C-20 at δ 128.60 as well as the chemical shift of the proton of phenyl group of 3-phenyl-allyl substituent H-19 at δ 7.192 (mult.)² confirm the positively charged cinnamyl cation. The signals of H-17, H-21 at δ 7.314 (d) and C-17, C-21 at δ 126.56 support the conjugated bonds of cinnamyl substituent. The resonances of H-18, H-20 arise at δ 7.239 (td).

The calculated signal of H-14 at δ 8.125 (Table 1)² as well as the ¹H ¹H coupling constants J(H₁₂H₁₄) 1.0 Hz, J(H₁₁H₁₄) 0.5 Hz of **1a** tautomer² confirm the absence of the charges on the pyridine ring. The calculated chemical shift of N-3 at δ - 77.78 (Table 1)² confirm pyridine-type nitrogen atom of **1a** tautomer and the lack of the differences in the spin states of electrons of 2p orbitals of N-3 C-2. The calculated chemical shift of N-10 at δ - 86.0 of **2a** tautomer (Table 1)² point to the amine-type nitrogen atom.

The ¹H ¹³C HMQC correlation spectra of **2** show a correlation signal between H-14 at δ 8.290 and C15 at δ 149.7. The above data prove the diradical resonance structures $\mathbf{a}_{0c} \mathbf{A}(\mathbf{I})_{0c} \mathbf{A}(\mathbf{II})_{0c}$, $\mathbf{a}_{0e} \mathbf{A}(\mathbf{I})_{0e} \mathbf{A}(\mathbf{II})_{0e}$ (Fig 3) and the lack of the charges over pyridine and 1,3,4-thiadiazole rings. Pyridyl H-14 proton of the diradical resonance structures $\mathbf{a}_{0c} \mathbf{A}(\mathbf{I})_{0c} \mathbf{A}(\mathbf{II})_{0c}$, $\mathbf{a}_{0e} \mathbf{A}(\mathbf{I})_{0e} \mathbf{A}(\mathbf{II})_{0e}$ is more intensly deshielded about 0.15 ppm in relation to the structure $\mathbf{a} \mathbf{A}(\mathbf{I}) \mathbf{A}(\mathbf{II})$. The spectroscopic data support the conjugation of aromatic π electrons of pyridyl substituent

with π electrons of double C = N bond of 1, 3, 4 thiadiazole ring in solution.

Fig. 5: The resonance structures of the pyridyl substituent

Spectrum			Benzene H	
No	H 7	H 8 H 9	atoms	Pyridin – 2- yl
$\overline{8_1(\text{DMSO})}$	4.218 - 4.115	6.771 - 6.248	7.522 – 7.224	8.635 - 8.560 1H H11
1	2H m	2H m	5H m	8.142 - 8.037 1H H13 H14
				8.003 – 7.835 1H H12 H13
				7.522 – 7.224 1H H14 H12
8 ₂ (DMSO)	4.242 - 4.147	6.788 - 6.265	7.530 - 7.232	8.650 - 8.574 1H H11
2	2H m	2H m	5H m	8.169 - 8.067 1H H13 H14
				8.010 - 7.842 1H H12 H13
				7.530 – 7.232 1H H14 H12
$\overline{8_3 (\text{CDCl}_3)}$	4.232 - 4.161	6.805 - 6.168	7.527 – 7.193	8.591 - 8.513 1H H11
	2H m	2H m	5H m	8.213 - 8.110 1H H13 H14
				7.830 – 7.659 1H H12 H13
				7.527 – 7.193 1H H14 H12
$\overline{8_4 (\text{CDCl}_3)}$	4.215 - 4.147	6.785 - 6.165	7.447 – 7.129	8.574 - 8.499 1H H11
	2H m	2H m	5H m	8.179 – 8.076 1H H13 H14
				7.798 – 7.627 1H H12 H13
				7.447 – 7.129 1H H14 H12
$\overline{8_7 (\text{DMSO} + \text{D}_2\text{O})}$	4.220 - 4.169	6.785 - 6.251	7.527 - 7.207	8.650 – 8.577 1H H11
	2H m	2,4H m	5H m	8.164 – 8.089 1H H13 H14
				8.032 – 7.864 1H H12 H13
				7.527 – 7.207 1.4H H14 H12

Table 2: ¹H NMR chemical shifts δ [ppm] from TMS of 2.

The signals of the N-H proton and the pyridyl substituent in the ¹H NMR spectra (100 MHz) support the **a** $A(I) A(II), a_{1-5} A(I)_{1-5} A(II)_{1-5}$ and radical resonance structures **a'** $A(I)' A(II)' a'_{1-8} A(I)'_{1-8} A(II)'_{1-8} a'_0 A(I)'_0$ $A(II)'_0$ (Figs 1–3, 5, Tables 2–10).

In the ¹H NMR spectra of **2** (100 MHz) in the range from δ 8.650 to δ 7.233 of the chemical shifts of N–H proton, the nitrogen atoms N-3 N-4 N-10 appear as pyridinetype, pyrrole-type and amine-type nitrogen while N-6 as pyrrole-type, structures **A(I) A(I)'A(I)**₀ or in sp hybridization, structures **A(II) A(II)'A(II)**₀ (Fig 3).

The absence of the charges over 1,3,4 thiadiazole ring confirm the lack of the transition of electrons of p orbitals of 1S 2C 3N 4N 5C of 1,3,4-thiadiazole ring. The changes of the electronic structure of the nitrogen atoms N-3 N-4 N-10 (Fig. 3) have been described previously¹. The ¹H ¹H long-range coupling constants in the 37.376 Hz - 43.520 Hz range (spectra 7–10)²⁰ (Table 8), support the coupling of the protons of the pyridyl and $-N-CH_2-CH=CH-C_6H_5$ groups *via* 2p orbitals of C-14 C-7 of the rigid structures **A**(**II**)'**A**(**II**)'^{**a**} and sp hybridization of the exocyclic nitrogen atom N-6 (Fig. 6).

In the 2D ¹H ¹³C HMQC correlation spectra the signals of H-11 at δ 8.490 and H-14 at δ 8.080² exhibit a correlation to C-12, C-8 at δ 123.8. The 2D ¹H ¹³C HMQC correlation spectra show the cross-peaks of H-9A at δ 6.600, H-9B at δ 6.650 as well as the correlation signals of H-8A at δ 6.220, H-8B at δ 6.250 to C-16, C-13 at δ 136.2. Such long-range couplings can be observed if the bonds assume the planar configuration. In the 2D ¹H ¹³C HMQC correlation spectra the correlation signals of H-7

Table 3: The ¹H NMR chemical shifts δ [ppm] from TMS of **2**.

at δ 4.15 to C-8, C-12 at δ 123.8, C-16, C-13 at δ 136.2, C-2 at δ 171.5 support the planar structure.

In the 2D ¹H ¹³C HMBC correlation spectra the cross-peak of H-7 at δ 4.100 to C7 at δ 49.00 is observed. In the 2D ¹H ¹³C HMQC correlation spectra the signals of H-6 at δ 4.200 and δ 4.000 exhibit a correlation to C-7 at δ 49.1 and support **a** tautomer. The signals at δ 0.498-4.266 (Table 8, spectra 10, 7) support the transformation of sp \leftrightarrow sp.³

The differences in the resonances of N–H proton in the range from δ 8.650 to 7.233 are caused by the atomic charge over the pyridine ring.

To assign the resonance structures of **2** in the range from δ 8.650 to δ 7.233 of the chemical shifts of N–H proton, the ¹³C, ¹⁵N and ¹H resonances line in ¹³C, ¹⁵N and ¹H NMR spectra (100 MHz, 500 MHz) of **2** and the coupling constants of the pyridyl substituent have been analyzed.

Fig 6: The resonance rigid structures **A(II)**', **A(II)**'_a of (3-phenyl-allyl)- (5-pyridin-2-yl-[1,3,4] thiadiazol-2-yl)-amine

Spectrum No	Н 7	H 8 H 9	Benzene H atoms	Pyridin – 2- yl
7(CDCl ₃)	4.266 – 4.210 2H	6.430 - 6.153 1H 6.815 - 6.660 1H	7.444 – 7.242 5H	8.580 – 8.533 1H H11 8.176 – 8.096 1H H13 H14 7.890 – 7.674 1H H12 H13 7.444 – 7.242 1H H14 H12
8(CDCl ₃)	4.224 – 4.163 2H	6.416 – 6.144 1H 6.782 - 6.622 1H	7.430 – 7.190 5H	8.547 – 8.500 1H H11 8.143 – 8.063 1H H13 H14 7.796 – 7.627 1H H12 H13 7.430 – 7.190 1H H14 H12
8 ₅ (CDCl ₃)	4.2 2H	6.72 – 6.12 2H	7.280 5H	8.48 1H H11 8.08 1H H13 H14 7.64 1H H12 H13 7.28 1H H14 H12
9 (CDCl ₃)	4.252 – 4.182 2H	6.801 – 6.641 1H 6.421 – 6.144 1H	7.448 – 7.209 5H	8.570 – 8.519 1H H11 8.162 – 8.082 1H H13 H14 7.829 – 7.655 1H H12 H13 7.448 – 7.209 1H H14 H12
10 (CDCl ₃)	4.257 – 4.196 2H	6.646 – 6.134 2H	7.448 – 7.233 5H	8.570 - 8.523 1H H11 8.162 - 8.082 1H H13 H14 7.838 - 7.669 1H H12 H13 7.448 - 7.233 1H H14 H12

Snectrum No	Dviti	din_2- vl	
Solvent	H 14-of the structures H 14	ц, Н 13 ,	H 13-of the structures
8 ₃ (CDCl ₃) 7(CDCl ₃) 8 ₇ (DMSO +D ₂ O) 9, 10 (CDCl ₃)	$\begin{array}{c} a'_{4}(I)'_{4}A(II)'_{4} \leftrightarrow a'_{8}A(I)'_{8}A(II)'_{8} \leftrightarrow a'_{0}A(I)'_{0}A(II)'_{0} \\ a'_{4}A(I)'_{4}A(II)'_{4} \leftrightarrow a'_{3}A(I)'_{3}A(II)'_{3} \leftrightarrow a'_{0}A(I)'_{0}A(II)'_{0} \\ a'_{4}A(I)'_{4}A(II)'_{4} \leftrightarrow a'_{2}A(I)'_{2}A(II)'_{2} \leftrightarrow a'_{0}A(I)'_{0}A(II)'_{0} \\ a'_{2}A(I)'_{2}A(II)'_{2} \leftrightarrow a'_{4}A(I)'_{4}A(II)'_{0} \\ a'_{1}A(II)'_{2}A(II)'_{2} \leftrightarrow a'_{4}A(I)'_{4}A(II)'_{4} \\ a'_{1}A(I)'_{2}A(II)'_{2} \leftrightarrow a'_{1}A(I)'_{4}A(II)'_{6} \\ a'_{1}A(I)'_{2}A(II)'_{2} \rightarrow a''_{1}A(I)'_{1} \\ a'_{1}A(II)'_{2}A(II)'_{2} \\ a'_{1}A(I)'_{2}A(II)'_{2} \\ a'_{1}A(I)'_{2}A(II)'_{2} \\ a'_{1}A(I)'_{2}A(II)'_{2} \\ a'_{1}A(I)'_{2}A(II)'_{2} \\ a''_{2}A(I)'_{2}A(II)'_{2} \\ a''_{2}A(I)'_{2}A(II)'_{2} \\ a''_{2}A(I)'_{2}A(I)'_{2} \\ a''_{2}A(I)'_{2}A(I)'_{2}A(I)'_{2} \\ a''_{2}A(I)'_{2}A(I)'_{2}A(I)'_{2} \\ a''_{2}A(I)'_{2}A(I)'_{2}A(I)'_{2} \\ a''_{2}A(I)'_$	3–8.110 6–8.096 4–8.089 2–8.082	$\begin{array}{l} a_{4}(I)_{4}A(II)_{4}\leftrightarrow a'_{8}A(I)'_{8}A(II)'_{8}\leftrightarrow a'_{5}A(I)'_{5}A(II)'_{5}\leftrightarrow aA(I)A(II) \\ a_{4}A(I)_{4}A(II)_{4}\leftrightarrow a'_{5}A(I)'_{5}A(II)'_{5}\leftrightarrow a'A(I)A(II)' \\ a_{2}A(I)_{2}A(II)_{2}\leftrightarrow a_{4}A(I)_{4}A(II)_{4}\leftrightarrow a_{3}A(I)_{3}A(II)_{3}\leftrightarrow a'A(I)'A(II)' \\ a_{2}A(I)_{2}A(II)_{2}\leftrightarrow a_{3}A(I)_{3}A(II)_{3}\leftrightarrow a_{4}A(I)_{4}A(II)_{4} \\ \end{array}$
84(CDCI ₃) 82(DMSO) 88(CDCI ₃) 81(DMSO)	$\begin{array}{c} a_{1}^{*}A(I)'_{4}A(II)'_{4} \leftrightarrow a_{1}^{*}SA(I)'_{8}A(II)'_{8}\\ a_{1}^{*}A(I)'_{4}A(II)'_{4} \leftrightarrow a_{1}^{*}A(I)'_{3}A(II)'_{3}\\ a_{2}^{*}A(I)'_{5}A(II)'_{5} \leftrightarrow a_{1}^{*}A(I)'_{3}A(II)'_{3}\\ a_{2}^{*}A(I)'_{5}A(II)'_{5} \leftrightarrow a_{1}^{*}A(I)'_{4}A(II)'_{3}\\ a_{2}^{*}A(I)'_{5}A(II)'_{5} \leftrightarrow a_{1}^{*}A(I)'_{4}A(II)'_{3}\\ \end{array} \\ \left. \begin{array}{c} 8.14 \\ 8.14 \\ 8.14 \\ 8.14 \end{array} \right.$	9–8.076 9–8.067 3–8.063 2–8.037	$\begin{array}{l} a_{4}^{A}(I)_{4}A(II)_{4} \leftrightarrow a_{2}^{A}(I)_{2}A(II)_{2} \leftrightarrow a_{3}^{A}A(I)_{3}A(II)_{3} \leftrightarrow a_{5}^{A}A(I)_{5}A(II)_{5} \\ a_{2}A(I)_{2}A(II)_{2} \leftrightarrow a_{3}^{A}A(I)_{3}A(II)_{3} \\ a_{3}A(I)_{3}A(II)_{3} \leftrightarrow a_{3}^{A}A(I)_{3}A(II)_{3} \\ a_{3}A(I)_{3}A(II)_{3} \leftrightarrow a_{4}^{A}A(I)_{4}A(II)_{3} \\ \end{array}$
Table 5. The ¹ H-N	VMR chemical shifts & [ppm] from TMS of 2 .		
Spectrum No Solvent	H 13-of the structures	Pyridin–2- yl H 13, H 12	H 12-of the structures
8,(DMSO-D ₂ O) 8,(DMSO) 8,(DMSO) 7(CDCl ₃) 10(CDCl ₃) 8,(CDCl ₃) 9(CDCl ₄)	$\begin{array}{l} a_{2}A(I)_{2}A(II)_{2} \leftrightarrow a_{4}A(I)_{4}A(II)_{4} \leftrightarrow a^{*}_{7}A(I)^{*}_{7}A(II)^{*}_{7} \leftrightarrow a^{*}_{3}A(I)^{*}_{3}A(II)^{*}_{3}\\ a_{2}A(I)_{2}A(II)_{2} \leftrightarrow a^{*}_{3}A(I)^{*}_{3}A(II)^{*}_{3}A(II)^{*}_{3}\\ a_{4}A(I)_{4}A(II)_{4} \leftrightarrow a^{*}_{5}A(I)^{*}_{5}A(II)^{*}_{5}\\ a^{*}_{3}A(I)^{*}_{3}A(II)^{*}_{3} \leftrightarrow a^{*}_{5}A(I)^{*}_{5}A(II)^{*}_{5}\\ a^{*}_{3}A(I)^{*}_{3}A(II)^{*}_{3} \leftrightarrow a^{*}_{4}A(I)^{*}_{5}A(II)^{*}_{5}\\ a^{*}_{5}A(I)^{*}_{5}A(II)^{*}_{5} \leftrightarrow a^{*}_{4}A(I)^{*}_{4} \leftrightarrow a^{*}_{6}A(I)^{*}_{0}A(II)^{*}_{0}\\ a^{*}_{3}A(I)^{*}_{3}A(II)^{*}_{5} \leftrightarrow a^{*}_{4}A(I)^{*}_{4}A(II)^{*}_{4} \leftrightarrow a^{*}_{6}A(I)^{*}_{0}A(II)^{*}_{0}\\ a^{*}_{3}A(I)^{*}_{3}A(II)^{*}_{5} \leftrightarrow a^{*}_{4}A(I)^{*}_{5}A(II)^{*}_{5} \leftrightarrow a^{*}_{4}A(I)^{*}_{0}A(II)^{*}_{0}\\ a^{*}_{3}A(I)^{*}_{3}A(II)^{*}_{5} \leftrightarrow a^{*}_{4}A(I)^{*}_{5}A(II)^{*}_{5} \leftrightarrow a^{*}_{6}A(I)^{*}_{0}A(II)^{*}_{0}\\ a^{*}_{3}A(I)^{*}_{3}A(II)^{*}_{5} \leftrightarrow a^{*}_{4}A(I)^{*}_{5}A(II)^{*}_{5} \leftrightarrow a^{*}_{6}A(I)^{*}_{0}A(II)^{*}_{0}\\ a^{*}_{3}A(I)^{*}_{3}A(II)^{*}_{5} \leftrightarrow a^{*}_{6}A(I)^{*}_{5}A(II)^{*}_{5} \leftrightarrow a^{*}_{6}A(I)^{*}_{1}A(II)^{*}_{0}\\ a^{*}_{6}A(I)^{*}_{6}A(II)^{*}_{5}A(II)^{*}_{5}A(II)^{*}_{5}A(I)^{*}_{6}A(I)^{*}_{1}A(II)^{*}_{0}\\ a^{*}_{6}A(I)^{*}_{6}A(II)^{*}_{6}A(I$	8.032–7.864 8.010–7.842 8.003–7.835 7.890–7.674 7.838–7.669 7.830–7.659 7.829–7.655	$\begin{array}{l} a_{5}A(I)_{5}A(II)_{5} \leftrightarrow a^{*}_{8}A(I)^{*}_{8}A(II)^{*}_{8} \leftrightarrow a^{*}_{6}A(I)^{*}_{6}A(II)^{*}_{6} \leftrightarrow a^{*}(I)^{*}_{1}A(II)^{*}_{6} \\ a_{4}A(I)_{4}A(II)_{4} \leftrightarrow a^{*}_{8}A(I)^{*}_{8}A(II)^{*}_{8} \leftrightarrow a^{*}_{6}A(I)^{*}_{6}A(II)^{*}_{6} \\ a_{4}A(I)_{4}A(II)_{4} \leftrightarrow a_{1}A(I)_{1}A(II)_{1} \leftrightarrow aA(I)^{*}A(II)^{*}_{6} \\ a_{4}A(I)^{*}_{6}A(II)^{*}_{6} \leftrightarrow a^{*}_{7}A(I)^{*}_{7}A(II)^{*}_{7} \rightarrow a^{*}_{4}A(I)^{*}_{1}A^{*}(II)^{*}_{4} \\ a^{*}_{6}A(I)^{*}_{6}A(II)^{*}_{6} \leftrightarrow a^{*}_{1}A(I)^{*}_{1}A(II)^{*}_{1} \rightarrow a^{*}_{0}A(I)^{*}_{0}A(II)^{*}_{0} \\ a^{*}_{2}A(I)^{*}_{2}A(II)^{*}_{2} \rightarrow a^{*}_{1}A(I)^{*}_{1}A(II)^{*}_{1} \rightarrow a^{*}_{0}A(I)^{*}_{0}A(II)^{*}_{0} \\ a^{*}_{2}A(I)^{*}_{2}A(II)^{*}_{2} \rightarrow a^{*}_{1}A(I)^{*}_{1}A(II)^{*}_{1} \\ a^{*}_{0}A(I)^{*}_{0}A(II)^{*}_{0} \rightarrow a^{*}_{2}A(I)^{*}_{2}A(I)^{*}_{1} \\ a^{*}_{0}A(I)^{*}_{0}A(II)^{*}_{2} \rightarrow a^{*}_{1}A(I)^{*}_{1}A(II)^{*}_{1} \\ a^{*}_{0}A(I)^{*}_{0}A(II)^{*}_{2} \rightarrow a^{*}_{1}A(I)^{*}_{1}A(II)^{*}_{1} \\ a^{*}_{0}A(I)^{*}_{0}A(II)^{*}_{0} \rightarrow a^{*}_{0}A(I)^{*}_{0}A(I)^{*}_{0} \\ a^{*}_{0}A(I)^{*}_{0}A(II)^{*}_{0} \rightarrow a^{*}_{0}A(I)^{*}_{0}A(I)^{*}_{0} \\ a^{*}_{0}A(I)^{*}_{0}A(II)^{*}_{0} \rightarrow a^{*}_{0}A(I)^{*}_{0}A(I)^{*}_{0} \\ a^{*}_{0}A(I)^{*}_{0}A(I)^{*}_{0} \rightarrow a^{*}_{0}A(I)^{*}_{0} \\ a^{*}_{0}A(I)^{*}_{0} \rightarrow a^{*}_{0}A(I)^{*}_{0} \\$
84,8(CDČl ₃) Table 6. The ¹ H-N	$a_3A(I)_3A(II)_3 \leftrightarrow a_4^3A(I)^3_4A(II)^4_4$	7.798–7.627	a [*] ₅ A(IĴ [*] ₅ A(IIĴ [*] ₅ ↔ a [*] ₃ A(IĴ) [*] ₃ A(IIĴ [*] ₃
Spectrum No Solvent	H 12-of the structures	Pyridin–2- yl H 12, H 14	H 14-of the structures
8 ₂ (DMSO) 8 ₇ (DMSO-D ₂ O) 8.(DMSO)	$\begin{array}{l} a_4 A(D_4 A(II)_4 \leftrightarrow a_2 A(D_2 A(II)_2 \leftrightarrow a A(I) A(II) \\ a_4 A(D_4 A(II)_4 \leftrightarrow a^{'}_1 A(I)^{'}_1 A(II)^{'}_1 \\ a_2 A(D,A(II)_2 \leftrightarrow a^{'}_2 A(D^{'}_2 A(II)^{'}_2 \leftrightarrow a^{'}_2 A(I)^{'}_2 A(II)^{'}_2 \end{array}$	7.530–7.232 7.527–7.207 7.522–7.224	$\begin{array}{c} a_1 A(I)_1 A(II)_1 \leftrightarrow a'_2 A(I)'_2 A(II)'_2 \leftrightarrow a' A(I)'A(II)'\\ a_2 A(I)_2 A(II)_2 \leftrightarrow a'_1 A(I)'_1 A(II)'_1 \leftrightarrow a'_5 A(I)'_5 A(II)'_5\\ a_2 A(I)_2 A(II)_2 \leftrightarrow a'_2 A(I)'_2 A(II)'_2 \end{array}$
8,(CDCl ₃) 10(CDCl ₃)	$a_{4}^{A}\Lambda(\overline{D}_{4}^{A}\Lambda(\overline{D}_{4}^{A}) \rightarrow a_{5}^{*}A(\overline{D})_{5}^{*}A(\overline{D})_{5}^{*}$ $a_{6}^{*}A(\overline{D})_{6}A(\overline{D})_{6} \rightarrow a_{7}^{*}A(\overline{D})_{7}A(\overline{D})_{7}A(\overline{D})_{7} \rightarrow a_{4}A(\overline{D}_{4} A(\overline{D})_{4} \rightarrow aA(\overline{D}) A(\overline{D})$	7.527–7.193 7.448–7.233	$\begin{aligned} a_{2}^{2}A(I)_{2}^{-1}A(II)_{2}^{-1}\leftrightarrow a_{1}^{'}A(II)_{1}^{'}A(II)_{1}^{'}\leftrightarrow a_{1}^{'}A(II)_{6}^{'}A(II)_{6}^{'}\\ a_{3}^{2}A(I)_{5}A(II)_{5}\leftrightarrow a_{3}^{2}A(I)_{3}A(II)_{3}\leftrightarrow a_{2}^{'}A(I)_{2}^{'}A(II)_{2}^{'}\leftrightarrow aA(I)A(II) \end{aligned}$
9(CDCl ₃) 7(CDCl ₃) 8 ₄ (CDCl ₃) 8(CDCl ₅)	$\begin{array}{l} a'_{6}A(I)'_{6}A(II)'_{6} \leftrightarrow a'_{1}A(I)'_{1}A(II)'_{1} \leftrightarrow a'_{0}A(I)'_{0}A(II)'_{0} \\ a'_{6}A(I)'_{6}A(II)'_{6} \leftrightarrow a'_{5}A(I)'_{5}A(II)'_{5} \leftrightarrow a'_{8}A(I)'_{8}A(II)'_{8} \\ a'_{6}A(I)'_{6}A(II)'_{6} \leftrightarrow a'_{4}A(I)'_{4}A(II)'_{4} \leftrightarrow a'_{3}A(I)'_{3}A(II)'_{3} \\ a''_{7}A(I)'_{7}A(III)'_{7} \leftrightarrow a''_{7}A(II)'_{4}A(II)'_{4} \end{array}$	7.448–7.209 7.444–7.242 7.447–7.129 7.430–7.190	$\begin{array}{l} a_{s}A(I)_{s}A(II)_{s} \leftrightarrow a_{s}A(I)_{3}A(II)_{3} \leftrightarrow a'_{1}A(II)'_{1}A(II)'_{1}\\ a_{3}A(I)_{3}A(II)_{3} \leftrightarrow a'_{s}A(I)'_{8}A(II)'_{8} \leftrightarrow a'_{9}A(I)'_{0}A(II)'_{0}\\ a_{3}A(I)_{3}A(II)_{3} \leftrightarrow a'_{4}A(I)'_{4}A(II)'_{4} \leftrightarrow a''_{7}A(I)'_{7}A(II)'_{7}\\ a_{4}A(I)_{4}A(II) \leftrightarrow a''_{4}A(I)'_{4}A(II)'_{4} \leftrightarrow a''_{7}A(I)'_{7}A(II)'_{7}\\ \end{array}$

Table 4. The $^1\text{H-NMR}$ chemical shifts δ [ppm] from TMS of 2.

Strzemecka: Tautomerism of (3-Phenyl-allyl-) (5-pyridin-2-yl-[1,3,4] thiadiazol-2-yl) amine

Spectrum No		Pyridin–2- yl
Solvent	H 11	structures
8 ₇ (DMSO-D ₂ O)	8.650-8.577	$a_{s}A(I)_{s}A(II)_{s} \leftrightarrow a'_{s}A(I)'_{s}A(II)'_{s} \leftrightarrow a'_{4}A(I)'_{4}A(II)'_{4} \leftrightarrow a'A(I)'A(II)'$
8 ₂ (DMSO)	8.650-8.574	$a_{5}^{A}(I)_{5}^{A}(II)_{5}^{C} \leftrightarrow a_{8}^{A}(I)_{8}^{A}(II)_{8}^{A} \leftrightarrow a_{4}^{A}(I)_{4}^{A}(II)_{4}^{A} \leftrightarrow a_{0}^{A}(I)_{0}^{A}(II)_{0}^{A}$
8 ₁ (DMSO)	8.635 - 8.560	$a_{4}A(I)_{4}A(II)_{4} \leftrightarrow a_{4}^{\prime}A(I)_{4}^{\prime}A(II)_{4}^{\prime} \leftrightarrow a_{6}^{\prime}A(I)_{6}^{\prime}A(II)_{6}^{\prime}$
$8_3(CDCl_3)$	8.591-8.513	$a_2A(I)_2A(II)_2 \leftrightarrow a_4A(I)_4A(II)_4 \leftrightarrow a_3A(I)_3A(II)_3$
$7(CDCl_3)$	8.580 - 8.533	$a_{4}^{2}A(I)_{4}^{2}A(II)_{4}^{2} \leftrightarrow a_{2}^{2}A(I)_{2}^{2}A(II)_{2}^{2} \leftrightarrow a_{8}^{2}A(I)_{8}^{2}A(II)_{8}^{2} \leftrightarrow aA(I)A(II)$
$8_4(CDCl_3)$	8.574-8.499	$a'_{3}A(I)'_{3}A(II)'_{3} \leftrightarrow a'_{1}A(I)'_{1}A(II)'_{1}$
$10(CDCl_3)$	8.570-8.523	$a_{A}A(I)_{A$
9(CDCl ₃)	8.570-8.519	$a_{1}A(I)_{2}A(II)_{2} \leftrightarrow a_{3}A(I)_{3}A(II)_{3} \leftrightarrow a_{0}A(I)_{0}A(II)_{0}$
8(CDCl ₃)	8.547-8.500	$\mathbf{a}_{5}^{\mathbf{i}} \mathbf{A}(\mathbf{I})_{5}^{\mathbf{i}} \mathbf{A}(\mathbf{I})_{5}^{\mathbf{i}} \leftrightarrow \mathbf{a}_{2}^{\mathbf{i}} \mathbf{A}(\mathbf{I})_{2}^{\mathbf{i}} \mathbf{A}(\mathbf{I})_{2}^{\mathbf{i}}$

Table 7. The ¹H-NMR chemical shifts δ [ppm] from TMS of **2**.

Table 8: The ¹H¹H long – range coupling constants [Hz] of 2

Spectrum No (CDCL)	δ	I	NH
	0.400		0.070.11
10	0.498	$J(H_6H_{11}) = 38.400 \text{ Hz}$	0.279 H
7	4.210	J(H _{7C} H ₁₄) 43.008 Hz	0.7 H
7	4.257	J(H _{7C} H ₁₂) 43.264 Hz	
7	4.266	J(H _{7D} H ₁₃) 41.472 Hz	
9	6.641	J(H _{9A} H ₁₃) 37.376 Hz	0.272 H
9	8.082	$J(H_{13}H_{9A})$ 37.632 Hz	0.628 H
8	7.190	$J(H_{14}H_{9A})$ 38.784 Hz	3.08 H
8	7.369	$J(H_{14}H_{9B})$ 42.624 Hz	
10	8.523	$J(H_{11}H_{9A})$ 38.912 Hz	0,107 H
8	8.063	$J(H_{13}H_{9B})$ 42.496 Hz	0.742 H
8	7.702	$J(H_{12}H_{7C})$ 43.392 Hz	3.425 H
7	7.242	$J(H_{14}H_{9B})$ 43.520 Hz	2 H
9	7.228	$J(H_{14}H_{9B})$ 43.520 Hz	1.965 H

Table 9: The ¹H NMR chemical shifts δ [ppm] from TMS of NH proton of 2A(I), 2A(II) tautomers

Spectrum No Solvent	δ	NH	Structure
$\overline{8_5 (\text{CDCl}_3)}$	13.64	(s)	2A(I) 2A(I)'
8 ₂ (DMSO)	8.650 - 8.574	0.08 H	2A(II) 2A (II)'
8_1 (DMSO)	8.635 - 8.560	0.4 H	
10 (CDCl ₃)	8.570 - 8.523	0.107 H	$2A(I)_1 2A(II)_1$
$9 (CDCl_3)$	8.570 - 8.519	0.236 H	$2A(I)_2 2A(II)_2$
$8 (CDCl_3)$	8.547 - 8.500	0.61 H	
8_5 (CDCl ₃)	8.48	0.25 H	
8_1 (DMSO)	8.435 - 8.345	1.08 H	$2A(I)_3 2A(II)_3$
8_2 (DMSO)	8.411 - 8,306	1.5 H (t)	$2A(I)_4^2 2A(II)_4^2$

The resonance structures of the pyridine ring are shown on Fig. 5.

In the ¹³C NMR spectrum of **2** the chemical shifts of C-11 at δ 149.33 and C-15 at δ 149.76 ² confirm pyridinetype nitrogen atom N-10, the structures **a**₁ **A**(**I**)₁ **A**(**II**)₁, **a**'₁**A**(**I**)'₁ **A**(**II**)'₁, **a**'₂ **A**(**I**)'₂ **A**(**II**)'₂ and **a**₅ **A**(**I**)₅ **A**(**II**)₅ respectively.

The chemical shift of C-12 at δ 124.12² of **2** support the pyridine-type nitrogen atom N-10 of the structures **a**₂ **A**(**I**)₂**A**(**II**)₂, **a**'₃**A**(**I**)'₃**A**(**II**)'₃, **a**'₅**A**(**I**)'₅**A**(**II**)'₅. The sig-

Table 10: The ¹H NMR chemical shifts δ [ppm] from TMS of NH proton of **2A(I)'**, **2A(II)'** tautomers

Spectrum			
No Solvent	δ	NH	Structure
$7 (CDCl_3)$	8.176 - 8.096	0.04 H	
$9 (CDCl_3)$	8.162 - 8.082	0.628 H	$2A(I)_{5} 2A(II)_{5}$
10 (CDCl ₃)	8.162 - 8.082	0.358 H	$2A(I)'_{1} 2A(II)'_{1}$
8 (CDCl ₃)	8.143 - 8.063	0.742 H	$2A(I)'_{2} 2A(II)'_{2}$
8_5 (CDCl ₃)	8.08	0.5 H	$2A(I)'_{3} 2A(II)'_{3}$
8 ₁ (DMSO)	8.003 - 7.835	0.6 H	
$7 (CDCl_3)$	7.890 - 7.674	2H	
$10 (CDCl_3)$	7.838 – 7.669	2H	
8_3 (CDCl ₃)	7.830 – 7.659	0.15 H	
9 ($CDCl_3$)	7.829 – 7.655	2H	
8 (CDCl ₃)	7.796 - 7.627	3.425 H	
$8_6 (CDCl_3)$	7.683 - 7.680	0.089 H	
8_5 (CDCl ₃)	7.64	2.5 H	
8_2 (DMSO)	7.530 - 7.232	0.4	2A(I)' ₄ 2A(II)' ₄
8_1 (DMSO)	7.522 - 7.224	2.5 H	$2A(I)'_{5} 2A(II)'_{5}$
8_3 (CDCl ₃)	7.527 – 7.193	0.7 H	$2A(I)'_{6} 2A(II)'_{6}$
10 (CDCl ₃)	7.448 - 7.233	1.721H	
$9 (CDCl_3)$	7.448 - 7.209	1.965 H	2A(I)' ₅ 2A(II)' ₅
$7 (CDCl_3)$	7.444 - 7.242	2H	$2A(I)'_{6} 2A(II)'_{6}$
$8 (CDCl_3)$	7.430 - 7.190	3.08 H	$2A(I)'_{7}^{\circ} 2A(II)'_{7}$
8_4 (CDCl ₃)	7.447 – 7.129	0.5 H	
8_6 (CDCl ₃)	7.323 - 7.306	0.165 H	
8_5 (CDCl ₃)	7.280	2 H	
8_6 (CDCl ₃)	7.252 - 7.174	0.457 H	

nal of C-14 at δ 119.89² point to the structures $\mathbf{a}_3 \mathbf{A}(\mathbf{I})_3$ $\mathbf{A}(\mathbf{II})_3, \mathbf{a}'_4 \mathbf{A}(\mathbf{I})'_4, \mathbf{A}_{\mathbf{I}}(\mathbf{I})'_4, \mathbf{a}_5 \mathbf{A}(\mathbf{I})_5 \mathbf{A}(\mathbf{II})_5$. The signal of C-13 at δ 136.80² confirms the structures $\mathbf{a}_2 \mathbf{A}(\mathbf{I})_2 \mathbf{A}(\mathbf{II})_2$, \mathbf{a}_3 $\mathbf{A}(\mathbf{I})_3 \mathbf{A}(\mathbf{II})_3, \mathbf{a}'_3 \mathbf{A}(\mathbf{I})'_3 \mathbf{A}(\mathbf{II})'_3, \mathbf{a}_4 \mathbf{A}(\mathbf{I})_4 \mathbf{A}(\mathbf{II})_4, \mathbf{a}'_4 \mathbf{A}(\mathbf{I})'_4$ $\mathbf{A}(\mathbf{II})'_4, \mathbf{a}'_5 \mathbf{A}(\mathbf{I})'_5 \mathbf{A}(\mathbf{II})'_5$. The chemical shift of N-10 in ¹⁵N NMR spectrum of 1 at δ - 74.78 supports the structures $\mathbf{a}_2 \mathbf{A}_2 \mathbf{A}(\mathbf{I})_2 \mathbf{A}(\mathbf{II})_2, \mathbf{a}'_3 \mathbf{A}'_3 \mathbf{A}(\mathbf{I})'_3 \mathbf{A}(\mathbf{II})'_3, \mathbf{a}_4 \mathbf{A}_4 \mathbf{A}(\mathbf{I})_4$ $\mathbf{A}(\mathbf{II})_4, \mathbf{a}'_{5-8} \mathbf{A}'_{5-8} \mathbf{A}(\mathbf{I})'_{5-8} \mathbf{A}(\mathbf{II})'_{5-8}$. The calculated chemical shift of N-10 of 2 at δ - 72.36 (Table 1)² confirms the structures $\mathbf{a}_1 \mathbf{A}(\mathbf{I})_1 \mathbf{A}(\mathbf{II})_1, \mathbf{a}'_1 \mathbf{A}(\mathbf{II})'_1, \mathbf{a}'_2 \mathbf{A}(\mathbf{I})'_2$ $\mathbf{A}(\mathbf{II})'_2, \mathbf{a}_3 \mathbf{A}(\mathbf{I})_3 \mathbf{A}(\mathbf{II})_3, \mathbf{a}'_4 \mathbf{A}(\mathbf{I})'_4 \mathbf{A}(\mathbf{II})'_4, \mathbf{a}_5 \mathbf{A}(\mathbf{I})_5 \mathbf{A}(\mathbf{II})_5$. The ¹H NMR spectrum 8₆ (500 MHz) shows a signal of H-14 at δ 8.087 of the structures $\mathbf{a}_3 \mathbf{A}(\mathbf{I})_3 \mathbf{A}(\mathbf{II})_3, \mathbf{a}'_8 \mathbf{A}(\mathbf{I})'_8$. In the ¹H ¹³C HMBC and HMQC correlation spectra the signal of H-14 at $\delta 8.080^2$ exhibits a correlation to C-14 at $\delta 119.9$ and C-12, C-8 at $\delta 123.8$, C-15 at $\delta 149.7$, C-5 at $\delta 160.0$, respectively and confirms $\mathbf{a'_5} \mathbf{A(I)'_5} \mathbf{A(II)'_5}$. In the 2D ¹H ¹³C HMQC correlation spectra the crosspeak between H-14 at $\delta 7.500$ and C-13 at $\delta 136.8$ support the resonance structures $\mathbf{a_3} \mathbf{A(I)_3} \mathbf{A(II)_3} \leftrightarrow \mathbf{a'_5} \mathbf{A(I)'_5}$. **A(II)'**₅. The cross-peak between H-14 at $\delta 7.200$ and C-13, C-16 at $\delta 136.2$ support the resonance structures $\mathbf{a'_8} \mathbf{A(I)'_8} \mathbf{A(II)'_8}$.

In the ¹H ¹³C HMBC and HMQC correlation spectra the signal of H-13 at δ 7.690 exhibits a correlation to C-13 at δ 136.8 and C-14 at δ 119.9, C-15 at δ 149.7, C-5 at δ 160.0, respectively and confirms $\mathbf{a'_3} \mathbf{A(I)'_3} \mathbf{A(II)'_3} \leftrightarrow \mathbf{a_2}$ $\mathbf{A(I)_2} \mathbf{A(II)_2}$ and $\mathbf{a_3} \mathbf{A(I)_3} \mathbf{A(II)_3} \leftrightarrow \mathbf{a_4} \mathbf{A(I)_4} \mathbf{A(II)_4} \leftrightarrow \mathbf{a'_4}$ $\mathbf{A(I)'_4} \mathbf{A(II)'_4}$ resonance structures.

In the 2D ¹H ¹³C HMQC correlation spectra the cross-peaks between H-13 at δ 8.220, 8.200 and C-14 at δ 119.9 support the resonance structures $\mathbf{a'_1} \mathbf{A(I)'_1} \mathbf{A(II)'_1} \leftrightarrow \mathbf{a'_8} \mathbf{A(I)'_8} \mathbf{A(II)'_8}$. The cross-peaks between H-13 at δ 7.920, 7.900 and C-14 at δ 119.9 support the resonance structures $\mathbf{a_4} \mathbf{A(I)_4} \mathbf{A(II)_4} \leftrightarrow \mathbf{a_5} \mathbf{A(I)_5} \mathbf{A(II)_5}$. The correlation signal between H-13 at δ 7.830 and C-15 at δ 149.7 confirms $\mathbf{a_4} \mathbf{A(I)_4} \mathbf{A(II)_4} \leftrightarrow \mathbf{a_3} \mathbf{A(I)_3} \mathbf{A(II)_3} \leftrightarrow \mathbf{a_2} \mathbf{A(I)_2} \mathbf{A(II)_2}$ resonance structures.

In the 2D ¹H ¹³C HMBC, HMQC correlation spectra a correlation signal between H-12 at δ 7.200 and C-12 at δ 124.1 as well as the correlation signals of H-12 at δ 7.200 to C-5 at δ 160, C-15 at δ 149.7, C-14 at δ 119.9 point to the resonance structures **a'**₅ **A**(**I**)'₅ **A**(**II**)'₅.

The 2D ¹H ¹³C HMBC, HMQC correlation spectra show a correlation signal between H-11 at δ 8.490 and C-11 at δ 149.3 as well as the correlation signals of H-11 at δ 8.490 to C-15 at δ 149.7, C-14 at δ 119.9, C-13 at δ 136.8, C-12, C-8 at δ 123.8 and point to the resonance structures **a**₃ **A**(**I**)₃ **A**(**II**)₃ \leftrightarrow **a**'₃ **A**(**I**)'₃ **A**(**II**)'₃, **a**₂ **A**(**I**)₂ **A**(**II**)₂ \leftrightarrow **a**'₄ **A**(**II**)'₄.

The ¹H ¹H coupling constants $J(H_{13}H_{12})$ 7.8 Hz, $J(H_{12}H_{13})$ 7.8 Hz ² of **2a** tautomer support the positive charge at C-13 atom of the structures **a**₂ **A**(**I**)₂ **A**(**II**)₂. The coupling constants $J(H_{14}H_{13})$ 7.0 Hz, $J(H_{12}H_{11})$ 4.9 Hz, $J(H_{11}H_{12})$ 4.9 Hz, $J(H_{11}H_{14})$ 1.0 Hz, $J(H_{14}H_{11})$ 1.0 Hz ² point to the positive charge at C-15 atom and the negative one on N-10 atom of pyridine substituent of the structures **a**'₈, **A**(**I**)'₈ **A**(**II**)'₈. The coupling constants $J(H_{12}H_{13})$ 1.7 Hz, $J(H_{13}H_{12})$ 1.7 Hz ² of **2a** confirm the lack of the charges on the pyridine ring.

In the ¹H NMR spectra 7–10 the signals of N–H proton in the range from δ 13.64 to 8.480 of the chemical shifts support the structures **2A(I) 2A(I)'**, **2A(II) 2A(II)'**, **2A(I)**, **2A(II)**, **2A(I)**, **2A(II)**, (Table 9) (Figs 1–3, 5).

The signals of N–H proton in the range from $\delta 8.435$ to 8.306 (Table 9) and at $\delta 8.176-8.063$ (Table 10) confirm the resonance structures $2A(I)_3$, $2A(II)_3$, $2A(I)_4$, $2A(II)_4$ and $2A(I)_5$, $2A(II)_5$, $2A(I)_1^{\prime}$, $2A(II)_1^{\prime}$, respectively. At $\delta 8.003-7.835$ and at $\delta 7.830-7.627$, $2A(I)_1^{\prime}$, $2A(II)_1^{\prime}$, $2A(II)_2^{\prime}$, $2A(II)_1^{\prime}$, $2A(II)_2^{\prime}$, 2

2A(I)'₂ 2A(II)'₂ and 2A(I)'₃ 2A(II)'₃ resonance structures arise, respectively. In the range of δ 7.530–7.193 and δ 7.448–7.129 the resonance structures 2A(I)'₄ 2A(II)'₄ 2A(I)'₅ 2A(II)'₅ 2A(I)'₆ 2A(II)'₆ and 2A(I)'₅ 2A(II)'₅ 2A(I)'₆ 2A(II)'₆ 2A(II)'₇ 2A(II)'₇ appear (Table 10).

In the ¹H NMR spectra $8_1 8_2$ (100MHz, DMSO) the signals at δ 8.390 (1.08H, degenerated broaded triplet) and at δ 8.358 (1.5 H, broaded triplet, Table 9) correspond to the N–H proton of **2A(I)**₃ **2A(II)**₃ and **2A(I)**₄ **2A(II)**₄ tautomers, respectively.

The broaded triplets suggest that these protons take part in the intermolecular hydrogen bonds. The broaded triplet in the ¹H NMR spectrum 8, indicates the slow exchange of the N-H proton, due to this fact, the coupling of H-6 H-7 protons may be observed and support $2A_4 2A(I)_4$ $2A(II)_{4}$ tautomers. These signals are the averaged ones in consequence of the rapid transitions of hydrogen atom between the exocyclic nitrogen atom N-6 and N-3 N-4 ones of 1,3,4-thiadiazole ring, then degenerated broaded triplet at δ 8.390 in the ¹H NMR spectrum 8, point to the 2A, 2B, 2C, tautomers. They disappear in D_2O (spectrum 8_7). In the ¹H NMR spectrum 8_5 of product 2 recorded in CDCl₃ solution at 100 MHz the considerable deshielding of the N-H proton at δ 13.64 indicates the possible intramolecular hydrogen bond and supports 2C' 2C(I)' 2C(II)' tautomers. In the ${}^{1}\text{H}$ NMR spectrum 1, (100 MHz, DMSO) the magnitude of the couplings $J(H_8H_{7D}) = J(H_8H_{7C}) 8.2$ Hz support the changes of $sp^2 \Leftrightarrow sp^3$ hybridization of the nitrogen and carbon atoms N-6 C-7. The coupling constants of the protons $J(H_8H_{0B})$ 15.4 Hz, $J(H_8H_{9A})$ 8.5Hz, $J(H_8H_{7C})$ 7.6 Hz, $J(H_8H_{7D})$ 7.6 Hz support the sp³ hybridization of C-7 carbon atom.²¹

Fig. 7: The 1H NMR NH group signals at δ 7.890–7.674 and δ 7.444–7.242 (spectrum 7)

Strzemecka: Tautomerism of (3-Phenyl-allyl-) (5-pyridin-2-yl-[1,3,4] thiadiazol-2-yl) amine

Fig. 8: The 1H NMR NH group signals at δ 7.838–7.669 and δ 7.448–7.233 (spectrum 10)

Fig. 9: The 1H NMR NH group signals at δ 7.796–7.627 and δ 7.430–7.190 (spectrum 8)

The ¹H NMR spectra of 2 (100 MHz) confirm the co-existence of two tautomeric forms $A(I)' \Rightarrow B'$ or $A(II)' \Rightarrow C(II)'$ in the solution.

The signals of N–H proton in the range from δ 7.890 to 7.674 (2H) and at δ 7.444 to 7.242 (2H) (Fig. 7, spectrum 7, Table 10) point to the transformation process of $2A(I)'_1 \Rightarrow 2B'_1$, $2A(I)'_6 \Rightarrow 2B'_6$ or $2A(II)'_1 \Rightarrow 2C(II)'_1$, $2A(II)'_6 \Rightarrow 2C(II)'_6$, respectively.

The signals of N–H group at δ 7.838–7.669 (2 H) and at δ 7.448–7.233 (1.721 H) (Fig. 8, spectrum 10, Table 10) confirm the balance of 2A(I)'₂ \Rightarrow 2B'₂, 2A(I)'₅ \Rightarrow 2B'₅ or 2A(II)'₂ \Rightarrow 2C(II)'₂, 2A(II)'₅ \Rightarrow 2C(II)'₅, respectively.

The signals of N–H proton at δ 7.796–7.627 (3.425 H) and at δ 7.430–7.190 (3.08 H) (Fig. 9, spectrum 8, Table 10) point to 2A(I)'₃ 2A(II)'₃ and 2A(I)'₇ 2A(II)'₇ resonance structures and to the interconvertion of 2A(I)'₃ \Rightarrow 2B'₃, 2A(I)'₇ \Rightarrow 2B'₇ or 2A(II)'₃ \Rightarrow 2C(II)'₃, 2A(II)'₇ \Rightarrow 2C(II)'₇, respectively.

The signals of N–H proton at δ 7.64 (2.5 H) and at δ 7.28 (2 H) (spectrum 8₅, Table 10) confirm the **2A(I)**'₃ **2A(II)**'₃ and **2A(I)**'₆ **2A(II)**'₆ structures and the transformation process of **2A(I)**'₃ \Rightarrow **2B**'₃, **2A(I)**'₆ \Rightarrow **2B**'₆ or **2A(II)**'₃ \Rightarrow **2C(II)**'₃, **2A(II)**'₆, respectively.

Fig. 10: The 1H NMR NH group signals at δ 7.829–7.655 and δ 7.448–7.209 (spectrum 9)

The signal of N–H group at δ 7.829–7.655 (2 H) and at δ 7.448–7.209 (1.965 H) (Fig. 10, spectrum 9, Table 10) supports the balance of **2A(I)**'₃ \Rightarrow **2B**'₃, **2A(I)**'₅ \Rightarrow **2B**'₅ or **2A(II)**'₃ \Rightarrow **2C(II)**'₃, **2A(II)**'₅ \Rightarrow **2C(II)**'₅, respectively. The signal of N–H group at δ 7.522–7.224 (2,5 H) (spectrum 8₁) indicates **2A(I)**'₄ **2A(II)**'₄ structures as well as the transformation process of **2A(I)**'₄ \Rightarrow **2B**'₄ or **2A(II)**'₄ \Rightarrow **2C(II)**'₄. These transformation confirm the amine-type nitrogen N-4, N-3 of 1,3,4-thiadiazole ring.

Table 11: The ¹H–NMR chemical shifts δ [ppm] from TMS of the NH group of tautomer 1A 1A'.

Spectrum			
No Solvent	δ	NH	Structure
$\overline{1_1 (DMSO)}$	8.637 - 8.562	0.08 H	11A 1A'
l_3 (CDCl ₃)	8.606 - 8.530	0.2 H	$1A_1 1A_2$
l_4 (CDCl ₃)	8.601 - 8.525	0.05 H	
$3 (CDCl_3)$	8.598 - 8.537	0.23 H	
$6 (CDCl_3)$	8.598 - 8.523	0.1 H	
$1 (CDCl_3)$	8.594 - 8.519	0.38 H	
$5 (CDCl_3)$	8.589 - 8.514	0.637 H	
$2 (CDCl_3)$	8.580 - 8.537	0.08 H	
5(CDCl ₃)	8.077 - 7.974	0.756 H	1A' ₁
$4(CDCl_3)$	7.852 - 7.683	0.13 H	$1A'_2$
$6(CDCl_3)$	7.852 - 7.678	0.14 H	$1A'_{3}$
$1(CDCl_3)$	7.847 – 7.674	0.43 H	U
$2(CDCl_3)$	7.847 – 7.674	0.18 H	
$3(CDCl_3)$	7.847 – 7.674	0.25 H	
5(CDCl ₃)	7.838 - 7.646	1.356 H	
$1_7(CDCl_3)$	7.78 – 7.73	0.505 H	

Table 12: The ¹H–NMR chemical shifts δ [ppm] from TMS and the ¹H–¹H long-range coupling constants [Hz] of **1**

Spectrum			
No (CDCL ₃)	δ	J	NH
4	8.528	J(H ₁₁ H _{9A}) 37.28	0
6	8.598	$J(H_{11}H_{9A})$ 38.14	4 0.1 H
1	7.754	$J(H_{12}H_{9A})$ 38.33	6 0.43 H
4	8.584	$J(H_{11}H_{9A})$ 38.40	0
6	7.852	$J(H_{12}H_{9A})$ 38.91	2 0.14 H
5	7.974	$J(H_{13}H_{9A})$ 39.29	6 0.736 H
5	7.998	$J(H_{13}H_{9A})$ 40.06	4
5	7.819	$J(H_{12}H_{9A})$ 40.83	2 1.356H
6	7.697	$J(H_{12}H_{9A})$ 41.98	4 0.14 H
4	8.594	$J(H_{11}H_{9B})$ 42.43	2

In the ¹H–NMR (100 MHz) spectra of **1** the NH group signals in the δ 8.637–8.514 and δ 8.077–7.646 range confirm the **1A**, **1A'**, **1A**₁, **1A**₂ and **1A'**₁, **1A'**₂ **1A'**₃ resonance structures, respectively (Table 11).¹ The signals at δ 8.594 *J*(H₁₁H_{9B}) 42.432 Hz, δ 8.584 *J*(H₁₁H_{9A}) 38.400 Hz, δ 8.528 *J*(H₁₁H_{9A}) 37.280 Hz and δ 7.998 *J*(H₁₃H_{9A}) 40.064 Hz (spectra 4, 5 Table 12)¹ point to the transition of **A'** \Leftrightarrow **A** and **A'**₁ \Leftrightarrow **A**₁ tautomers as well as to the rapid exchange at the NH group hydrogen of structures **A A'**.

The interconvertions of the structures $2A(I) \Leftrightarrow 2A(I)' \Leftrightarrow 2A(I)'_a, 2A(II) \Leftrightarrow 2A(II)' \Leftrightarrow 2A(II)'_a$ and the rapid exchange of the NH hydrogen suggest the proton transfer of $2A(I)' \Rightarrow 2B'$, or $2A(II)' \Rightarrow 2C(II)'$ tautomers *via* solvent. Double signals of the protons corresponding to both tautomeric forms are present in the ¹H-NMR (100 MHz) spectra of 2 (Figs 7–10, Table 10). The proton transfer reactions for different systems have been described in the literature.^{22,23}

4. Conclusions

The ¹H NMR studies (100MHz) of (3-phenyl-allyl-) (5-pyridin 2-yl-[1,3,4] thiadiazol-2-yl)-amine support the $A(I) \Leftrightarrow A(I)' \Leftrightarrow A(I)'_a, A(II) \Leftrightarrow A(II)' \Leftrightarrow A(II)'_a$ structures. The intensities of the signals of N–H proton in the range from δ 7.890 to 7.190 confirm the balance of two tautomeric forms $A(I)' \Rightarrow B'$ or $A(II)' \Rightarrow C(II)'$ in the solution. Double signals of the NH proton in the ¹H–NMR (100 MHz) spectra of 2 (Figs 7–10, Table 10) confirm both tautomeric forms. Because of the rapid exchange of NH group hydrogen in this case the pathway of the proton transfer *via* solvent may take place.

5. References

- 1. L. Strzemecka, Int. J. Mol. Sci., 2006, 7, 231-254.
- L. Strzemecka, D. Maciejewska, Z. Urbañczyk-Lipkowska, J. Mol. Struct., 2003, 648, 107–113.
- 3. P. Fremont, H. Riverin, J. Frenette, P. A. Rogers, C. Cote, *Am. J. Physiol.*, **1991**, 260, 615–21.
- 4. A. D. Kenny, Pharmacology, 1985, 31, 97-107.
- 5. A. C. Potts, U. K. Britt, Pat. Appl., G B 2, 223, 166 (Cl A 61 k 31/425) 04 Apr 1990.
- K. Miyamoto, R. Koshiura, M. Mori, H. Yokoi, Ch. Mori, T. Hasegawa, K. Takatori, *Chem. Pharm. Bull.*, **1985**, *33*, 5126–9.
- S. M.Cohen, E. Ertruk, A. M. Von Esch, A. J Crovetti, T. G. Bryan, J.Natl. Cancer Inst., 1975, 54 (4), 841–50.
- M. Miyahara, M. Nakadate, S. Sueyohi, M. Tanno, M. Miyahara, S. Kamiya, *Chem. Pharm. Bull.*, **1982**, *30*, 4402–6.
- M. G. Mamolo, V. Falagiani, D. Zampieri, L. Vio, E. Banfi, *Farmaco*, 2001, 56, 587–92.
- A. K. Gadad, S. S. Karki, V. G. Rajukar, B. A. Bhongade, *Ar-zneim. Forsch.*, **1999**, *49*, 858–63.
- F. Cleirci, D. Pocar, M. Guido, A. Loche, V. Perlini, M. Brufani, J. Med. Chem., 2001, 44, 931–6.
- M. Barboiu, C. T. Supuran, L. Menabuoni, A. Scozzafawa, F. Mincione, F.Briganti, G. Mincione, *J. Enzym. Inhib. Med. Chem.*, 2000, 15, 23–46.
- G. Mazzone, R Pignatello, S. Mazzone, A. Panico, G. Pennisi, R. Castana, P. Mazzone, *Farmaco.*, **1993**, 48, 1207–24.
- J. M. Cox, T.R. Hawkes, P. E. Bellini, M. Russell, R. Barrett, *Pestic. Sci.*, **1997**, *50*, 297–311.

Strzemecka: Tautomerism of (3-Phenyl-allyl-) (5-pyridin-2-yl-[1,3,4] thiadiazol-2-yl) amine

- F. Zucchi, G. Trabanelli, N. A. Gonzales, ACH-Mod. Chem., 1995, 132, 579–88.
- 16. L. Strzemecka, Pol. J. Chem., 1990, 64, 157-166.
- 17. C. Lee, W. Yang, R. G. Parr, Phys. Rev., 1988, B 37, 785-9.
- 18. A. D. Becke, J. Chem. Phys., 1993, 98, 5648-52.
- M. J. Frisch, G. W.Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Jr. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko,

P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian 98, Revision A. 7, Gaussian, Inc., Pittsburgh PA, 1998.

- 20. L. Strzemecka, Annales UMCS Sectio AA, **1999/2000**, vol. LIV/LV, 379–392.
- 21. L. Strzemecka, Annales UMCS, Sectio AA, **1999/2000**, vol. LIV/LV, 363–377.
- 22. A. Kržan, J. Mavri, Chem. Phys., 2002, 277, 71-76
- 23. M. H. M. Olsson, J. Mavri, A. Warshel, *Phil. Trans. Roy.* Soc., **2006**, *B*, 361, 1417–1432

Povzetek

Določili smo strukturne oblike iona ali radikala spojine (3 – fenil – alil–) (5 – piridin – 2 – il – [1,3,4] tiadiazol – 2 – il)–amina $2A(I) \iff 2A(I)' \iff 2A(II)' \iff 2A(II)' \iff 2A(II)'_a$ s pomočjo njenih ¹H (100 MHz, 500 MHz), ¹³C in ¹⁵N NMR spektrov in B3LYP/6–31G** izračunov. Tavtomerno ravnotežje $2A(I)' \Rightarrow 2B'$, $2A(II)' \Rightarrow 2C(II)'$ je določeno s pomočjo ¹H NMR spektra (100 MHz).