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Abstract

‘We define a new class of a rank-3 matroid called a trilateral matroid. When defined, the
ground set of such a matroid consists of the points of an ns-configuration, and its bases are
the point triples corresponding to non-trilaterals within the configuration. We characterize
which ngs-configurations induce trilateral matroids and provide several examples.
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1 Introduction

A (combinatorial) ns-configuration C is an incidence structure consisting of n distinct
points and n distinct blocks for which each point is incident with three blocks, each block
is incident with three points, and any two points are incident with at most one common
block. If C may be depicted in the real projective plane using points and having (straight)
lines as its blocks, then it is said to be geometric. As observed in [6] (pg. 17-18), it is
evident that every geometric ng-configuration is combinatorial, but the converse of this
statement does not hold.

A trilateral in a configuration is a cyclically ordered set {py, bg, p1, b1, p2, ba} of pair-
wise distinct points p; and pairwise distinct blocks b; such that p; is incident with b;_; and
b; for each i € Z3 [2]. We may without ambiguity shorten this notation by listing only
the points of the trilateral as {pg, p1,p2}, or more simply as popi1ps. A configuration is
trilateral-free if no trilateral exists within the configuration. Unless stated otherwise, the
ng-configurations we shall examine are point-line configurations, so that the blocks are
lines. But we shall investigate an example of a point-plane configuration in Section 3.

Following the terminology of [7], we define a matroid M to be an ordered pair (E, B)
consisting of a finite ground set £ and a nonempty collection B of subsets of F called bases
which satisfy the basis exchange property:
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Definition 1.1. If By, B, € B and z € By — Bs, then there exists y € Bs — By such that
By —xzUyeB.

It is a consequence of this definition that any two bases of M share the same cardinality;
this common cardinality is called the rank of the matroid. See [7], pg. 16—18 for the details.

It is a standard result that any nz-configuration C defines a rank-3 linear matroid, or vec-
tor matroid, M (C) = (E, B) whose ground set E consists of the points {p1, p2, . .., pn} of
C and whose set of bases B consists of the point triples {p,, ps, p..} Which are not collinear
in C. Hence the cardinality of B is (};) — n for the linear matroid M (C) induced by C.

In this work we pose the following associated question: under what conditions do the
trilaterals of an mg-configuration C induce a rank-3 matroid M,;(C) = (E,B) whose
ground set F again consists of the points of C, but now whose bases are the point triples
corresponding to non-trilaterals? This question, to our knowledge, has not previously been
considered in the literature on configurations and matroids.

Definition 1.2. A rrilateral matroid M,,.;(C) = (E, B), when it exists, is a matroid defined
on the set F of points of an ng-configuration C whose set of bases B consists of all of the
non-trilaterals of C. When My,.;(C) exists, we say that C induces My,;(C).

We shall see that, in contrast to the linear matroid setting, seldom is it the case that
an ns-configuration C induces a trilateral matroid M;,.;(C). But thankfully such matroids
do exist; for instance, any trilateral-free configuration induces a trilateral matroid, since
in this setting every point triple forms a base of the matroid. In other words, if C is a
trilateral-free ns-configuration, then Mj,;(C) exists and furthermore M,,;(C) = Us ,, the
uniform matroid of rank 3 on n points. Thus our initial motivation to define this new class
of matroids stems from the desire to enlarge the class of trilateral-free configurations.

For purposes of instruction, we regard an example of a 153-configuration which induces
a trilateral matroid on its points. Here is a combinatorial description of this configuration.
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This configuration has 10 trilaterals:

t1 o t3 tg t5 tg 7 1 t9 t10
111237 99 911
2 2 4 41114 11 11 13 13
4 6 6 6 1215131515 15

In Figure 1 we see both a diagram of this 153-configuration and a geometric representation
of its trilateral matroid. In the geometric representation, each trilateral (that is, each non-
basis element) is collinear.

Note that the configuration contains two complete quadrangles. The first complete
quadrangle is determined by the point set {1,2, 4,6}, and the second by {9,11,13,15}.
This means, for example, that no three points in {1,2, 4,6} are collinear, and each pair
of points is incident to a line of the configuration. So all four point triples present within
{1,2,4,6} give trilaterals, and hence are not bases of the matroid. Thus every 2-element
subset of {1,2,4,6} is independent, but no 3-element subset of {1,2,4,6} is. Therefore
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Figure 1: A 153-configuration with 10 trilaterals, and a geometric representation of the
matroid induced by these trilaterals.

the four-point line that represents the level of dependency of {1,2,4,6} in the geomet-
ric representation is appropriate. This minor is isomorphic to Us 4, which is the unique
excluded minor for the class of binary matroids ([7], pg. 501).

We must note that there is a fundamental difference between trilateral matroids and
linear matroids. Admittedly a finite set of points and lines in the plane gives a (linear)
matroid if and only if any pair of lines meet in at most one point. For suppose there exist
two points a and b which are met by two lines, so that points a, b, ¢ are collinear, points
a, b, d are collinear, but a, b, ¢, d are not all on one line. Pick a new point e so that ¢, d, and e
are not collinear, and so that a, b, and e are not collinear. Let B; = abe and By = cde € B;
both are bases of the linear matroid. We have By — By = ab and By — B; = cd. Let
xr=e€ By —By,s0B; —x =cd. Butify € B, — B; = ab, then B; — z U y equals
either abc or abd, neither of which is a base.

Hence a linear matroid cannot have two points common to more than one line. But
a trilateral matroid can; if both abc and abd are trilaterals, then the configuration has a
chance to induce a trilateral matroid if trilaterals acd and bcd are also present, meaning
that points ¢ and d are incident to a particular line of the configuration. In other words,
points {a, b, ¢, d} form a complete quadrangle within the configuration. We shall explore
this necessity further in Theorem 1.7.

Any point of an n3-configuration is incident to three lines; these three lines are then
incident to six points which are distinct from the original point and from each other. Con-
sequently, the maximum number of trilaterals incident to a given point is (g) -3 =12,
since lines are not trilaterals. This maximum is achieved by every point of the Fano 73-
configuration (the smallest nz-configuration) given in Figure 2.

Proposition 1.3. Suppose an ns-configuration C induces a trilateral matroid M,,;(C) =
(E, B). Then each point of the configuration is incident to at most six trilaterals.

Proof. Let a be a point in C, and let abc, ade, and a f g be the lines in C incident to a. Each
of these lines belongs to B, and hence there are at most (g) — 3 = 12 trilaterals incident to
a, namely

abd, abe, abf, abg, acd, ace, acf, acg, adf,adg, aef, and aeg.
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Figure 2: The Fano 73-configuration.

Since By = abc and By = ade are bases of My,.;(C), the basis exchange property applies
to them. This means that if z € By — By = bc, there must exist some y € By, — By = de
such that B; — x Uy € B. Consequently, letting = b, we find at least one of acd and ace
must be a base, hence not a trilateral. Likewise, letting © = c, it follows that at least one of
abd and abe is not a trilateral.

Applying a similar analysis to the pair of bases B; = abc, By = afg, we find that at
least one of acf and acg is not a trilateral, and at least one of abf and abg is not a trilateral.
Finally, given By = ade, Bo = afg, we find that at least one of acf and aeg is not a
trilateral, and at least one of adf and adg is not a trilateral. Hence at least six of the 12
possible non-collinear triples are not trilaterals, so at most six are trilaterals. O

Corollary 1.4. Suppose an ng-configuration C induces a trilateral matroid My,.;(C) =
(E, B). Then C contains at most 2n trilaterals.

Although Corollary 1.4 admittedly serves as a crude necessary condition for an ns-
configuration to induce a trilateral matroid, it does permit us to eliminate some of the
smallest ng-configurations from consideration, such as the Fano 73-configuration (which
contains 28 trilaterals) and also the Mdbius-Kantor 83-configuration (which contains 24
trilaterals). Additionally, two of the three non-isomorphic 93-configurations may be dis-
missed from consideration by this criterion, although the Pappus 93-configuration, which
contains 18 trilaterals, is still a possibility. We shall soon see, though, that the Pappus
configuration does not induce a trilateral matroid on its points.

The upper bound indicated by Proposition 1.3 is sharp, for it turns out that the Desar-
gues 103-configuration induces a trilateral matroid. Each of the points of the Desargues
configuration is incident to six trilaterals.

Figure 3: The Desargues 103-configuration.
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We now establish our main result. This will require the introduction of two types of
geometric obstructions (near-complete quadrangles and near-pencils) that, when present
within an n3-configuration C, individually preclude the existence of M;,.;(C).

Definition 1.5. A near-complete quadrangle [ab : cd] consists of four points a, b, ¢, and d
of the configuration, no three of which are collinear, for which five of the six possible lines
connecting each pair of points exist within the configuration, except for the pair cd.

c d
Figure 4: Near-complete quadrangle [ab: cd].

For example, we note the presence of the near-complete quadrangle [ab : cd] in the
Pappus configuration in Figure 5.

Figure 5: The Pappus 93-configuration.

It is important to note that, by our conventions, a complete quadrangle determined by
points {a, b, ¢, d} does not contain a near-complete quadrangle [ab: cd], since there exists
a line in the configuration incident to both ¢ and d. So the Desargues configuration, for
example, possesses five complete quadrangles but no near-complete quadrangle.

As we shall witness in greater detail, ns-configurations which induce trilateral matroids
may contain complete quadrangles. Indeed, in a linear matroid, given any two points, at
most one line passes between them. But, two trilaterals (call them abc and abd) may share
the points a, b provided that acd and bed are also trilaterals, that is, that line cd is also
present within the configuration.

Definition 1.6. A near-pencil [a : bed)] consists of four points a, b, ¢, and d of the configu-
ration, with a incident to each of b, ¢, and d, and with bcd a line of the configuration.

We regard the near-pencil [a : bed] in the Mobius-Kantor 83-configuration given in
Figure 7.

The notations [ab: ¢d] and [a : bed] for a near-complete quadrangle and a near-pencil,
respectively, are similar in that the points incident to three of the lines which determine the
object appear to the left of the colon, and those points incident to two lines appear to the
right of the colon.
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a
b c d

Figure 6: Near-pencil [a:bcd)].

Figure 7: The Mobius-Kantor 83-configuration.

Theorem 1.7. Let C be an ng-configuration, and let B be the set of the non-trilaterals of
C. Then C induces a trilateral matroid My,.;(C) if and only if no four points of C determine
either a near-complete quadrangle or a near-pencil.

Proof. (=) First suppose that C contains a near-complete quadrangle [ab: cd]. Let e be the
third point on line ace.
Case 1: bde is a line in C. Then the following subfiguration is present inside C.

b

a

Let By = ace and By = bde; both By, By € B. Then By — By = acand By — B, = bd.
Let x = ¢ € By — By; then By — x = ae. But both abe and ade are trilaterals, so
By —x Uy & Bforally € B, — B;. Hence B cannot be the set of bases of a matroid.

Case 2: bde is not a line in C. Then inside of C we have

b 7}

a C (&

Note that edge be cannot be present, for if so point b would have four lines incident to it,
but every point in an nz-configuration is incident to three lines.

Let By = abe, By = acd € B. Take e € B; — Bs; we have By — e = ab. But
Bs; — B1 = cd, and both abc and abd are trilaterals. Hence 3 cannot be the set of bases of
a matroid.
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Now suppose C contains a near-pencil [a:bed] as indicated in the diagram. Let e be the
third point on line ace.

We have B; = ace, By = bed € B. Choose ¢ € By — By. Then B; — ¢ = ac. But
Bs; — By = bd, and both abc and acd are trilaterals. Hence 3 cannot be the set of bases of
a matroid.

(«<=) Suppose that C does not induce a trilateral matroid M,.;(C). Since B cannot be the
set of bases of a matroid, there must exist a pair By, By in B for which the basis exchange
property is violated. So there must exist x € By — By such that for all y € Bs — By,
By — x Uy is a trilateral.

There are several cases to consider, some of which are vacuous.

Case 1: By = By. Then By — By = (), so a violation of the basis exchange property
cannot occur in this circumstance.

Case 2: By = abc, By = abd (distinct letters label distinct points in C.) Then B; —
By = cand By — By = d. For a violation to occur, we require that B; —cUd be a trilateral.
But B; — ¢Ud = By € B. Hence no violation can occur in this case as well.

Case 3: B1 = abc, By = ade. Then B; — By = bc and By — B1 = de. Without loss of
generality we assume that z = b. For a violation of the basis exchange property to occur,
both acd and ace must be trilaterals.

Subcase 3.1: ade is a non-collinear non-trilateral. Then [ac : de] is a near-complete
quadrangle.

a c
e d

Subcase 3.2: ade is a line. Then [c: ade] is a near-pencil.

aéh.e

d

Case 4: By = abc, By = def, so By N By = (). We may let x = a without loss of
generality. So for a violation of the basis exchange property to occur, all three of bcd, bee
and bcf must be trilaterals.

Subcase 4.1: Two of d, e, f are collinear with b. Without loss of generality, we assert
that bde is a line. Then [c: bde] is a near-pencil.

Subcase 4.2: No two of d, e, f are collinear with b. Then b must be incident to four
lines, a contradiction. O
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2 Examples

We have already observed, by Corollary 1.4, that the Fano 73-configuration, the Mobius-
Kantor 83-configuration, and two of the three 93-configurations cannot induce trilateral
matroids. It is worth noting that the Fano configuration contains no near-complete quad-
rangle, but many near-pencils; given any line abc of the Fano configuration, and any fourth
point d not on this line, then [d : abc| is a near-pencil. Since by Figure 5 we see that
the Pappus 93-configuration contains a near-complete quadrangle, by Theorem 1.7 it also
cannot induce a trilateral matroid.

It is worth noting that there is a matroid associated with the Fano configuration in the
sense that no three-element subset of the point set can be an independent set, since every
point triple determines a trilateral. But this is really a degenerate case; the matroid is Uz 7,
so every 2-element subset of the point set is independent, but no 3-element subset is. Since
Us 7 is a rank-2 matroid, and not rank-3, we will not deem it to be a trilateral matroid.

The smallest configuration which does generate a rank-3 trilateral matroid is the De-
sargues 103-configuration provided in Figure 3. There we may readily observe that the
configuration contains neither a near-complete quadrangle nor a near-pencil. Since the De-
sargues configuration contains 20 trilaterals, there are (130) — 20 = 100 bases in the associ-
ated matroid. Each of the other nine 103-configurations contains at least one near-complete
quadrangle, and therefore the Desargues configuration is the smallest configuration which
induces a trilateral matroid.

Figure 8 depicts a geometric representation of the the trilateral matroid induced by the
Desargues configuration in the following fashion. If three points happen to be collinear in
the geometric representation, then these points describe a trilateral in the original configura-
tion. Each of the five four-point lines in this representation thus describes four point triples
which determine trilaterals; these four points consequently are associated with a complete
quadrangle in the Desargues configuration. The Desargues configuration contains five such
complete quadrangles, and each point of the configuration is involved in two quadrangles.
So we arrive at the star in Figure 8, which is itself a (102, 54)-configuration. This means
that there are ten points, with each point incident to two lines, and five lines, with each line
incident to four points.

Figure 8: A geometric representation of the trilateral matroid associated with the Desargues
configuration.

Interestingly, there is no 113-configuration which induces a trilateral matroid. In fact,
each of the 31 113-configurations contains at least one near-complete quadrangle.

Among the 229 123-configurations, there is only one which does not contain a near-
complete quadrangle. This configuration also happens not to contain a near-pencil, and
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hence induces a trilateral matroid on its points. This configuration is the Coxeter 123-
configuration shown in Figure 9.
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Figure 9: The Coxeter 123-configuration.

The automorphism group of this configuration has order 72. This configuration is listed
as D88 in Daublebsky von Sterneck’s enumeration of the first 228 123-configurations in
1895 [4]; the last of the 229 123-configurations was found much later in 1990 by Gropp [5].
All 229 123-configurations have been recently re-examined in [1], and the provided geo-
metric realization of D88 in Figure 9 stems from this work. Again, by inspection, we see
that no near-complete quadrangle is present, as well as no near-pencil.

This configuration contains 12 trilaterals. Each point of the configuration is incident to
three of them, with no pair of points belonging to the same trilateral. So these trilaterals
are blocks of another 123-configuration defined on the same set of points, namely

tg tg ti0 t11 T12

ty 2 t3 €4 t5 tg tr
1112 2 3 445 6 6 7
23538 95 89 7 9 8

6 4 7 111012 10 12 11 12 10 11

It is not hard to see that this configuration is isomorphic to the previous one. In fact, this is
the first instance of a more general phenomenon.

Theorem 2.1. Suppose that an ns-configuration C has n trilaterals, with every point inci-
dent to three trilaterals and no pair of points incident to more than one trilateral. Let Cy,;
be the ng-configuration formed by these n trilaterals. Then Cy,; = C.

Proof. It suffices to show that the dual of C and the dual of C,,; are isomorphic. Regard one
of the lines of the respective duals; call this line p. This is a point of each of the original
configurations. The local structure is indicated by the diagram in Figure 10.

We associate the line a with the trilateral ¢, as follows: of the three trilaterals incident
to p, t, is chosen so that a is not involved in determining this trilateral. In a similar manner,
line b is identified with trilateral ¢, and line c is identified with trilateral ¢.. Our hypotheses
allow us to carry this correspondence across the respective dual configurations, with the
resulting correspondence between the points of C and of C,,; (the blocks of the duals) the
identity map. Therefore Cayar =2 (Ctri)dual, Whence C 22 Cyps. O
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Figure 10: Lines and trilaterals incident to point p.

Next, among the 2036 133-configurations, there are four which do not contain a near-
complete quadrangle. And among these four, there is only one which does not contain a
near-pencil. This is Configuration 13A, given in Figure 11. The automorphism group of

Figure 11: A 133-configuration which induces a trilateral matroid.

this configuration has order 39. The configuration contains 13 trilaterals, and each point is
incident to three trilaterals, with no pair of points incident to more than one trilateral. So
we may derive an associated 133-configuration by listing these trilaterals:

ty to tz3 tyg ts tg tr tg to tip ti1 ti2  ti13
1 1 1 2 2 3 4 4 5 6 6 7 9
2 3 5 3 8§ 11 5 8§ 10 7 9 8 11
4 7 6 9 10 12 11 13 12 13 11 12 13

By Theorem 2.1 this configuration is isomorphic to Configuration 13A. Configuration 13A
is also isomorphic to the cyclic configuration C5(13,1,4), given combinatorially by re-
garding the lines {j,j + 1,7 + 4} mod 13 for 0 < j < 12:

4 s lg Iz g 1o lig i lLa b3
o 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 0
4 5 6 17 9

o~
[
o~
[\S]
o~
w
o~

8 10 11 12 O 1 2 3

One may employ these point labels to construct the Paley graph of order 13 as follows.
Draw an edge between labels a and b if and only if @ — b is a perfect square mod 13. This
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means that ¢ — b can be 1, £3, or =4 mod 13. We thus obtain the following graph where
each edge is contained in exactly one triangle, and each triangle in the graph corresponds
to a trilateral of the 133-configuration.

78\
Af.;;iﬁ{\k 2
2 AN

T N\

Figure 12: Paley graph associated with Configuration 13A.

More generally, the cyclic ns-configuration Cs(n, k, m) is given by the lines {7, +
kyj+m}modnfor0<j<n-—1.

Proposition 2.2. For n > 13, the cyclic configuration Cs(n,1,4) induces a trilateral
matroid on n trilaterals which equals the linear matroid on Cs(n, 3,4). In other words,
M,;(C5(n,1,4)) = M(Cs3(n,3,4)). Moreover, C3(n,1,4) = Cs3(n, 3,4).

Proof. In order to determine the trilaterals of C3(n, 1, 4), it suffices to ascertain the trilater-
als which involve 0, and then extend from this via a cyclic pattern. The trilaterals involving
0 are:

e 0 3 4 (using the lines {0, 1,4}, {3,4,7}, and {n — 1,0,3})
e n—4n—30 (using the lines {n—4,n—3,0}, {n—1,0,3},and {n—5,n—4,n—1})
e n—3 0 1 (using the lines {n —4,n — 3,0}, {n —3,n — 2,1}, and {0, 1,4})

Since n > 13, no extra trilateral involving O is formed (for example, if n = 12, then
0 4 8 would be a trilateral.) Hence we see, after extending cyclically, that the trilaterals of
C3(n, 1,4) form their own configuration, namely C3(n, 3,4), and thus My,;(C5(n,1,4)) is
the linear matroid corresponding to Cs(n, 3,4). Finally we may recognize that C3(n, 1,4)
is isomorphic to C5(n, 3, 4) either by utilizing Theorem 2.1 or by applying the correspon-
dencet — (4 —t) mod n. O

It turns out that C'5(16, 1,4) and C'3(16, 1, 7) are the smallest examples of non-isomorphic
cyclic Cs(n, k, m) configurations having n trilaterals each, and hence their corresponding
trilateral matroids (which are isomorphic to the linear matroids associated with the respec-
tive original configurations) are non-isomorphic to each other as well.

It is possible, however, for a non-cyclic nz-configuration to induce a trilateral matroid
on its n trilaterals, with the trilaterals capable of determining an ng-configuration in their
own right, without the original configuration needing to be cyclic. We have already seen
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Figure 13: A non-cyclic 163-configuration whose trilateral matroid is isomorphic to the
linear matroid associated with the configuration.

one example of this with the Coxeter 123-configuration given in Figure 9. Another example
is the 163-configuration provided in Figure 13 whose automorphism group has order 32.

It is additionally possible for an n3-configuration possessing n trilaterals to induce a
trilateral matroid that is not isomorphic to the linear matroid associated with the origi-
nal configuration. Figure 14 gives a diagram of such a configuration, a 203-configuration
containing 20 trilaterals. It contains two points which are involved in six trilaterals and
four points involved in four trilaterals. A geometric representation of the matroid is also
provided.

Figure 14: A 203-configuration with 20 trilaterals whose trilateral matroid is not isomor-
phic to the linear matroid of the configuration, and a geometric representation of its trilat-
eral matroid.

We next offer an example of of an 183-configuration possessing 20 trilaterals which in-
duces a trilateral matroid. In Figure 15 we provide a picture of this configuration (with sev-
eral pseudolines) and the accompanying geometric representation of its trilateral matroid.
This example presents another instance, in addition to the Desargues 103-configuration, of
an nz-configuration containing more than n trilaterals which induces a trilateral matroid.
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13

14

279

Figure 15: An 183-configuration with 20 trilaterals, and a geometric representation of its
trilateral matroid.

Note that this configuration contains four complete quadrangles.

We now return to the enumeration of the smallest ns-configurations which induce trilat-
eral matroids. There are four 143-configurations which do so. We label these configurations

as 14A, 14B, 14C and 14D, and provide combinatorial depictions of them.

14A:

14B:

14C:

14D:

L o I3 Iy Is lg Iz lg lo lio lin lie iz s
1 1 1 2 2 3 3 4 5 5 6 7 8 9
2 4 6 4 8 7 8 11 6 12 9 10 13 11
35 7 9 10 12 11 12 13 14 10 14 14 13
L b I3 1y Is lg 1z Ilg lo lLio lin lis liz lis
1 1 1 2 2 3 3 4 5 5 6 6 7 8
2 4 6 4 9 7 10 11 10 12 8 9 9 11
35 7 8 12 11 12 13 14 13 10 13 14 14
Lol Iz 1y Is lg Iz g log lio lin L iz lis
1 1 1 2 2 3 3 4 5 5 6 7 7 10
2 4 6 4 8 6 13 11 8 12 8 9 10 11
35 7 9 10 11 14 12 13 14 9 14 12 13
i b I3 Iy Is lg Iz lg lo lio lin lie iz lia
1 1 1 2 2 3 3 4 5 5 6 6 7 7
2 4 6 4 10 8 12 11 8 10 8 10 9 11
35 7 9 13 11 14 12 13 14 9 12 14 13

These configurations contain 14, 10, 10, and 6 trilaterals, respectively. Also, their

automorphism groups have orders 14, 1, 4, and 8, respectively.

Figure 16 gives a realization of Configuration 14A, which is isomorphic to the cyclic
configuration C3(14, 1,4). Hence we know its trilateral matroid is isomorphic to its linear
matroid by Proposition 2.2.

Configurations 14B and 14C both contain 10 trilaterals, so it is conceivable that their
associated trilateral matroids could be isomorphic. But they are not, for 14B has three
points which are each incident to three trilaterals and one point which is incident to only
one trilateral, whereas Configuration 14C has two points each incident to three trilaterals
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Figure 16: Configuration 14A.

and no point incident to only one trilateral. Figure 17 gives geometric representations of
the trilateral matroids associated with Configurations 14B and 14C, respectively.

Figure 17: Geometric representations for trilateral matroids for Configurations 14B and
14C.

Figure 18 is a rendering for Configuration 14D with several pseudolines, along with a
geometric representation of its associated trilateral matroid.

Proceeding to the n = 15 setting, we encounter a substantial increase, to 220, of the
number of 153-configurations which induce trilateral matroids. One such example is the
Cremona-Richmond configuration provided in Figure 19. It is the smallest example of a
trilateral-free ns-configuration. As it is trilateral-free, the trilateral matroid it induces is the
uniform matroid on 15 points U3 ;5.

Another example is the cyclic configuration C3(15, 1, 4), whose induced trilateral ma-
troid (with 15 trilaterals) is isomorphic to the linear matroid on C5(15,1,4) by Proposi-
tion 2.2. Its automorphism group has order 30. Each of the other 153-configurations which
induces a trilateral matroid contains k trilaterals, where & € {4,6,7,8,9,10,11,12,13, 14}.

It is clearly not the case that for all n, there exists a one-to-one correspondence between
the trilateral matroids themselves and the ng-configurations which induce them. We know
this because there are four non-isomorphic trilateral-free 183-configurations [3], so each
consequently must induce the same uniform matroid on 18 points.
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10 5 13
13 1 ® 1 6
9
140 [ ¥ 2 7
7 4
12 @ 4 9
8 11 3 3 11

Figure 18: Configuration 14D and its trilateral matroid.

Figure 19: The Cremona-Richmond 153-configuration.

It is of interest to contemplate whether smaller non-isomorphic n3-configurations ex-
ist that induce isomorphic trilateral matroids, and indeed this turns out to be true. In fact,
this property is satisfied by the following pair of non-isomorphic 153-configurations given
in Figure 20. Each contains 8 trilaterals and has a symmetry group of order 48. The

Figure 20: Non-isomorphic 153-configurations which induce the same trilateral matroid on
15 points.

set of points for both configurations consists of the eight vertices of a cube, the centers
of the six faces of the cube, and the center of the cube itself. In the former configura-
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tion the diagonally-opposing points in each face of the cube are incident via a line which
passes through the center of the same face, whereas in the latter configuration one pair of
diagonally-opposing points in each face are incident via a “line” which passes through the
center of the opposite face. The eight trilaterals involved in these respective configura-
tions are identical, and thus their corresponding trilateral matroids are the same. Figure 21
gives this matroid, which is isomorphic to Uy 4 @& Uz 4 @ Usz 7. Hence the number of

8 7 e15

Figure 21: The common trilateral matroid.

trilateral matroids that are induced from 153-configurations is smaller than the number of
153-configurations which induce trilateral matroids. Our calculations indicate that there are
214 non-isomorphic trilateral matroids that may be found from the 220 153-configurations
which induce trilateral matroids.

We conclude this section with a table which summarizes the current state of affairs.
Here #.(n) denotes the number of non-isomorphic ns-configurations, #,;(n) denotes the
number of these configurations which induce trilateral matroids, and #,,4:(n) denotes the
number of non-isomorphic trilateral matroids which arise from these configurations.

n #c(n) Hiri (n) Hmat (’I”L)
7 1 0 0

8 1 0 0

9 3 0 0

10 10 1 1

11 31 0 0

12 229 1 1

13 2036 1 1

14 | 21399 4 4

15 | 245342 220 214

3 A point-plane configuration

A point-plane ns-configuration is an incidence structure consisting of n distinct points and
n distinct planes for which each point is incident with three planes, each plane is incident
with three points, and any two points are incident with at most one common plane. In such
a configuration, we deem a trilateral to be a cyclically ordered set {pg, 7o, p1, 71, D2, T2 }
of pairwise distinct points p; and pairwise distinct planes m; such that p; is incident with
m;—1 and 7; for each ¢ € Z3. Once more we may without ambiguity shorten this notation
by listing only the points of the trilateral as {pg, p1, p2}, or more simply as pop1 pa.

In Figure 22 we offer an example of a point-plane 123-configuration which induces
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a trilateral matroid on its points. The 12 points are selected from the 20 vertices of the
regular dodecahedron so that each of the twelve pentagonal faces contains three points;
note that each of the 12 points is the intersection of three faces, so a point-plane 123-
configuration is achieved. We observe that each of the eight unlabeled red points in the

4

7

Figure 22: A 123 point-plane configuration which induces a trilateral matroid.

diagram corresponds to a trilateral, and that this trilateral may be specified uniquely by
cycling through the configuration points that are immediately adjacent to the red point. For
example, the triple {1, 3,5} defines a trilateral. We start at 1, then pass through the plane
containing both 1 and 3 to 3. We then pass through the plane containing both 3 and 5 to 5,
and then finally pass through the plane containing both 5 and 1 back to 1 to complete the
cycle. Here are the eight trilaterals.

ty to t3 ty t5 1 l7 13
34 4 6 8

112
237
9 5 8

Figure 23: The trilateral matroid of the 123 point-plane configuration.
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After identifying each trilateral with its corresponding red point in Figure 22, we rec-
ognize that the trilateral matroid may also be represented as a point-plane configuration,
namely an (83, 125)-configuration. This means the configuration has eight points, with
three planes incident to each point, and twelve planes, with two points incident to each
plane.
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