Pojavi pri malocikličnem utrujanju nizkoogljičnega jekla na področju naravnega tečenja Low Cycle Fatigue Phenomena in Low Carbon Steel in the Region of Yielding Elongation J. Žvokelj*1 UDK: 620.178.3:669.15-194.2 ASM/SLA: Q7, CNg Pri izdelavi ciklične a-ea krivulje za nizkoogljično jeklo z velikim raztezkom naravnega tečenja smo ugotavljali nekatere značilnosti med začetnimi izmeničnimi obremenitvami. V področju naravnega tečenja opažamo pri malih amplitudah raztezka mehčanje, pri večjih amplitu-dah pa utrjanje jekla od prvega nihaja dalje. Pri tem je delež nehomogene deformacije enak dvojni ampiitudi reztezka. Determining the cyciic o-ea curve for a lovv carbon steel vvith a large yieiding elongation, the author studied some characteristic phenomena occurring during initial alternating ioading. In the yielding range softening could be observed at small strain amplitudes and hardening at larger strain amplitudes from the first cycle onvvards. In this čase the size of the nonhomogeneous deformation vvas equal to the doubie amplitude of elongation. UVOD S pojmom malociklično utrujanje (angl. lovv cycle fatigue) označujemo področje dinamičnih obremenitev, pri katerih pride do porušitve že po manjšem številu nihajnih obremenitev. Na klasičnem VVohlerjevem diagramu, s katerim prikazujemo število nihajnih obremenitev do loma v odvisnosti od amplitude dinamične napetosti, ga imenujemo področje časovne dinamične trdnosti, za razliko od trajne dinamične trdnosti, ki jo predstavlja mejna napetost, ko preide VVohlejeva krivulja v asimptoto in pod katero naj bi material že trajno vzdržal nihajno obremenitev. 1 2 Posebna značilnost področja malocikličnega utrujanja je v tem, da nastajajo med obremenjevanjem v materialu poleg elastičnih tudi plastične deformacije, zaradi česar zasledimo pri tovrstnih preskušanjih še vrsto spremljajočih pojavov, kot so utrjanje, mehčanje, relak-sacija, Bauschingerjev efekt in podobno. Preizkušanja na področju malocikličnega utrujanja izvajamo z majhnimi frekvencami, zato lahko registriramo soodvisnost obremenitev in deformacij. Pri izmeničnem obremenjevanju predstavlja ta odnos značilna histerezna zanka (Slika 1). Preizkušanja se izvajajo lahko s krmiljenjem amplitude obremenitve, vendar so za interpretacijo pojavov prikladnejša preizkušanja s krmiljenjem amplitude raztezkov, kar velja še zlasti za preskušanja pri povišanih temperaturah. V dvojnologaritem-skih koordinatah je odnos med amplitudo plastičnega raztezka in številom nihajev do zloma premica in ga matematično lahko izrazimo s Coffin-Mansonovo enačbo. 3. Za osnovno presojo ponašanja materiala pri malocikličnem utrujanju se izdela takoimenovana ciklična o-ea krivulja, ki je ena od osnov za računalniško obdelavo ugotavljanja življenjske dobe konstrukcijskega dela pri * Janez Žvokelj, dipl. ing. met. SŽ-Metalurški inštitut Ljubljana, Lepa pot 11, 61000 Ljubljana INTRODUCTION The term iow-cycle fatigue is used for the region of dynamic loadings where failure occurs at a lovv number of cydes. In the classicai Wohler's diagram representing the number of cycles to failure against the amplitude of dynamic stress, this region is that of tirne fatigue strength as contrasted to that of fatigue strength repre-sented by limit stress vvhen VVohlerš curve approaches the asymptote and under vvhich a material should deveiop a fatigue resistance to cyclic Ioading. A special feature of the iow-cycle fatigue range is the occurrence of not only elastic but also plastic strains in material under ioading. As a result in this kind of testing one can find a series of accompanying phenomena such as hardening, softening, reiaxation, Bauschinger's effect and similar. In the low-cycle fatigue region tests are performed at lovv frequencies so that the stress-strain relationship can be recorded. At alternating load this relationship can be represented by a hysteresis loop (Figure 1). Tests can be performed in stress controlled conditions, hovvever, for the interpretation of the phenomena tests in strain controlled conditions seems to be more appropriate, vvhich is especially true for tests at elevated temperature. On the log-log coordinates, the relationship betvveen the plastic strain amplitude and the number of cycies to failure is represented by a straight line, and can be mathematically expressed by Coffin-Manson equation. To be able to judge the bahaviour of material in low-cycie fatigue, the so-called cyclic o-ea curve is usually defined serving as a bas/s for computer processing of data offering information about the life time of a structu-ral part under non-uniform cyclic Ioading, (Figure 2). This curve is similar to a static tensile curve except that on the abscissa strain amplitude (ej is indicated. The tests are carried out under alternating dynamic load, and for the particular points on the curve stress in tension is registered at the maximum amplitude of a given strain in tension. Slika 1: Odnos med napetostjo (a) in deformacijo (e) pri izmenični obremenitvi Eei — delež elastične deformacije epi — delež plastične deformacije Fig. 1: Stress (cr) versus strain (e) in a/ternating load cycles Eel — amount of elastič strain Ep, — amount of plastic strain neenakomernih nihajnih obremenitvah (Slika 2). Podobna je statični natezni krivulji, le da na absciso nanašamo amplitudo raztezka (sa). Preizkušanje izvajamo z izmeničnim dinamičnim obremenjevanjem, za posamezne točke krivulje pa registriramo napetost v na-tegu pri maksimalni amplitudi dane deformacije v natega Ker nastopajo med obremenjevanjem z izmeničnim predznakom (nateg—tlak—nateg—tlak itd.) poleg elastičnih tudi plastične deformacije v materialu, je treba pri vsakem zanihanju z nasprotnim predznakom računati z Bauschingerjevim efektom, sicer pa je ciklično obremenjevanje z izmenično napetostjo izraženo s tipično histe-rezno krivuljo.4 5 Med prvimi cikli izmeničnega obremenjevanja pa se pojavljajo dodatne značilnosti. Nekateri materiali se mehčajo, nekateri utrjajo, lahko pa se ponašajo tudi popolnoma nevtralno. Mehčanje ali utrjanje zaznamo na registriranih histereznih zankah. Zato lahko posamično točko soodvisne napetosti dani amplitudi na ciklični a-ea krivulji določimo šele takrat, ko dosežemo stabilno histe-rezno zanko. Običajno je to po 100 nihajih ali pa po polovičnem številu nihajev do zloma. Pojavi pri prvih ciklih izmeničnega obremenjevanja so nas posebej zanimali. Primer utrjanja in mehčanja 9 % Ni jekla z različno vsebnostjo zadržanega avstenita je bil že objavljen,6 7 v članku pa prikazujemo pojave pri začetnem cikličnem obremenjevanju nizkoogljičnega jekla v območju deformacij naravnega tečenja. Slika 2: Statična in ciklična ct-e krivulja (pri utrjanju materiala) Fig. 2: Static and cyciic o-e curve (cyclic hardening) Since during alternating /oading (tension-compres-sion—tension—compression etc) the material experi-ences elastič and atso plastic strains, it is necessary to consider the possibiiity of the Bauschinger effect in each reversal, however, in general cyclic loading vvith alternating stress can be expressed by a typical hystere-sis curve 5 The first cycles of alternating loading are character-ised also by the occurrence of some other phenomena. Thus some materials experience softening. some hardening, and others can behave in quite a neutral way. Softening and hardening can be noted on the hysteresis loops. Therefore a particuiar point of stress correspond-ing to a given ampiitude on the cyclic ± 0,7 % dobimo najprej utrjanje, nakar mehčanje in ponovno utr-janje, pri vrednosti amplitude nihanja nad £a = ± 1 % pa nastopi utrjanje že od drugega nihaja dalje. Pojav mehčanja utrjanja pri manjših amplitudah in utrjanja pri večjih amplitudah raztezka si razlagamo s tem, da se pri majhnim amplitudah raztezka sproži majhno število Ludersovih zdrsov in je preostali del, na katerem merimo amplitudo raztezka, nedeformiran. Po nekaterih mnenjih8 9 naj bi imeli pri takšnem stanju dislo- 240 1 2 6 8 10 20 40 60 80100 Število nihajev Number of cycles ^ Slika 5: Prikaz utrjanja in mehčanja v 100 hihajih pri različnih amplitudah raztezka Fig. S: Hardening and softening in 100 cycies at different strain ampii-tudes. between the higher and the iower yieid point (RaH = 335 N/mm2 and RaL = 260 N/mm2) and a broad region of yieiding elongation without hardening (£nt^2.4%). The tests vvere carried out under the aiternating ioad in strain controiied conditions in steps from ea = ± 0.2 % to ea= ± 1.2 %. In each test. hysteresis ioops of initial cycies vvere registered. The cyc/e fre-quency vvas 0.1 Hz in tests to faiiure and 0.01 in tests interrupted after 100 cycles. In the graph in Figure 3 the static and cyclic o-£a curves are presented together. For the cyclic curve. the stress corresponding to each particuiar amplitude was taken at 50 % of the number of cycles to faiiure. At the strain amplitude of to up approximately sa= ± 0.6 %, the cyclic curve runs beiovv the static curve vvhiie at higher amplitudes it increases over the level of the lovv yield stress. This shovvs that at iovver amplitudes the steel undergoes softening and at higher amplitudes hardening. These phenomena are illustrated in detail by the registrations of initial cycles for each strain amplitude. The amplitude of ea= + 0.4 % is shovvn as an exampie in Figure 4. On the ordinate force in tension and compression is indicated and on the abscissa the strain amplitude. In the figure hysteresis Ioops vvere not registered only the change of maximum force in tension against the number of cycles. A t the first Ioad in tension one can easily see the drop in force from the high yield dovvn to the value vvhich is approx. equal to that of the iovver yield force in static tensiie tests. In a given example, i. e. at lovv strain amplitudes. at each aiternating cycle the material experiences softening vvhich continues even beiovv the value of the force of the lovv yield stress. An example of hardening and softening in depen-dence upon strain amplitude for the steel under cyclic loading is given in Figure 5. At a strain amplitude of e> ±0.7% the material first experiences hardening, then softening and again hardening, vvhiie at an amplitude of more than e„ = ± 1 % it experiences hardening as early as from the second cycle onvvards. The occurrence of softening-hardening at smaller amplitudes and hardening at Iarger strain amplitudes can be explained by the fact that at the former a small number of Luders bands are induced and the remaining part on vvhich the strain amplitude is measured does not experience deformation. According to some research-erss 9 in this čase dislocation should be uniformly distri-buted in volume vvhiie at iarger amplitudes Luders bands would probably be induced on severa/ locations hinder-ing each other. As a result dislocations pile up in groups and for this reason each new cyclic strain occurs at an increase in stress. The specimens from a series vvhich vvas interrupted after 100 cycles vvere then subjected to a static tensiie test. The purpose of this test vvas to find out the amount of the yielding elongation remaining after cyclic loading vvith a different strain amplitude. The results have shovvn that the remaining amount of yielding elongation is reduced by a value vvhich is approx. equal to the double value of the strain amplitude. Therefore. in a specimen subjected to a Ioad vvith a strain amplitude ea = ± 1.0 % a subsequent static test did not reveal any amount of yielding. This leads to the assumption that the region of non-homogeneous deformation is practically equal to the total vvidth of the amplitude and that the deformation started in tension by Luders bands and during the rever- kacije volumsko enakomerno porazdeljene, pri večjih amplitudah pa naj bi verjetno prišlo do sprožitve Luder-sovih zdrsov na več mestih in se zato med seboj ovirajo, dislokacije pa se grupirajo in kopičijo, zato vsaka nova ciklična deformacija nastane ob povečanju napetosti. S preizkušanci iz serije, ki smo jo po 100 nihajih prekinili, smo napravili nato statični natezni preizkus. S tem smo želeli ugotoviti, kolikšen je preostanek raztezka naravnega tečenja po nihajnih obremenitvah z različno amplitudo raztezka. Rezultati so pokazali, da se je preostali delež raztezka naravnega tečenja zmanjšal za približno dvojno vrednost amplitude raztezka. Pri preizku-šancu, ki je bil obremenjevan z amplitudo raztezka ea=±1,0%, pa pri naknadnem statičnem preizkusu nismo več opazili deleža naravnega tečenja. To pomeni, da je bilo področje nehomogene deformacije praktično enako celotni širini amplitude in se je deformacija s sproščanjem Ludersovih zdrsov začela v nategu, pri obremenitvi z nasprotnim predznakom v tlaku pa so se sprostile nove Ludersove črte na drugih mestih. S preizkusom, ki smo ga izvedli z enim nihajem v nategu in tlaku, nato pa izvedli natezni preizkus, smo to domnevo potrdili, saj se je tudi pri tem preizkušanju pokazalo, da se je delež raztezka naravnega tečenja zmanjšal za približno dvojno vrednost amplitude raztezka sai in compression new Luders bands vvere induced on other iocation. This assumption vvas confirmed by a test vvhich vvas carried out vvith one cycie in tension and compression foitovved by a subsequent tensiie test since it has shovvn that the size of yielding elongation vvas reduced by a value approx. equal to the doubte value of the strain amplitude. LITERATURA/ REFERENCES 1. J. Žvokelj: Utrujanje s končnim številom nihajnih obremenitev do loma, Železarski zbornik 14 (1980), 1 —2 2. J. Žvokelj: Ponašanje jekla pri utrujanju v območju časovne dinamične trdnosti, Zbornik Moderne metode istraživanja specialnih čelika, Metalbiro Zagreb, 1980 3. G. E. Dieter: Mechanical Metallurgie. McGravv — Hill Book Company, 1986 (tretja izdaja) 4. R. Sowerby, D. K, Uko: A rewiew of certain aspects of the Bauschinger effect in metals, Materials Science and Engineering, 41 (1979) 5. H.-D Tietz, M. Dietz: Untersuchung zum Bauschinger-Effekt Neue Hutte, 22 (1977), 12 6. J. Žvokelj, F. Vodopivec: Influence of Austenite on Lovv Cycle Fatigue of a 9 % Ni Steel, FATIGUE 84 — 2nd International Conference on Fatigue and Fatigue Treshold Birming-ham — Conference Proceedings. Vol III., S 1315-1322 7. J. Žvokelj: Malociklično zamaranje čelika, 3. Jugoslavenski simpozijum o metalurgiji, Beograd 1984. Zbornik, 697—700 8. P. Mayr: Grundlagen zum Verhalten bei Schvvingender Beanspruchung; Anrissfreie Phase, Verhalten von Stahl bei schvvingender Beanspruchung, Verlag Stahleisen M. B. H. Dusseldorf, 1978 9. D. Pilo, W. Reik, P. Mayr, E. Macherauch: Inhomogene Deformationsvorgange in der einrissfreiene Ermudungs-phase unlegierter Stahle, Archiv fur das Eisenhuttenwesen 48, (1977) 11