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Deep Stacked Auto-Encoder Network Based Tool Wear 
Monitoring in the Face Milling Process
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Tool wear identification plays an important role in improving product quality and productivity in the manufacturing industry. The actual 
tool wear status with input cutting parameters may cause different levels of spindle vibration during the machining process. This research 
proposes an architecture comprising a deep learning network (DLN) to identify the actual wear state of machining tool. Firstly, data on spindle 
vibration signals are obtained from an acceleration sensor. The data are then pre-processed using the fast Fourier transform (FFT) method to 
reveal the relevant outstanding features in the frequency domain. Finally, the DLN is constructed based on stacked auto-encoders (SAE) and 
softmax, which is trained with the input data on the vibration features of the respective tool wear state. This DLN architecture is then used to 
identify the actual wear statuses of machining tool. The experimental results from the collected data show that the proposed DLN architecture 
is capable of identifying actual tool wear with high accuracy.
Keywords: Face milling; Tool wear; Stacked auto-encoder (SAE); Deep learning network (DLN); Cast iron

Highlights
• An expert technique for tool wear monitoring based on an experimental dataset is explored.
• The feature values with respect to the wear status of cutting tools are extracted and analyzed. 
• The effects of a proposed deep learning network architecture for identifying the different tool wear statuses are considered.
• A patterns prediction method is compared and developed.

0  INTRODUCTION

In the machining process, cutting tool play an 
important role and can affect the stability of machine 
components and systems. Cutting tool status is 
closely related to the vibration, cutting heat and 
cutting force of a machining system, which normally 
includes the machine tool, cutting tool, workpiece, 
and clamping device. The working status of a cutting 
tool significantly influences machining efficiency and 
thus the accuracy of a product [1] to [3]. Therefore, 
monitoring cutting tool status is important. Normally, 
tool wear can cause major failure of the cutting tool, 
which may result in wastage of a product, slow 
operation, and a lack of productivity. Identifying the 
wear status of cutting tool is especially important in 
evaluating product accuracy [4] and [5].

The features of the original vibration signal can 
provide useful information for assessing the wear 
condition of cutting tool and can be extracted by 
principal component analysis (PCA) [6] and linear 
discriminate analysis (LDA) [7] and [6]. Dimensional 
feature data, in particular, can cause a computational 
burden, affect the efficiency of the classification phase 
as it is time-consuming, and reduce the diagnosis 
accuracy. These methods are effective with linear 
data but cannot be effectively applied for complex 
nonlinear and nonstationary vibration data.

Machine learning techniques have been re-
searched and applied in many fields of science and 
technology, such as computer vision, automatic diag-
nostics systems and pattern recognition. These tech-
niques are often based on artificial intelligence meth-
ods such as k- nearest neighbour (K-NN) [8], support 
vector machines (SVM) [9] and [10], and the artificial 
neural network (ANN) [11] to [13]. These methods 
have been effectively applied to identify tool wear sta-
tus. However, they have some weaknesses, including 
ineffective feature extraction. In particular, the objec-
tivity of unsupervised feature learning has been ig-
nored, and automation is not employed in these meth-
ods [14] and [15]. Therefore, using these techniques to 
identify tool wear in the machining process has been 
unsatisfactory.

Recently, deep learning network (DLN) 
architecture has been widely used in research [16] 
and some engineering science applications such as 
medical informatics [17], pattern recognition [18] and 
[19], and time-series prediction [20] to [22]. DLNs 
are hierarchically constructed with many hidden 
layers with the aim of effectiveness in the output 
layer [23]. In this study, the authors propose a DLN 
architecture based on the SAE and softmax classifier, 
which are closely stacked together to implement tool 
wear diagnosis in the end-milling process. In this 
architecture, each auto-encoder (AE) implements 
vibration data reconstruction to generate higher-
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level features with an unsupervised algorithm that 
is optimized to minimize errors between the input 
and output data. The relevant vibration features are 
precisely extracted at the hidden layer of the last AE, 
which can significantly improve the learning effect 
of the classification phase. In addition, softmax is 
derived from the multinomial logistic model, which 
is based on the supervised learning algorithm and is 
suitable for multiclass classification [24]. Finally, 
the parameters of the proposed DLN will be fine-
tuned with the supervised condition in its complete 
architecture, with the goal of effectiveness of the 
classification accuracy result.

The rest of the paper is structured as follows: 
Section 1 presents the materials. Section 2 proposes 
a DLN architecture, which is then used to identify 
tool wear status of the end-milling process. Section 
3 presents experimental results and discusses the 
diagnosis results, which are analyzed and compared. 
Section 4 is the conclusion. Acknowledgments and a 
list of references then follow.

1  MATERIALS 

This section expresses the single AE architecture 
and softmax classifier model that are the basis for 
constructing the DLN for the diagnosis technique. 
The AE is used to exploit the features of the original 
vibration signal related to tool wear status. These 
features are then used to train softmax classifier and 
construct the proposed DLN.

1.1  Auto-Encoder Network Architecture

In [23], AE is a special type of neural network 
architecture that acts as an unsupervised algorithm. 
The AE architecture consists of three layers instead 
of the input layer, the hidden layer and the output 
layer, which are organized into two phases -encoding 
and decoding- as shown in Fig. 1. The input layer 
x = {x1, x2, ..., xn}, hidden layer f f f fm= …{ }1 2

, , , ,  
m n , and output layer    x x x xn= …{ }1 2

, , ,  are 
seamlessly connected. This AE is implemented to 
reconstruct data of the input layer.

The encoder phase has encoded the characteristics 
of the high-dimensional input data x into the low-
dimensional f data in the hidden layer. The input 
and hidden layers are connected by the activation 
function, f = Sigmoid(W(1)) · x + b(1)), in the mapping 
process, where W(1) is the weight matrix and b(1) is the 
bias vector. More specifically, each input vector xi  is 
mapped onto the hidden layer with the expression of 
significant, reduced features. In contrast, the decoder 
phase reconstructs the input layer x. Input data f is 
mapped back onto the output layer of x  with high-
dimensional reconstructed data. The activation 
function x  = Sigmoid(W(2)) · f + b(2)) is used to connect 
the hidden layer to output layer, where the weight 
matrix W(2)=(W(1))T is interpreted as tied weights and 
b(2) is the bias vector of the decoder phase. The AE 
is optimized architecture with parameter sets (W(1), 
W(2), b(1), b(2)) to minimize error of restructuring in the 
output layer. The following cost function is used:

Fig. 1.  Architecture of single AE network
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where i is the number of variables in input data; 
N is the number of samples; λ is the coefficient for 
the ΩW ; β is the coefficient for the ΩS ; ΩW is an L2 
regularization term defined by Eq. (2); and ΩS is a 
sparsity regularization term defined by Eq. (3).
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where p j
k  is the mean activation for unit j in layer k; ρ 

is the desired mean activation; and KL is the Kullback-
Leibler divergence, which is defined by Eq. (4).
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It can be seen that each AE is independently 
trained to represent the features. The features are 
extracted from hidden layer nodes that contain the 
most important information of the input layer. The 
extracted features can be input data for the next AE to 
produce higher-level features.

1.2  Sofmax Classifier Model

As a follow-up, training the softmax classifier model 
to identify patterns is a necessary step for the whole 
model of the diagnosis technique. The model uses 
the encoded feature data in the hidden layer of the 

Fig. 2.  Diagnosis technique based on DLN architecture



Strojniški vestnik - Journal of Mechanical Engineering 66(2020)4, 227-234

230 Nguyen, V.T. – Nguyen, V.H. – Pham, V.T.

last AE. Softmax uses loss function based on cross 
entropy [16] and [23].

Softmax based on the supervised learning 
algorithm requires input samples x = {x(1), x(2), …, x(n)} 
and class labels t = {t(1), t(2), …, t(k)} for the classifier 
model. The training process for an input sample 
evaluates the probability: probability (t = j | x) for each 
value of j = 1, 2, ..., k. This means that the probability 
of the class label is estimated by each of the k different 
possible values. Therefore, hypothesis function 
θ x

i( )( )  is constituted as follows:
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where θ θ θ
1 2

1
, , ,… ∈ +

k
nR  are the parameters of the 

softmax classifier, and the 
1

1j

k
j
T iexp x

=

( )∑ ( )θ
 term 

represents the normalization of the distribution.
AEs and softmax classifier are hierarchically 

stacked together to construct the diagnosis technique. 
This technique is then fine-tuned with all the 
parameters to optimize the whole model, which will 
be evaluated using a test dataset.

2  PROPOSED DIAGNOSIS TECHNIQUE

This section describes the DLN in the proposed 
diagnosis technique. The significant feature data 
is extracted from vibration data related to tool wear 
status by unsupervised algorithm-based AEs, which 
provides the softmax classifier with inputs. The 
combination of AEs with softmax in the proposed 
DLN architecture achieves the impressive diagnosis 
results. Vibration data in the frequency domain 
corresponding to tool wear status are inputs to the 
DLN. Fig. 2 shows diagnosis implementation, which 
comprises the following seven steps:
Step 1: Acquire vibration data based on cutting tool 

status.
Step 2: Pre-process the collected data by FFT in time 

domain to express data clearly in the frequency 
domain.

Step 3: Divide the training data-testing ratio for the 
diagnostic phase. The training data are then used 
to train the model. The testing data are used to 
evaluate the trained model.

Step 4: Exploit the important features in the hidden 
layer AE, which is based on an unsupervised 
algorithm.

Step 5: Train the softmax classifier model using the 
extracted features of the last AE. Arrange the AEs 
and softmax classifier in the DLN architecture.

Step 6: Train the gained DLN by fine-tuning all the 
parameters using the class label.

Step 7: Identify the actual status of tool wear by the 
trained DLN.

    a)
Fig. 3.  Schematic drawing of face milling process; a) cutting zone at tool/workpiece interfacea, and b) observing of Vb tool wear on the insert
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3  EXPERIMENTAL RESULTS

This section presents the experimental results, 
demonstrating the quality of the proposed method. 
The wear status of face milling tool is identified in the 
face milling process. Vibration data on the state of the 
tool is collected, and pre-processed before serving as 
input to the proposed method.

3.1  Spindle Vibration Based Tool Wear Data Acquisition

The experimental dataset of BEST Lab at UC 
Berkeley is used to identify tool wear status [25]. The 
authors used a Matsuura machining center model 
MC-510V with a 70 mm face mill mounted with six 
inserts of the KC710 (Kennametal) type and a cast-
iron milling workpiece is. The face milling operations 
dataset was experimented on different conditions, and 
the flank wear Vb values are verifiability measured, 
respectively. Fig. 3 is a schematic drawing of the 
face milling process. Vibration data was monitored 
by an accelerometer with a maximum sampling rate 
of 100 kHz. Table 1 shows a dataset of 40 samples. 
Samples were collected on machine spindle vibration 
corresponding to four tool wear states: Vb0 = 0 mm,  
Vb1 = 0.11 mm, Vb2 = 0.29 mm, and Vb3 = 0.50 mm, 

which correspond to no tool wear, slightly worn tool, 
half worn tool, and severely worn tool, respectively. 
The acquired vibration data was recorded at the end of 
2nd, 7th, 29th, and 44th minutes. Tool status was tested 
with the same cutting parameters at a spindle speed of 
826 rpm, feed of 0.5 mm, and cutting depth of 1.5 mm. 
Fig. 4 shows these vibration signals in the time domain 
with four examples of corresponding wear statuses. 
The figure may imply that the vibration intensity that 
corresponds with cutting tool status is unclear and that 
the tool wear status cannot be determined even though 
the cutting parameter is unchanged. 

Table 1.  Tool wear statuses based vibration data

 Cutting tool 
status

Training 
samples

Testing 
samples

Flank wear 
bandwidth 

[mm]
Class

Not worn 

Vb0
(x1 – x5) (x6 – x10) - 1

First worn 

Vb1
(x11 – x15) (x16 – x20) 0.11 2

Second worn 

Vb2
(x21 – x25) (x26 – x30) 0.29 3

Third worn 

Vb3
(x31 – x35) (x36 – x40) 0.50 4

Fig. 4. Example of vibration signals use for cutting tool status determination; a) normal state; b) first-worn status; 
c) second-worn status, and d) third-worn status
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3.2  Results and Discussion

To highlight the specific vibration frequencies of tool 
wear statuses, original time-domain vibration data 
was pre-processed and transformed into the frequency 
domain using the FFT method. These data were then 
used to extract the features of cutting tool status. The 
feature dataset of the vibration signal was extracted 
from two AEs, whose parameters are shown in Table 
2.

Table 2.  Parameter of AEs

AE structure λ β
AE 1 512-20-512 0.05 6
AE 2 20-3-20 0.05 4

Table 3 shows the experimental results for 
identifying tool status. The results indicate each 
state of the cutting tool. The original vibration data 
were accurately identified by the class to which they 
belong. The diagnostic result for each tool wear status 
is 100 % accurate, which means that the expression 
of the unsupervised features of the original vibration 
signal exploited their efficient and important features. 
In this case, the combination of the optimized AE is 
related to Eq. (1) for the reconstruction of data with 
the softmax classifier model, which, according to the 
probability of Eq. (5) is very effective. Fig. 5 shows 
the confusion matrix for the four wear statuses of 
cutting tool (i.e., Vb0, Vb1, Vb2, and Vb3), which are 
the same class as determined by the model trained by 
previous training data.

Table 3.  Results of tool wear identification based on our proposed 
method

Tool 
wear 
status

Testing data
Features

Results

1 (x6 – x10) 0.559913 0.010705266 0.007923 5(1)

2 (x16 – x20) 0.055347 0.336805625 0.012599 5(2)

3 (x26 – x30) 0.000139 0.000127181 0.000102 5(3)

4 (x36 – x40) 0.000108 9.24E-05 8.32E-05 5(4)

Training time [s] 0.3072
Accuracy [%] 100

To compare the identification results with the 
other classifiers, the authors constructed the shallow 
classifiers as the feed-forward neural network (FNN) 
classifier and a k-nearest neighbour (k-NN) classifier 
to identify tool wear status. The extracted three-
dimensional feature data of the last AE was used to 
train and test the classifiers. An FNN classifier with 

10 hidden layer, four output layer, and training error 
goal of 0.01 and a k-NN classifier with four nearest 
neighbours are formed to conduct the identification 
procedure. Table 4 shows the evaluation result of 
the FNN classifier and the k-NN classifier. The 
evaluation showed that the identification accuracy of 
both these classifiers was lower than the identification 
accuracy of the proposed DLN. It is known that the 
tool wear diagnosis technique, based on the proposed 
DLN, effects high-level feature representation in 
deep learning to gain high classification accuracy. 
Nevertheless, the perfect classification accuracy 
results for the proposed DLN come at a high price in 
terms of time compared to the only k-NN architecture, 
as the results in Table 3 and 4 show. This causes each 
phase of DLN construction to be optimized. Finally, 
the DLN based our proposed diagnosis technique is 
confirmed as efficient for feature representation and 
classification, which is illustrated in Fig. 6.

Fig. 5.  Identification result confusion matrix

Table 4.  Results of tool wear identification based on FNN and k-NN 
classifiers

Class Testing data FNN k-NN

1 (x6 – x10) 5(1) 3(1)2(3)

2 (x16 – x20) 5(2) 5(2)

3 (x26 – x30) 0(3)5(4) 5(3)

4 (x36 – x40) 5(3) 0(4)5(3)

Time [s] 0.3462 0.1098
Accuracy [%] 75 65
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Fig. 6.  Comparisons of identification accuracy results

4  CONCLUSIONS

This research, based on a theoretical framework 
and experiment, proposes a diagnostic method for 
determining the wear states of cutting tools used for 
face milling. The experimental data are the spindle 
vibration signals of the milling machine in relation 
to wear state of cutting tools. The proposed diagnosis 
technique is structured based on the SAE in feature 
representation, a softmax classifier model, and 
experimental data. In particular, the vibration data 
related the tool wear state are used by AEs to create 
compact low-dimensional data that expresses the most 
important features of the actual tool states. Softmax 
is then combined to train the model to recognize tool 
states. The experimental results demonstrate that this 
proposed technique is highly effective in accurately 
identifying patterns of tool wear states in the face 
milling process. Based on data of time series, the 
authors believe that this proposed technique can be 
used to diagnose other conditions of the cutting tool 
such as tool breakage or tool life and can be applied 
to other diagnostic fields such as the bearing fault or 
gear fault.
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