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Abstract. The spin-charge-family theory, which is a kind of the Kaluza-Klein theories, but
with two kinds of the spin connection fields — the gauge fields of the two kinds of spins [1–
5] — is offering the explanation for the appearance and properties of family members
(quarks and leptons), of families, of vector gauge fields (weak, hyper, colour), of scalar
higgs and Yukawa couplings and gravity. It also explains the appearance of the dark
matter and matter/anti-matter asymmetry. In this talk the achievements of this theory, its
predictions and also its not yet solved problems are briefly presented and discussed.

Povzetek. Teorija spinov-nabojev-družin [1–5] ponuja odgovor na vsa odprta vprašanja stan-
dardnega modela fizike osnovnih delcev in polj, pa tudi na marsikatero odprto vprašanje v
kozmologiji. Pojasni lastnosti ene družine kvarkov in leptonov, nastanek družin, nastanek
barvnega, šibkega in hiper polja, nastanek skalarnih polj, ki pojasnijo pojav Higgsovega
polja in Yukavinih sklopitev. Pojasni tudi pojav temne snovi in asimetrijo med snovjo
in antisnovjo v vesolju. Teorija, ki ima marsikaj skupnega s Kaluza-kleinovimi teorijami,
ponudi dve vrsti spinov. Ena vrsta določa vse naboje osnovnih delcev, druga družinska
kvantna števila. V predavanju predstavim dosedanje dosežke te teorije, njene napovedi, pa
tudi še nerešena odprta vprašanja.

9.1 Introduction

More than 40 years ago the standard model offered the elegant new step in under-
standing elementary fermion and boson fields. It postulated:

• The existence of the massless family members - coloured quarks and colourless
leptons, both left and right handed, the left handed members distinguishing
from the right handed ones in the weak and hyper charges and correspond-
ingly mass protected.

• The existence of massless families to each of a family member.
• The existence of the massless gauge fields (colour octet, weak triplet, hyper

singlet) to the observed (colour, weak and hyper) charges of the family mem-
bers. They all are vectors in d = (3 + 1), in the adjoint representations with
respect to the weak, colour and hyper charges.
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• The existence of a massive self interacting scalar field carrying the weak
charge ±1

2
and the hyper charge ∓1

2
, respectively, obviously doublets (in the

fundamental representation with respect to the weak charge - like fermions),
with the ”nonzero vacuum expectation values”, what breaks the weak and the
hyper charge, breaking correspondingly the mass protection of fermions and
weak and hyper bosons.
• The existence of the Yukawa couplings, which together with (the gluons and)

the scalar higgs take care of the properties of the fermions and heavy bosons,
after the break of the weak and the hyper charge.

The standard model offers no explanation for the assumptions, suggested by the phe-
nomenology. Its assumptions have been confirmed without offering surprises. The
last unobserved field, the higgs scalar, was detected in June 2012 and confirmed in
March 2013.

There are several attempts in the literature, offering the extensions of the
standard model, but do not really offer the explanation for the standard model as-
sumptions. The SU(5) and SU(10) grand unified theories unify all the charges, but
neither they explain why the spin (the handedness) is connected with the (weak
and hyper) charges nor why and from where do families appear. Supersymmetric
theories, assuming the existence of bosons with the charges of quarks and leptons
and fermions with the charges of the gauge vector fields, although having several
nice properties, do not explain the occurrence of families except by assuming
larger groups. Also the theories of strings and membranes, again having desired
features with respect to several requirements, like renormalizability, also do not
offer the explanation for the appearance of families, although they do have fami-
lies, if assuming a large enough group. TheKaluza-Klein theories do unify spin and
charges, but do not offer the explanation for the appearance of families.

To see the next step beyond the standard model one should be able to answer
the following questions:
i. Where do families originate and why there exist families at all? How many
families are there?
ii. How are the origin of the scalar field - the higgs - and the Yukawa couplings
connected with the origin of families?
iii. How many scalar fields determine properties of the so far (and others possibly
be) observed fermions and masses of the heavy bosons?
iv. Why is the higgs, or are all the scalar fields, if there are several, doublets with
respect to the weak and the hyper charge, while all the other bosons have charges
in the adjoint representations of the group?
v. Why do the left and the right handed family members distinguish so much in
charges and why do they - quarks and leptons - manifest so different properties if
they all start as massless? vi. Are there also scalar bosons with the colour charge
in the fundamental representation of the colour group and where, if they are, do
they manifest?
vii. Where does the dark matter originate?
viii. Where does the matter/anti-matter asymmetry originate?
ix. Where do the charges and correspondingly the so far (and others possibly be)
observed gauge fields originate?
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9 The Spin-Charge-Family Theory Offers the Explanation . . . 89

x. Where does the dark energy originate and why is it so small?
xi. And several other questions, like: What is the dimension of space-time?

My statement is: An elegant trustworthy step beyond the standard model must
offer answers to several of the above open questions, explaining: o the origin
of the charges of the fermions, o the origin of the families of the fermions and
their properties, o the origin of the vector gauge fields and their properties,
o the origin of the scalar field, its properties and the Yukawa couplings, o the
origin of the dark matter, o the origin of the ”ordinary” matter/anti-matter
asymmetry.

Inventing a next step, which covers only one of the open questions, can hardly
be the right step.

The spin-charge-family theory [1–14] does offer the explanation for all the
assumptions of the standard model, offering answers to many of the above cited
open questions. The more I am working (together with the collaborators) on the
spin-charge-family theory, the more answers to the open questions of the elementary
fermion and boson fields and cosmology the theory is offering. Although still
many theoretical proofs, more precise, and first of all the experimentally confirmed,
predictions are needed, the theory is becoming more and more trustworthy.

I shall briefly present the achievements of the spin-charge-family theory, still
open questions and answers to some of the most often posed questions and
criticisms.

9.2 Spin-charge-family theory, action and assumptions

I present in this section, following a lot the similar one from Refs. [1,5], the assump-
tions of the spin-charge-family theory, on which the theory is built.

A i. In the action [1,4,2,5] fermions ψ carry in d = (13+ 1) as the internal degrees
of freedom only two kinds of spins (no charges), which are determined by the two
kinds of the Clifford algebra objects (there exist no additional Clifford algebra
objects) (9.7)) - γa and γ̃a - and interact correspondingly with the two kinds of the spin
connection fields -ωabα and ω̃abα, the gauge fields of Sab = i

4
(γaγb − γbγa), the

generators of SO(13, 1) and S̃ab = i
4
(γ̃aγ̃b − γ̃bγ̃a) (the generators of S̃O(13, 1))

- and the vielbeins fαa.

A =

∫
ddx E Lf +

∫
ddx E (αR+ α̃ R̃) ,

Lf =
1

2
(ψ̄ γap0aψ) + h.c.,

p0a = fαap0α +
1

2E
{pα, Ef

α
a}−, p0α = pα −

1

2
Sabωabα −

1

2
S̃abω̃abα,

R =
1

2
{fα[afβb] (ωabα,β −ωcaαω

c
bβ)}+ h.c. ,

R̃ =
1

2
{fα[afβb] (ω̃abα,β − ω̃caα ω̃

c
bβ)}+ h.c. . (9.1)
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Here 1 fα[afβb] = fαafβb − fαbfβa. R and R̃ are the two scalars (R is a curvature).

A ii. The manifold M(13+1) breaks first into M(7+1) times M(6) (manifesting
as SO(7, 1) ×SU(3) ×U(1)), affecting both internal degrees of freedom - the one
represented by γa and the one represented by γ̃a. Since the left handed (with
respect to M(7+1)) spinors couple differently to scalar (with respect to M(7+1))
fields than the right handed ones, the break can leave massless and mass protected
2((7+1)/2−1) massless families (which decouple into twice four families). The rest
of families get heavy masses 2.

A iii. The manifoldM(7+1) breaks further intoM(3+1)×M(4).

A iv. The scalar condensate (Table 9.1) of two right handed neutrinos with the
family quantum numbers of one of the two groups of four families, brings masses
of the scale of unification (∝ 1016 GeV) to all the vector and scalar gauge fields,
which interact with the condensate [1].

A v. There are nonzero vacuum expectation values of the scalar fields with the
space index s = (7, 8), conserving the electromagnetic and colour charge, which
cause the electroweak break and bring masses to all the fermions and to the heavy
bosons.

Comments on the assumptions:
C i.: This starting action enables to represent the standard model as an effec-
tive low energy manifestation of the spin-charge-family theory [1–13]. It offers
the explanation for all the standard model assumptions: a. One representa-
tion of SO(13, 1) contains, if analyzed with respect to the standard model groups
(SO(3, 1)× SU(2)×U(1) ×SU(3)) all the members of one family (Table 9.4), left
and right handed, with the quantum numbers required by the standard model 3. b.
The action explains the appearance of families due to the two kinds of generators

1 fαa are inverted vielbeins to eaα with the properties eaαfαb = δab, e
a
αf
β
a = δβα, E =

det(eaα). Latin indices a, b, ..,m, n, .., s, t, .. denote a tangent space (a flat index), while
Greek indices α, β, .., µ, ν, ..σ, τ, .. denote an Einstein index (a curved index). Letters from
the beginning of both the alphabets indicate a general index (a, b, c, .. and α, β, γ, .. ),
from the middle of both the alphabets the observed dimensions 0, 1, 2, 3 (m,n, .. and
µ, ν, ..), indices from the bottom of the alphabets indicate the compactified dimensions
(s, t, .. and σ, τ, ..). We assume the signature ηab = diag{1,−1,−1, · · · ,−1}.

2 A toy model [20,21] was studied in d = (5 + 1) with the same action as in Eq. (9.1).
The break from d = (5 + 1) to d = (3 + 1)× an almost S2 was studied. For a particular
choice of vielbeins and for a class of spin connection fields the manifoldM(5+1) breaks
into M(3+1) times an almost S2, while 2((3+1)/2−1) families remain massless and mass
protected. Equivalent assumption, its proof is is in progress, is made in the d = (13 + 1)

case.
3 It contains the left handed weak (SU(2)I) charged and SU(2)II chargeless colour triplet

quarks and colourless leptons (neutrinos and electrons), and the right handed weak
chargeless and SU(2)II charged coloured quarks and colourless leptons, as well as the
right handed weak charged and SU(2)II chargeless colour anti-triplet anti-quarks and
(anti)colourless anti-leptons, and the left handed weak chargeless and SU(2)II charged
anti-quarks and anti-leptons. The anti-fermion states are reachable from the fermion
states by the application of the discrete symmetry operator CN PN , presented in Ref. [22].
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of groups, the infinitesimal generators of one being Sab, of the other S̃ab 4. c.
The action explains the appearance of the gauge fields of the standard model [1,5].
(In Ref [5] the proof is presented, that gauge fields can in the Kaluza-Klein theories
be equivalently represented with either the vielbeins or spin connection fields.) 5.
d. It explains the appearance of the scalar higgs and Yukawa couplings 6. e.
The starting action contains also additional SU(2)II (from SO(4)) vector gauge
fields (one of the components contributes to the hyper charge gauge fields as
explained above), as well as the scalar fields with the space index s ∈ (5, 6) and
t ∈ (9, 10, . . . , 14). All these fields gain masses of the scale of the condensate (Ta-
ble 9.1), which they interact with. They all are expressible with the superposition
of fµmωabµ or of fµm ω̃abµ 7.

C ii., C iii.: There are many ways of breaking symmetries from d = (13+ 1) to
d = (3 + 1). The assumed breaks explain the connection between the weak and
the hyper charge and the handedness of spinors, manifesting correspondingly
the observed properties of the family members - the quarks and the leptons, left
and right handed (Table 9.4) - and of the observed vector gauge fields. After
the break from SO(13, 1) to SO(3, 1) ×SU(2)×U(1)× SU(3) the anti-particles are
accessible from particles by the application of the operator CN ·PN , as explained
in Refs. [22,23] 8.

4 There are before the electroweak break two massless decoupled groups of four families of
quarks and leptons, in the fundamental representations of S̃U(2)

R,S̃O(3,1)× S̃U(2)II,S̃O(4)

and S̃U(2)
L,S̃O(3,1)× S̃U(2)I,S̃O(4) groups, respectively - the subgroups of S̃O(3, 1) and

S̃O(4) (Table 9.5). These eight families remain massless up to the electroweak break due to
the ”mass protection mechanism”, that is due to the fact that the right handed members
have no left handed partners with the same charges.

5 Before the electroweak break are all observable gauge fields massless: the gravity, the
colour octet vector gauge fields (of the group SU(3) from SO(6)), the weak triplet vector
gauge field (of the group SU(2)I from SO(4)), and the hyper singlet vector gauge field (a
superposition of U(1) from SO(6) and the third component of SU(2)II triplet).All are the
superposition of the fαc ωabα spinor gauge fields

6 There are scalar fields with the space index (7, 8) and with respect to the space index
with the weak and the hyper charge of the Higgs’s scalar. They belong with respect to
additional quantum numbers either to one of the two groups of two triplets, (either to
one of the two triplets of the groups S̃U(2)

R S̃O(3,1) and S̃U(2)
II S̃O(4), or to one of the

two triplets of the groups S̃U(2)
L S̃O(3,1) and S̃U(2)

I S̃O(4), respectively), which couple
through the family quantum numbers to one (the first two triplets) or to another (the
second two triplets) group of four families - all are the superposition of fσs ω̃abσ, or they
belong to three singlets, the scalar gauge fields of (Q,Q ′, Y ′), which couple to the family
members of both groups of families - they are the superposition of fσs ωabσ. Both kinds
of scalar fields determine the fermion masses (Eq. (9.6)), offering the explanation for the
higgs, the Yukawa couplings and the heavy bosons masses.

7 In the case of free fields (if no spinor source, carrying their quantum numbers, is present)
both fµmωabµ and fµm ω̃abµ are expressible with vielbeins, correspondingly only one
kind of the three gauge fields are the propagating fields.

8 The discrete symmetry operator CN ·PN , Refs. [22,23], does not contain γ̃a’s degrees
of freedom. To each family member there corresponds the anti-member, with the same
family quantum number.
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C iv.: It is the condensate (Table 9.1) of two right handed neutrinos with the
quantum numbers of one group of four families, which makes massive all the scalar
gauge fields (with the index (5, 6, 7, 8), as well as those with the index (9, . . . , 14))
and the vector gauge fields, manifesting nonzero τ4, τ23, τ̃4, τ̃23, Ñ3R [1,5]. Only
the vector gauge fields of Y, SU(3) and SU(2) remain massless, since they do not
interact with the condensate.

C v.: At the electroweak break the scalar fields with the space index s =

(7, 8) - originating in ω̃abs, as well as some superposition of ωs ′s"s with the
quantum numbers (Q,Q ′, Y ′), conserving the electromagnetic charge - change
their mutual interaction, and gaining nonzero vacuum expectation values change
correspondingly also their masses. They contribute to mass matrices of twice the
four families, as well as to the masses of the heavy vector bosons.

All the rest scalar fields keep masses of the scale of the condensate and are
correspondingly unobservable in the low energy regime.

The fourth family to the observed three ones is predicted to be observed at the
LHC. Its properties are under consideration [13,14], the baryons of the stable family
of the upper four families is offering the explanation for the dark matter [12].

Let us (formally) rewrite that part of the action of Eq.(9.1), which determines
the spinor degrees of freedom, in the way that we can clearly see that the action
does in the low energy regime manifest by the standard model required degrees of
freedom of the fermions, vector and scalar gauge fields [2–13].

Lf = ψ̄γm(pm −
∑
A,i

gAτAiAAim )ψ+

{
∑
s=7,8

ψ̄γsp0s ψ}+

{
∑

t=5,6,9,...,14

ψ̄γtp0t ψ} , (9.2)

where p0s = ps − 1
2
Ss
′s"ωs ′s"s −

1
2
S̃abω̃abs, p0t = pt − 1

2
St
′t"ωt ′t"t −

1
2
S̃abω̃abt,

with m ∈ (0, 1, 2, 3), s ∈ (7, 8), (s ′, s") ∈ (5, 6, 7, 8), (a, b) (appearing in S̃ab)
run within either (0, 1, 2, 3) or (5, 6, 7, 8), t runs ∈ (5, . . . , 14), (t ′, t") run either
∈ (5, 6, 7, 8) or ∈ (9, 10, . . . , 14). The spinor function ψ represents all family mem-
bers of all the 2

7+1
2

−1 = 8 families.
The first line of Eq. (9.2) determines (in d = (3+1)) the kinematics and dynam-

ics of spinor (fermion) fields, coupled to the vector gauge fields. The generators
τAi of the charge groups are expressible in terms of Sab through the complex
coefficients cAiab 9.

τAi =
∑
a,b

cAiab S
ab , (9.3)

9 ~τ1 := 1
2
(S58 − S67, S57 + S68, S56 − S78) ,~τ2 := 1

2
(S58 + S67, S57 − S68, S56 + S78),

~τ3 := 1
2
{S9 12−S10 11 , S9 11+S10 12, S9 10−S11 12 , S9 14−S10 13, S9 13+S10 14 , S11 14−

S12 13 , S11 13 + S12 14, 1√
3
(S9 10 + S11 12 − 2S13 14)} , τ4 := − 1

3
(S9 10 + S11 12 + S13 14).

After the electroweak break the charges Y := τ4 + τ23 , Y ′ := −τ4 tan2 ϑ2 + τ23 , Q :=

τ13 + Y ,Q ′ := −Y tan2 ϑ1 + τ13 manifest. θ1 is the electroweak angle, breaking SU(2)I,
θ2 is the angle of the break of the SU(2)II from SU(2)I × SU(2)II.
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fulfilling the commutation relations

{τAi, τBj}− = iδABfAijkτAk . (9.4)

They represent the colour, the weak and the hyper charge. The corresponding
vector gauge fields AAim are expressible with the spin connection fieldsωstm, with
(s, t) either ∈ (5, 6, 7, 8) or ∈ (9, . . . , 14), in agreement with the assumptions A ii.
and A iii.. I demonstrate in Ref. [5] the equivalence between the usual Kaluza-
Klein procedure leading to the vector gauge fields through the vielbeins and the
procedure with the spin connections proposed by the spin-charge-family theory.

All vector gauge fields, appearing in the first line of Eq. (9.2), except A2±m
and AY

′

m (= cos ϑ2A23m − sin ϑ2A4m, Y ′ and τ4 are defined in 10, are massless
before the electroweak break. ~A3m carries the colour charge SU(3) (originating in
SO(6)), ~A1m carries the weak charge SU(2)I (SU(2)I and SU(2)II are the subgroups
of SO(4)) and AYm (= sin ϑ2A23m + cos ϑ2A4m ) carries the corresponding U(1)
charge, Y = τ23 + τ4, τ4 originates in SO(6) and τ23 is the third component
of the second SU(2)II group, A4m and ~A2m are the corresponding vector gauge
fields). The fields A2±m and AY

′

m get masses of the order of the condensate scale
through the interaction with the condensate of the two right handed neutrinos
with the quantum numbers of one of the group of four families (the assumption
iv., Table 9.1). (See Ref. [5].)

Since spinors (fermions) carry besides the family members quantum numbers
also the family quantum numbers, determined by S̃ab = i

4
(γ̃aγ̃b − γ̃bγ̃a), there

are correspondingly 2(7+1)/2−1 = 8 families [5], which split into two groups of
S̃U(2)

S̃O(3,1)
×S̃U(2)

S̃O(4)
families.

If there are no fermions present then the vector gauge fields of the family
members and family charges - ωabm and ω̃abm - are all expressible with the
vielbeins [1,5], which are then the only propagating fields.

The scalar fields, the gauge fields with the space index ≥ 5, which are either
the superposition of ω̃abs or the superposition of ωs ′ts, determine, when gaining
nonzero vacuum expectation values (the assumption v.), masses of fermions (be-
longing to two groups of four families of family members of spinors) and weak
bosons.

The condensate (the assumption iv.), Table 9.1, gives masses of the order of
the scale of its appearance to all the scalar gauge fields, presented in the second
and the third line of Eq. (9.2).

The vector gauge fields of the (before the electroweak break) conserved
charges (~τ3, ~τ1, Y) do not interact with the condensate and stay correspondingly
massless. After the electroweak break - when the scalar fields (those with the
family quantum numbers and those with the family members quantum numbers
(Q,Q ′, Y ′)) with the space index s = (7, 8) start to self interact and gain nonzero
vacuum expectation values - only the charges ~τ3 andQ = Y+τ13 are the conserved
charges. No family quantum numbers are conserved, since all scalar fields with
the family quantum numbers and the space index s = (7, 8) gain nonzero vacuum
expectation values.

10 Y ′ := −τ4 tan2 ϑ2 + τ23, τ4 = − 1
3
(S9 10 + S11 12 + S13 14).
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state S03 S12 τ13 τ23 τ4 Y Q τ̃13 τ̃23 τ̃4 Ỹ Q̃ Ñ3L Ñ
3
R

(|νVIII
1R >1 |νVIII

2R >2) 0 0 0 1 −1 0 0 0 1 −1 0 0 0 1

(|νVIII1R >1 |e
VIII
2R >2) 0 0 0 0 −1 −1 −1 0 1 −1 0 0 0 1

(|eVIII1R >1 |e
VIII
2R >2) 0 0 0 −1 −1 −2 −2 0 1 −1 0 0 0 1

Table 9.1. This table is taken from [1]. The condensate of the two right handed neutrinos νR,
with the VIIIth family quantum numbers, coupled to spin zero and belonging to a triplet
with respect to the generators τ2i, is presented, together with its two partners. The right
handed neutrino has Q = 0 = Y. The triplet carries τ4 = −1, τ̃23 = 1, τ̃4 = −1, Ñ3R = 1,
Ñ3L = 0, Ỹ = 0, Q̃ = 0. The family quantum numbers are presented in Table 9.5.

Quarks and leptons have the ”spinor” quantum number (τ4, originating in
SO(6) presented in Table 9.4) equal to 1

6
and −1

2
, respectively. In the Pati-Salam

model [24] twice this ”spinor” quantum number is named B−L
2

quantum number,
for quarks equal to 1

3
and for leptons to −1.

Let me introduce a common notation AAis for all the scalar fields, indepen-
dently of whether they originate in ωabs or ω̃abs, s ≥ 5. In the case that we are
interested in the scalar fields which contribute to masses of fermions and weak
bosons, then s = (7, 8). If AAis represent ωabs, Ai = (Q,Q ′, Y ′), while if AAis rep-
resent ω̃ãb̃s, all the family quantum numbers of all eight families contribute to
Ai.

AAis ∈ (AQs , A
Q ′

s , AY
′

s ,
~̃A1̃s ,

~̃A
ÑL̃
s , ~̃A2̃s ,

~̃A
ÑR̃
s ) ,

τAi ⊃ (Q, Q ′, Y ′, ~̃τ1, ~̃NL, ~̃τ
2, ~̃NR) . (9.5)

Here τAi represent all the operators, which apply on the spinor states. These
scalars, the gauge scalar fields of the generators τAi and τ̃Ai, are expressible in
terms of the spin connection fields.

9.3 Achievements of the spin-charge-family theory and its
predictions

The achievements of the spin-charge-family theory.

I. The spin-charge-family theory does offer the explanation for all the assumptions
of the standard model:
I A. It explains all the properties of family members of one family - their spins
and all the charges - clarifying the relationship between the spins and charges, Ta-
ble 9.4 11.
I B. It explains the properties of the vector fields, the gauge fields of the corre-
sponding charges. They are in the spin-charge-family theory represented by the
superposition of the spin connection fieldsωstm. It is proven in Sect. II of Ref. [5]

11 The spin-charge-family theory explains, why the left handed and the right handed quarks
and leptons differ in the weak and the hyper charge. It also explains, why quarks and
leptons differ in the colour charge.
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that the spin connection fields representation is equivalent to the usual Kaluza-
Klein representation with the vielbeins fσm = ~τAσ~AAm, where ~τA = ~τAσpσ, ~τA

determine symmetry properties of the space with s ≥ 5 and ~AAm are the corre-
sponding gauge fields.
I C. The scalar fields with the space index s ∈ (7, 8) belong to two doublets with
respect to the space index s, while they belong with respect to additional quan-
tum numbers either to three singlets with one of the family members charges
(Y, Y ′, Q ′) or to twice two triplets of the family charges belonging to the groups
S̃U(2)

S̃O(3,1)
× S̃U(2)

S̃O(4)
. These scalar fields explain the appearance of the higgs

and Yukawa couplings.
I D. The theory explains why these scalar fields, and consequently the higgs,
which is the superposition of several scalar fields [4,5], have the weak and the
hyper charge equal to (±1

2
, ∓1

2
), respectively, although they are bosons. They

do transform as bosons with respect to Sab 12, but due to the fact that they be-
long with respect to the space index s = (5, 6, 7, 8) to two SU(2) groups with
τ13 = 1

2
(S56 − S78) and τ23 = 1

2
(S56 + S78), respectively, their weak (τ13) and

hyper charge (τ23 + τ4, where τ4 = −1
3
(S9 10 + S11 12 + S13 14) does not influence

s = (7, 8)) are the ones required by the standard model. Table 9.2 presents these two
doublets and their quantum numbers.
I E. There are the nonzero vacuum expectation values of the scalar gauge fields

state τ13 τ23 spin τ4 Q
AAi78

(−)

AAi7 + iAAi8 + 1
2
− 1
2

0 0 0

AAi56
(−)

AAi5 + iAAi6 − 1
2
− 1
2

0 0 -1

AAi78
(+)

AAi7 − iAAi8 − 1
2
+ 1
2

0 0 0

AAi56
(+)

AAi5 − iAAi6 + 1
2
+ 1
2

0 0 +1

Table 9.2. The two scalar weak doublets, one with τ23 = − 1
2

and the other with τ23 = + 1
2

,
both with the ”spinor” quantum number τ4 = 0, are presented. In this table all the scalar
fields carry besides the quantum numbers determined by the space index also the quantum
numbers Ai, which represent either the family members quantum numbers (Q,Q ′, Y ′) or
the family quantum numbers (twice two triplets), AAi78

(±)

= AAi7 ± iAAi8 , Eq. (9.5)

.

with the space index s = (7, 8), (with the weak charge equal to ±1
2

and the hyper
charge correspondingly equal to ∓1

2
, both with respect to the space index), and

with the family (twice two triplets) and family member quantum numbers (three
singlets) in adjoint representations, which start to interact among themselves, gain
nonzero vacuum expectation values, causing the break of the weak and the hyper

12 Sab, which applies on the spin connections ωbde (= fαe ωbdα) and ω̃b̃d̃e (= fαe
ω̃b̃d̃α), on either the space index e or the indices (b, d, b̃, d̃), is equal to SabAd...e...g =

i (ηaeAd...b...g − ηbeAd...a...g), or equivalently, in the matrix notation, (Sab)ceAd...e...g

= i(ηacδbe− η
bcδae )A

d...e...g .
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charge symmetry.

II. The spin-charge-family theory does offer the explanation for the dark matter
and for matter/anti-matter asymmetry:

II A. Neutral clusters of the members of the stable among the upper four families
explain the appearance of the dark matter [12].
II B. The scalar fields with the space index s ∈ (9, . . . , 14) belong with respect to
the space index s to a triplet or an anti-triplet, Table 9.3. They cause transitions
of anti-leptons into quarks and anti-quarks into quarks and back, transforming
matter into anti-matter and back. The condensate breaks CP symmetry. In the
expanding universe, fulfilling the Sakharov request for appropriate non thermal
equilibrium, these colour triplet and anti-triplet scalars have a chance to explain
the matter/anti-matter asymmetry in the universe [1], as well as the proton decay.
II C. It is the scalar condensate of two right handed neutrinos (Table 9.1), which

state τ33 τ38 spin τ4 Q

AAi9 10
(+)

AAi9 − iAAi10 + 1
2

1

2
√
3

0 − 1
3
− 1
3

AAi11 12
(+)

AAi11 − iAAi12 − 1
2

1

2
√
3

0 − 1
3
− 1
3

AAi13 14
(+)

AAi13 − iAAi14 0 − 1√
3

0 − 1
3
− 1
3

AAi9 10
(−)

AAi9 + iAAi10 − 1
2
− 1

2
√
3

0 + 1
3
+ 1
3

AAi11 12
(−)

AAi11 + iAAi12
1
2

− 1

2
√
3

0 + 1
3
+ 1
3

AAi13 14
(−)

AAi13 + iAAi14 0 1√
3

0 + 1
3
+ 1
3

Table 9.3. The triplet and the anti-triplet scalar gauge fields, the triplet with the ”spinor”
quantum number equal to S4 = − 1

3
, S4 = − 1

3
(S9 10+ S11 12 +S13 14) and the anti-triplet

with the ”spinor” quantum number equal to S4 = + 1
3

. In this table all the scalar fields carry,
besides the quantum numbers determined by the space index, (only) the family quantum
numbers, not pointed out in this table. The table is taken from Ref. [1].

gives masses to all the vector and scalar gauge fields appearing in the spin-charge-
family theory, except to the gravity, colour vector gauge fields, weak vector gauge
fields and hyper U(1) gauge field, since they do not interact with the condensate.
II D. The scalar fields, the members of the weak doublets (Table 9.2) with the
space index s = (5, 6), and the colour triplets and anti-triplets with the space index
t = (9, . . . , 14) [1], which contribute to transitions of anti-particles into particles
and to proton decay, keep masses of the condensate scale, as also do A2±m and
AY

′

M = cos θ2A2mm − sin θA4m.

III. The theory might have a chance to explain the hierarchy of the fermion and
boson masses.
III A. By the theory predicted existence of the fourth family to the observed
three families with the masses of the fourth family members at 1 TeV or even
above [13,14] makes the mass matrices of the family members very close to the
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democratic matrix, which suggests that the lower four families masses expand in
the interval from less than eV to 1012 eV. Correspondingly would the interval of
the higher four families be within the interval from ≈ 100 TeV [12] to ≈ 100× 1012
TeV, which is above the unification scale 1016 GeV) (1013 TeV), explaining why are
the masses of fermions spreading from few orders of magnitude below eV to TeV
and above up to the unification scale.

Predictions of the spin-charge-family theory.

I. The spin-charge-family theory predicts in the low energy regime two decoupled
groups of four families. The scalar fields with the space index s = (7, 8), which are
the gauge fields of the family charges, the superposition of S̃ab belonging to the
subgroups S̃U(2)

IIS̃O(3,1)
×S̃U(2)

IIS̃O(4)
, determine the symmetry of each of the

two groups of families.
I A. The symmetry of mass matrices

Mα =




−a1 − a e d b

e −a2 − a b d

d b a2 − a e

b d e a1 − a




α

,

enables to tell what are the masses and matrix elements of the fourth family
quarks and leptons within the interval of the accuracy of the experimental data.
Any (n − 1) × (n − 1) submatrix of the n × n unitary matrix, n ≥ 4 determines
uniquely the n× n unitary matrix.

Present experimental data for the mixing matrices are not accurate enough
even for quarks to tell, what are the fourth family masses. The estimation: most
probably they are above 1 TeV. We can, however, for the chosen fourth family
masses, predict the mixing matrix elements of quarks [13,14]. It comes out that the
fourth family matrix elements are not very sensitive either to the lower three or to
the fourth family quark masses. Our calculations [14] show that the new experi-
mental data are in better agreement with the spin-charge-family theory predictions
than the old ones.

For leptons the experimental data are less accurate and correspondingly the
estimated mixing matrix elements for the fourth family leptons are less predictable.

The higher are the fourth family members masses, the closer are the mass ma-
trices to the democratic matrices for either quarks or leptons - which is expected.
The fourth of the lower four families will be measured at the LHC.
I B. Scalar fields, which cause electroweak phase transition and are responsible
for masses of the lower four families of quarks and leptons and weak bosons,
determine the higss and the Yukawa couplings.
Besides the higgs, additional superposition of scalar fields are predicted to be measured at
the LHC.
I C. The properties of the upper four family members, (almost) decoupled from
the lower four families (their mass matrices still manifest the S̃U(2)

IIS̃O(3,1)

×S̃U(2)
IIS̃O(4)

symmetry, provided that the condensate respect this symmetry,
and are influenced by the family scalar fields of the upper four families, by the
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family members scalar field with the quantum numbers (Q,Q ′, Y ′) and by the
interaction with the condensate), can be evaluated within this theory by following
the evolution of the universe [12].
The masses of the lowest of the upper four families are estimated [12] to be in the interval
of several 10 TeV to several 104 TeV.
I D. Very heavy dark matter baryons are opening an interesting new ”fifth family
nuclear” dynamics.

III. There are besides the scalar fields, which are, like higgs, SU(2) doublets,
also the scalar fields, which are SU(3) triplets, involved and responsible for the
matter/anti-matter asymmetry of our universe.

9.4 Most common questions about the spin-charge-family theory

Let me present and offer a brief answers to the most common questions and com-
plains about the validity and the ability that thespin-charge-family theory might
be the right answer to the open questions of the standard model by attentive par-
ticipants of the conferences, readers or referees. To most of such questions the
answers can be found by carefully reading papers [5,4,1–3,6–14], some of them are
discussed in special sections of these papers or in contributions to the Discussion
section of the Bled 2015 workshop.

There are also the assumptions in this theory, represented in this talk, chosen
in order that the theory manifests in the low energy regime the standard model
properties, which also need, and want for better answer than the one, that obvi-
ously our universe has chosen among many other possibilities, those required by
the assumptions.

The most needed are, of course, the experimental data confirmation of the
predictions of this theory, making it trustworthy as the right next step beyond
the standard model. But what does speak for this theory is that the simple starting
action (Eq. (9.1)) and only a few assumptions explain all the assumptions of the
standard model, offering the explanation also for the existence of the dark matter
and the matter/anti-matter asymmetry, and might be for more open questions in
the elementary particle physics and cosmology.

The order of questions presented below have no special meaning.

1. Can the fourth family (to the observed three ones) with the masses close to
or larger than 1 TeV exist at all, since the masses of the higgs, top quark and
heavy bosons are all below 200 GeV?

2. If there are so many scalar fields carrying the weak and the hyper charges of
the higss (three singlets with the quantum numbers (Q,Q ′, Y ′) and two times
two triplets carrying the family quantum numbers), how can the masses of
the heavy bosons, to which all the scalars contribute, be so low, ≈ 100 GeV?

3. If there are two kinds of charges, the family and the family members ones,
why after the electroweak break the colour and the electromagnetic charges
are the only conserved charges ?

4. Can there be at all two kinds of the spin connection fields and only one kind
of the vielbeins?
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5. How can the vector gauge fields at all be represented by spin connection fields
and not, like in the Kaluza-Klein ordinary procedure, by vielbeins [5,1]?

6. The two SO(d− 1, 1) groups - SO(13, 1) and S̃O(13, 1) - have so many repre-
sentations that there is not difficult to make a choice of the needed ones, but
there are many more left.

7. Can the higher loops contributions, making all the off diagonal matrix elements
of the mass matrices depending on the scalar singlets with the quantum
numbers (Q,Q ′, Y ′) keep the symmetry of the three level (Eq. 9.6)?

8. And several others.

Let me try to answer the above questions.

1. Due to not accurate enough experimental data the prediction for the fourth
family masses is, that they might be at around one TeV or above. Since for
the masses of the fourth families the theory predicts the mass matrices which
are very close to the democratic ones, although still keeping the symmetry
of Eq. (9.6), the matrix elements of the mixing matrices for the fourth family
members are very small. Correspondingly the predictions can hardly be incon-
sistent with the so far made measurements. I expect that the new experiments
on the LHC will confirm the existence of the fourth family of quarks and
leptons.

2. The question, which remains to be answered, is, whether the scalar fields
belonging to either the three singlets with the quantum numbers (Q,Q ′, Y) ′

or to the two times two triplets with respect to the family charges, all carrying
the weak and the hyper charge of the higgs, do all together contribute only
≈ 100 GeV to the masses of heavy bosons after the electroweak break (Ref. [5],
Eq. (14)). Although it looks like that under certain conditions (the masses and
nonzero vacuum expectation values of these scalars) this is possible, the study
is not yet finished and the answer is not yet convincing.

3. The answer to the third questions is that all the scalar fields with the space
index s = (7, 8) - all having the weak and the hyper charges of the higgs -
with the family quantum numbers gain nonzero vacuum expectation values,
causing correspondingly the breaking of all the family charges, while their
weak and hyper charges cause the breaking of the weak and hyper charge.
Correspondingly the only conserved charges after the electroweak break are
the electromagnetic and colour charges.

4. The answer to the question number 4. is explained in details in Ref. [5], Sect.
IV., and in App. A., Sect. 2.. A short answer to this question is that either γa’s or
γ̃a’s transform in the flat space under the Lorentz transformations as vectors.
The curved coordinate space is only one, while both kinds of spin connection
fields are expressible in terms of the vielbeins, if there are no spinors (fermion)
sources present, while spin connections of both kinds differ among themselves
and are not expressible by vielbeins, if there are spinor sources present (Ref. [5],
App. C., Eq. (C9)).

5. The relation of the vector gauge fields when they are expressed with the spin
connection fields (as it is done in the spin-charge-family theory) and the vector
gauge fields when they are expressed with the vielbeins (as it is usually in the
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Kaluza-Klein theories) is explained in Refs. [5,1]. The vector (as well as the
scalar) gauge fields -AAim =

∑
st c

Aistωstm - are (Ref. [5], Eq. (C9)) expressible
with vielbeins. In Sect. II. of this Ref. the proof is presented that the vielbein
fσm = i xτ ~τAστ

~AAm, where AAim =
∑
st c

Aistωstm and ~τA = ~τAσ pσ = ~τAστ
xτ pσ (Eqs. (5-13) of Ref [5]). This is true when the space with d ≥ 5 has the
rotational symmetry, x ′µ = xµ, x ′σ = xσ − i~α1(xµ) ~τA(xτ) xσ. This symmetry
manifests in fσs = δσs f, for any f, which is the scalar function of the coordinates
xσ in d ≥ 5.
For f = (1+ ρ2

2ρ2
0

) the space is an almost Sd−4 sphere, with one point missing,
and the curvature R is equal to

R =
d(d− 1)

(ρ0)2
. (9.6)

6. One representation of SO(13, 1) contains just all the members of one family
of quarks and leptons, left and right handed with respect to d = (3+ 1), with
the quantum numbers required by the standard model. Although it contains
also anti-quarks and anti-leptons, after the break of the symmetry of space
from SO(13, 1) (and simultaneously of S̃O(13, 1)) to SO(7, 1) ×SU(3) × U(1)
the transformations of quarks into leptons as well as those, which transform
spins to charges, are at low energies not possible. All the scalar fields, which
would cause such transformations, become too massive.
All the scalar fields with the space index s ≥ 5 have phenomenological mean-
ing, either as scalars causing the electroweak break (s = (7, 8)) or as scalars
which contribute to the matter/anti-matter asymmetry of our universe. All
the scalar, as well as the vector gauge fields, with the quantum numbers of
the condensate, gain masses through the interaction with the condensate as
discussed in Sect. II. of this talk and in Ref. [1,5].

7. In Ref. [30] the authors discussed this problem. Although in this paper the
proof is not yet done, later studies show that the U(1)× SU(2)× SU(2) sym-
metry remains in all orders of loop corrections.

9.5 Conclusions

I represent in this talk very briefly the so far obtained achievements of the spin-
charge-family theory, which offers the explanation for all the assumptions of the
standard model, with the families included, as well as some answers to the open
questions in cosmology. Answering so far to so many open questions of the
elementary particles and fields physics, this theory might be the right next step
beyond the standard model.

The theory predicts that there are two triplet (with respect to the family
quantum numbers) and three singlet (with respect to the family members quantum
numbers) scalar fields, all with the weak and hyper charges of the higgs (∓1

2
,

±1
2

, respectively, with respect to the space index s = (7, 8)), which explain the
appearance of the scalar higgs and the Yukawa couplings. Some superposition
of these scalar fields will be observed at the LH. The LHC will measure also the
fourth family to the observed three ones.
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I present in this talk also the most often asked questions about the validity
of this theory, replying briefly to these questions and discuss the not yet solved
problems of this theory.

9.6 Appendix: Short presentation of spinor technique [4,8,17,18]

This appendix is a short review (taken from [4]) of the technique [8,19,17,18],
initiated and developed in Ref. [8], while proposing the spin-charge-family the-
ory [2–4,6–13,1,29]. All the internal degrees of freedom of spinors, with family
quantum numbers included, are describable in the space of d-anticommuting
(Grassmann) coordinates [8], if the dimension of ordinary space is also d. There
are two kinds of operators in the Grassmann space fulfilling the Clifford algebra
and anticommuting with one another.The technique was further developed in the
present shape together with H.B. Nielsen [19,17,18].

In this last stage we rewrite a spinor basis, written in Ref. [8] as products of
polynomials of Grassmann coordinates of odd and even Grassmann character,
chosen to be eigenstates of the Cartan subalgebra defined by the two kinds of the
Clifford algebra objects, as products of nilpotents and projections, formed as odd
and even objects of γa’s, respectively, and chosen to be eigenstates of a Cartan
subalgebra of the Lorentz groups defined by γa’s and γ̃a’s.

The technique can be used to construct a spinor basis for any dimension d
and any signature in an easy and transparent way. Equipped with the graphic
presentation of basic states, the technique offers an elegant way to see all the
quantum numbers of states with respect to the two Lorentz groups, as well as
transformation properties of the states under any Clifford algebra object.

App. B of Ref. [5]briefly represents the starting point [8] of this technique in
order to better understand the Lorentz transformation properties of both Clifford
algebra objects, γa’s and γ̃a’s, as well as of spinor, vector, tensor and scalar fields,
appearing in the spin-charge-family theory, that is of the vielbeins and spin connec-
tions of both kinds, ωabα and ω̃abα, and of spinor fields, family members and
families.

The objects γa and γ̃a have properties

{γa, γb}+ = 2ηab , {γ̃a, γ̃b}+ = 2ηab , , {γa, γ̃b}+ = 0 , (9.7)

If B is a Clifford algebra object, let say a polynomial of γa, B = a0 + aa γ
a +

aab γ
aγb + · · ·+ aa1a2...ad γa1γa2 . . . γad , one finds

(γ̃aB : = i(−)nB Bγa ) |ψ0 >,

B = a0 + aa0γ
a0 + aa1a2γ

a1γa2 + · · ·+ aa1···adγa1 · · ·γad , (9.8)

where |ψ0 > is a vacuum state, defined in Eq. (9.22) and (−)nB is equal to 1 for the
term in the polynomial which has an even number of γb’s, and to −1 for the term
with an odd number of γb’s, for any d, even or odd, and I is the unit element in
the Clifford algebra.

It follows from Eq. (9.8) that the two kinds of the Clifford algebra objects are
connected with the left and the right multiplication of any Clifford algebra objects
B.
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The Clifford algebra objects Sab and S̃ab close the algebra of the Lorentz
group

Sab : = (i/4)(γaγb − γbγa) ,

S̃ab : = (i/4)(γ̃aγ̃b − γ̃bγ̃a) , (9.9)

{Sab, S̃cd}− = 0 , {Sab, Scd}− = i(ηadSbc+ηbcSad−ηacSbd−ηbdSac) , {S̃ab, S̃cd}−
= i(ηadS̃bc + ηbcS̃ad − ηacS̃bd − ηbdS̃ac) .

We assume the “Hermiticity” property for γa’s

γa† = ηaaγa , (9.10)

in order that γa are compatible with (9.7) and formally unitary, i.e. γa † γa = I.
One finds from Eq. (9.10) that (Sab)† = ηaaηbbSab.
Recognizing from Eq.(9.9) that the two Clifford algebra objects Sab, Scd with

all indices different commute, and equivalently for S̃ab, S̃cd, we select the Cartan
subalgebra of the algebra of the two groups, which form equivalent representations
with respect to one another

S03, S12, S56, · · · , Sd−1 d, if d = 2n ≥ 4,
S03, S12, · · · , Sd−2 d−1, if d = (2n+ 1) > 4 ,

S̃03, S̃12, S̃56, · · · , S̃d−1 d, if d = 2n ≥ 4 ,
S̃03, S̃12, · · · , S̃d−2 d−1, if d = (2n+ 1) > 4 . (9.11)

The choice for the Cartan subalgebra in d < 4 is straightforward. It is useful to
define one of the Casimirs of the Lorentz group - the handedness Γ ({Γ, Sab}− = 0)
in any d

Γ (d) : = (i)d/2
∏
a

(
√
ηaaγa), if d = 2n,

Γ (d) : = (i)(d−1)/2
∏
a

(
√
ηaaγa), if d = 2n+ 1 . (9.12)

One proceeds equivalently for Γ̃ (d), subtituting γa’s by γ̃a’s. We understand the
product of γa’s in the ascending order with respect to the index a: γ0γ1 · · ·γd. It
follows from Eq.(9.10) for any choice of the signature ηaa that Γ † = Γ, Γ2 = I.We
also find that for d even the handedness anticommutes with the Clifford algebra
objects γa ({γa, Γ }+ = 0) , while for d odd it commutes with γa ({γa, Γ }− = 0).

To make the technique simple we introduce the graphic presentation as fol-
lows

ab

(k): =
1

2
(γa +

ηaa

ik
γb) ,

ab

[k]:=
1

2
(1+

i

k
γaγb) , (9.13)

where k2 = ηaaηbb. It follows then

γa =
ab

(k) +
ab

(−k) , γb = ikηaa (
ab

(k) −
ab

(−k)) ,

Sab =
k

2
(
ab

[k] −
ab

[−k]) (9.14)
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One can easily check by taking into account the Clifford algebra relation (Eq. (9.7))

and the definition of Sab and S̃ab (Eq. (9.9)) that the nilpotent
ab

(k) and the projector
ab

[k] are ”eigenstates” of Sab and S̃ab

Sab
ab

(k)=
1

2
k
ab

(k) , Sab
ab

[k]=
1

2
k
ab

[k] ,

S̃ab
ab

(k)=
1

2
k
ab

(k) , S̃ab
ab

[k]= −
1

2
k
ab

[k] , (9.15)

which means that we get the same objects back multiplied by the constant 1
2
k in

the case of Sab, while S̃ab multiply
ab

(k) by k and
ab

[k] by (−k) rather than (k). This

also means that when
ab

(k) and
ab

[k] act from the left hand side on a vacuum state
|ψ0〉 the obtained states are the eigenvectors of Sab. We further recognize that γa

transform
ab

(k) into
ab

[−k], never to
ab

[k], while γ̃a transform
ab

(k) into
ab

[k], never to
ab

[−k]

γa
ab

(k)= ηaa
ab

[−k], γb
ab

(k)= −ik
ab

[−k], γa
ab

[k]=
ab

(−k), γb
ab

[k]= −ikηaa
ab

(−k) ,

γ̃a
ab

(k)= −iηaa
ab

[k], γ̃b
ab

(k)= −k
ab

[k], γ̃a
ab

[k]= i
ab

(k), γ̃b
ab

[k]= −kηaa
ab

(k) .

(9.16)

From Eq.(9.16) it follows

Sac
ab

(k)
cd

(k) = −
i

2
ηaaηcc

ab

[−k]
cd

[−k] , S̃ac
ab

(k)
cd

(k)=
i

2
ηaaηcc

ab

[k]
cd

[k] ,

Sac
ab

[k]
cd

[k] =
i

2

ab

(−k)
cd

(−k) , S̃ac
ab

[k]
cd

[k]= −
i

2

ab

(k)
cd

(k) ,

Sac
ab

(k)
cd

[k] = −
i

2
ηaa

ab

[−k]
cd

(−k) , S̃ac
ab

(k)
cd

[k]= −
i

2
ηaa

ab

[k]
cd

(k) ,

Sac
ab

[k]
cd

(k) =
i

2
ηcc

ab

(−k)
cd

[−k] , S̃ac
ab

[k]
cd

(k)=
i

2
ηcc

ab

(k)
cd

[k] .

(9.17)

From Eq. (9.17) we conclude that S̃ab generate the equivalent representations with
respect to Sab and opposite.

Let us deduce some useful relations

ab

(k)
ab

(k) = 0 ,
ab

(k)
ab

(−k)= ηaa
ab

[k] ,
ab

(−k)
ab

(k)= ηaa
ab

[−k] ,
ab

(−k)
ab

(−k)= 0 ,
ab

[k]
ab

[k] =
ab

[k] ,
ab

[k]
ab

[−k]= 0 ,
ab

[−k]
ab

[k]= 0 ,
ab

[−k]
ab

[−k]=
ab

[−k] ,
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

(−k)
ab

[k]=
ab

(−k) ,
ab

(−k)
ab

[−k]= 0 ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

[k]
ab

(−k)= 0,
ab

[−k]
ab

(k)= 0 ,
ab

[−k]
ab

(−k)=
ab

(−k) .

(9.18)



i
i

“proc15” — 2015/12/9 — 10:51 — page 104 — #120 i
i

i
i

i
i

104 N.S. Mankoč Borštnik

We recognize in Eq. (9.18) the demonstration of the nilpotent and the projector

character of the Clifford algebra objects
ab

(k) and
ab

[k], respectively. Defining

ab
˜(±i)= 1

2
(γ̃a ∓ γ̃b) ,

ab
˜(±1)= 1

2
(γ̃a ± iγ̃b) , (9.19)

one recognizes that

ab
˜(k)
ab

(k) = 0 ,
ab
˜(−k)

ab

(k)= −iηaa
ab

[k] ,
ab
˜(k)
ab

[k] = i
ab

(k) ,
ab
˜(k)

ab

[−k]= 0 . (9.20)

Recognizing that

ab

(k)

†
= ηaa

ab

(−k) ,
ab

[k]

†
=
ab

[k] , (9.21)

we define a vacuum state |ψ0 > so that one finds

<
ab

(k)

†
ab

(k) >= 1 ,

<
ab

[k]

†
ab

[k] >= 1 . (9.22)

Taking into account the above equations it is easy to find a Weyl spinor
irreducible representation for d-dimensional space, with d even or odd.

For d even we simply make a starting state as a product of d/2, let us say,

only nilpotents
ab

(k), one for each Sab of the Cartan subalgebra elements (Eq.(9.11)),
applying it on an (unimportant) vacuum state. For d odd the basic states are
products of (d − 1)/2 nilpotents and a factor (1 ± Γ). Then the generators Sab,
which do not belong to the Cartan subalgebra, being applied on the starting state
from the left, generate all the members of one Weyl spinor.

0d

(k0d)
12

(k12)
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) |ψ0 >
0d

[−k0d]
12

[−k12]
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) |ψ0 >
0d

[−k0d]
12

(k12)
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) |ψ0 >

...
0d

[−k0d]
12

(k12)
35

(k35) · · ·
d−1 d−2

[−kd−1 d−2] |ψ0 >
od

(k0d)
12

[−k12]
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) |ψ0 >

... (9.23)

All the states have the same handedness Γ , since {Γ, Sab}− = 0. States, belonging
to one multiplet with respect to the group SO(q, d− q), that is to one irreducible
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representation of spinors (one Weyl spinor), can have any phase. We made a choice
of the simplest one, taking all phases equal to one.

The above graphic representation demonstrates that for d even all the states
of one irreducible Weyl representation of a definite handedness follow from a

starting state, which is, for example, a product of nilpotents
ab

(kab), by transforming

all possible pairs of
ab

(kab)
mn

(kmn) into
ab

[−kab]
mn

[−kmn]. There are Sam, San, Sbm, Sbn,
which do this. The procedure gives 2(d/2−1) states. A Clifford algebra object γa

being applied from the left hand side, transforms a Weyl spinor of one handedness
into a Weyl spinor of the opposite handedness. Both Weyl spinors form a Dirac
spinor.

We shall speak about left handedness when Γ = −1 and about right handed-
ness when Γ = 1 for either d even or odd.

While Sab which do not belong to the Cartan subalgebra (Eq. (9.11)) gener-
ate all the states of one representation, S̃ab which do not belong to the Cartan
subalgebra (Eq. (9.11)) generate the states of 2d/2−1 equivalent representations.

Making a choice of the Cartan subalgebra set (Eq. (9.11)) of the algebra Sab

and S̃ab

S03, S12, S56, S78, S9 10, S11 12, S13 14 ,

S̃03, S̃12, S̃56, S̃78, S̃9 10, S̃11 12, S̃13 14 , (9.24)

a left handed (Γ (13,1) = −1) eigenstate of all the members of the Cartan subalgebra,
representing a weak chargeless uR-quark with spin up, hyper charge (2/3) and
colour (1/2 , 1/(2

√
3)), for example, can be written as

03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

(−)
13 14

(−) |ψ0〉 =
1

27
(γ0 − γ3)(γ1 + iγ2)|(γ5 + iγ6)(γ7 + iγ8)||

(γ9 + iγ10)(γ11 − iγ12)(γ13 − iγ14)|ψ0〉 . (9.25)

This state is an eigenstate of all Sab and S̃ab which are members of the Cartan
subalgebra (Eq. (9.11)).

The operators S̃ab, which do not belong to the Cartan subalgebra (Eq. (9.11)),
generate families from the starting uR quark, transforming the uR quark from
Eq. (9.25) to the uR of another family, keeping all of the properties with respect
to Sab unchanged. In particular, S̃01 applied on a right handed uR-quark from
Eq. (9.25) generates a state which is again a right handed uR-quark, weak charge-
less, with spin up, hyper charge (2/3) and the colour charge (1/2 , 1/(2

√
3))

S̃01
03

(+i)
12

(+) |
56

(+)
78

(+) ||
910

(+)
1112

(−)
1314

(−)=

−
i

2

03

[ +i]
12

[ + ] |
56

(+)
78

(+) ||
910

(+)
1112

(−)
1314

(−) . (9.26)
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Below some useful relations [6] are presented

N±+ = N1+ ± iN2+ = −
03

(∓i)
12

(±) , N±− = N1− ± iN2− =
03

(±i)
12

(±) ,

Ñ±+ = −
03
˜(∓i)

12
˜(±) , Ñ±− =

03
˜(±i)

12
˜(±) ,

τ1± = (∓)
56

(±)
78

(∓) , τ2∓ = (∓)
56

(∓)
78

(∓) ,

τ̃1± = (∓)
56
˜(±)

78
˜(∓) , τ̃2∓ = (∓)

56
˜(∓)

78
˜(∓) . (9.27)

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 τ33 τ38 τ4 Y Q

(Anti)octet, Γ(1,7) = (−1) 1 , Γ(6) = (1) − 1

of (anti)quarks and (anti)leptons

1 uc1
R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) 1 1

2
1 0 1

2
1
2

1
2
√
3

1
6

2
3

2
3

2 uc1
R

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) 1 − 1

2
1 0 1

2
1
2

1
2
√
3

1
6

2
3

2
3

3 dc1
R

03
(+i)

12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) 1 1

2
1 0 − 1

2
1
2

1
2
√
3

1
6

− 1
3

− 1
3

4 dc1
R

03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) 1 − 1

2
1 0 − 1

2
1
2

1
2
√
3

1
6

− 1
3

− 1
3

5 dc1
L

03
[−i]

12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) -1 1

2
-1 − 1

2
0 1

2
1
2
√
3

1
6

1
6

− 1
3

6 dc1
L

03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) -1 − 1

2
-1 − 1

2
0 1

2
1
2
√
3

1
6

1
6

− 1
3

7 uc1
L

03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) -1 1

2
-1 1

2
0 1

2
1
2
√
3

1
6

1
6

2
3

8 uc1
L

03
(+i)

12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) -1 − 1

2
-1 1

2
0 1

2
1
2
√
3

1
6

1
6

2
3

9 uc2
R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
(−) 1 1

2
1 0 1

2
− 1
2

1
2
√
3

1
6

2
3

2
3

10 uc2
R

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
(−) 1 − 1

2
1 0 1

2
− 1
2

1
2
√
3

1
6

2
3

2
3

· · ·

17 uc3
R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
(−)

13 14
[+] 1 1

2
1 0 1

2
0 − 1√

3
1
6

2
3

2
3

18 uc3
R

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
(−)

13 14
[+] 1 − 1

2
1 0 1

2
0 − 1√

3
1
6

2
3

2
3

· · ·

25 νR

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] 1 1

2
1 0 1

2
0 0 − 1

2
0 0

26 νR

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] 1 − 1

2
1 0 1

2
0 0 − 1

2
0 0

27 eR

03
(+i)

12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] 1 1

2
1 0 − 1

2
0 0 − 1

2
−1 −1

28 eR

03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] 1 − 1

2
1 0 − 1

2
0 0 − 1

2
−1 −1

29 eL

03
[−i]

12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] -1 1

2
-1 − 1

2
0 0 0 − 1

2
− 1
2

−1

30 eL

03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] -1 − 1

2
-1 − 1

2
0 0 0 − 1

2
− 1
2

−1

31 νL

03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] -1 1

2
-1 1

2
0 0 0 − 1

2
− 1
2

0

32 νL

03
(+i)

12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] -1 − 1

2
-1 1

2
0 0 0 − 1

2
− 1
2

0

33 d̄c̄1
L

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] -1 1

2
1 0 1

2
− 1
2

− 1
2
√
3

− 1
6

1
3

1
3

34 d̄c̄1
L

03
(+i)

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] -1 − 1

2
1 0 1

2
− 1
2

− 1
2
√
3

− 1
6

1
3

1
3

35 ūc̄1
L

03
[−i]

12
(+) |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] -1 1

2
1 0 − 1

2
− 1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

36 ūc̄1
L

03
(+i)

12
[−] |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] -1 − 1

2
1 0 − 1

2
− 1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

37 d̄c̄1
R

03
(+i)

12
(+) |

56
(+)

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] 1 1

2
-1 1

2
0 − 1

2
− 1
2
√
3

− 1
6

− 1
6

1
3

38 d̄c̄1
R

03
[−i]

12
[−] |

56
(+)

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] 1 − 1

2
-1 1

2
0 − 1

2
− 1
2
√
3

− 1
6

− 1
6

1
3

39 ūc̄1
R

03
(+i)

12
(+) |

56
[−]

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] 1 1

2
-1 − 1

2
0 − 1

2
− 1
2
√
3

− 1
6

− 1
6

− 2
3

40 ūc̄1
R

03
[−i]

12
[−] |

56
[−]

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] 1 − 1

2
-1 − 1

2
0 − 1

2
− 1
2
√
3

− 1
6

− 1
6

− 2
3

Continued on next page
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i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 τ33 τ38 τ4 Y Q

(Anti)octet, Γ(1,7) = (−1) 1 , Γ(6) = (1) − 1

of (anti)quarks and (anti)leptons

41 d̄c̄2
L

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
[+] -1 1

2
1 0 1

2
1
2

− 1
2
√
3

− 1
6

1
3
1
3

· · ·

49 d̄c̄3
L

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
(−) -1 1

2
1 0 1

2
0 − 1√

3
− 1
6

1
3
1
3

· · ·

57 ēL

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
(−)

13 14
(−) -1 1

2
1 0 1

2
0 0 1

2
1 1

58 ēL

03
(+i)

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
(−)

13 14
(−) -1 − 1

2
1 0 1

2
0 0 1

2
1 1

59 ν̄L

03
[−i]

12
(+) |

56
[−]

78
[−] ||

9 10
[−]

11 12
(−)

13 14
(−) -1 1

2
1 0 − 1

2
0 0 1

2
0 0

60 ν̄L

03
(+i)

12
[−] |

56
[−]

78
[−] ||

9 10
[−]

11 12
(−)

13 14
(−) -1 − 1

2
1 0 − 1

2
0 0 1

2
0 0

61 ν̄R
03

(+i)
12
(+) |

56
[−]

78
(+) ||

9 10
[−]

11 12
(−)

13 14
(−) 1 1

2
-1 − 1

2
0 0 0 1

2
1
2
0

62 ν̄R
03

[−i]
12
[−] |

56
[−]

78
(+) ||

9 10
[−]

11 12
(−)

13 14
(−) 1 − 1

2
-1 − 1

2
0 0 0 1

2
1
2
0

63 ēR

03
(+i)

12
(+) |

56
(+)

78
[−] ||

9 10
[−]

11 12
(−)

13 14
(−) 1 1

2
-1 1

2
0 0 0 1

2
1
2
1

64 ēR

03
[−i]

12
[−] |

56
(+)

78
[−] ||

9 10
[−]

11 12
(−)

13 14
(−) 1 − 1

2
-1 1

2
0 0 0 1

2
1
2
1

Table 9.4. The left handed (Γ (13,1) = −1) (= Γ (7,1)× Γ (6)) multiplet of spinors - the members
of the SO(13, 1) group, manifesting the subgroup SO(7, 1) - of the colour charged quarks
and anti-quarks and the colourless leptons and anti-leptons, is presented in the massless
basis using the technique presented in App. 9.6. It contains the left handed (Γ (3,1) = −1)
weak charged (τ13 = ± 1

2
) and SU(2)II chargeless (τ23 = 0) quarks and the right handed

weak chargeless and SU(2)II charged (τ23 = ± 1
2

) quarks of three colours (ci = (τ33, τ38))
with the ”spinor” charge (τ4 = 1

6
) and the colourless left handed weak charged leptons

and the right handed weak chargeless leptons with the ”spinor” charge (τ4 = − 1
2

). S12

defines the ordinary spin ± 1
2

. It contains also the states of opposite charges, reachable
from particle states by the application of the discrete symmetry operator CN PN , presented
in Refs. [22,23]. The vacuum state, on which the nilpotents and projectors operate, is not
shown. The reader can find this Weyl representation also in Refs. [1,29,4].

I present at the end one Weyl representation of SO(13 + 1) and the family
quantum numbers of the two groups of four families.

One Weyl representation of SO(13 + 1) contains left handed weak charged
and the second SU(2) chargeless coloured quarks and colourless leptons and right
handed weak chargeless and the second SU(2) charged quarks and leptons (elec-
trons and neutrinos). It carries also the family quantum numbers, not mentioned
in this table. The table is taken from Ref. [22].

The eight families of the first member of the eight-plet of quarks from Table 9.4,
for example, that is of the right handed u1R quark, are presented in the left column
of Table 9.5 [4]. In the right column of the same table the equivalent eight-plet of
the right handed neutrinos ν1R are presented. All the other members of any of the
eight families of quarks or leptons follow from any member of a particular family
by the application of the operators N±R,L and τ(2,1)± on this particular member.

The eight-plets separate into two group of four families: One group contains
doublets with respect to ~̃NR and ~̃τ2, these families are singlets with respect to ~̃NL

and ~̃τ1. Another group of families contains doublets with respect to ~̃NL and ~̃τ1,
these families are singlets with respect to ~̃NR and ~̃τ2.

The scalar fields which are the gauge scalars of ~̃NR and ~̃τ2 couple only to the
four families which are doublets with respect to these two groups. The scalar fields
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τ̃
1
3
τ̃
2
3
Ñ
3 L
Ñ
3 R
τ̃
4

I
u
c
1
R
1

0
3

(+
i)
1
2

[+
]
|
5
6

[+
]
7
8

(+
)
||
9
1
0

(+
)
1
1
1
2

(−
)
1
3
1
4

(−
)
ν
R
2

0
3

(+
i)
1
2

[+
]
|
5
6

[+
]
7
8

(+
)
||
9
1
0

(+
)
1
1
1
2

[+
]
1
3
1
4

[+
]

−
1 2
0

−
1 2
0

−
1 2

I
u
c
1
R
2

0
3

[+
i]
1
2

(+
)
|
5
6

[+
]
7
8

(+
)
||
9
1
0

(+
)
1
1
1
2

(−
)
1
3
1
4

(−
)
ν
R
2

0
3

[+
i]
1
2

(+
)
|
5
6

[+
]
7
8

(+
)
||
9
1
0

(+
)
1
1
1
2

[+
]
1
3
1
4

[+
]

−
1 2
0

1 2
0

−
1 2

I
u
c
1
R
3

0
3

(+
i)
1
2

[+
]
|
5
6

(+
)
7
8

[+
]
||
9
1
0

(+
)
1
1
1
2

(−
)
1
3
1
4

(−
)
ν
R
3

0
3

(+
i)
1
2

[+
]
|
5
6

(+
)
7
8

[+
]
||
9
1
0

(+
)
1
1
1
2

[+
]
1
3
1
4

[+
]

1 2
0

−
1 2
0

−
1 2

I
u
c
1
R
4

0
3

[+
i]
1
2

(+
)
|
5
6

(+
)
7
8

[+
]
||
9
1
0

(+
)
1
1
1
2

(−
)
1
3
1
4
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which are the gauge scalars of ~̃NL and ~̃τ1 couple only to the four families which
are doublets with respect to these last two groups.
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18. N.S. Mankoč Borštnik, H. B. Nielsen, J. of Math. Phys. 44, 4817 (2003) [hep-th/0303224].
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