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Abstract. The results of the Dyson-Schwinger approach utilizing the Witten-Veneziano

relation to obtain a description of the η and η′ mesons, are compared with the results

obtained when Shore’s generalization of the Witten-Veneziano relation is used instead. On

the examples of three differentmodel interactions, we find that irrespective of the concrete

model dynamics, our Dyson-Schwinger approach is phenomenologically more successful

in conjunction with the standard Witten-Veneziano relation than with the generalization

valid, at least in principle, in all orders in the 1/Nc expansion.

1 Introduction

The complex of the η and η′ pseudoscalar mesons is an intriguing problem in
the light-quark sector of the nonperturbative Quantum Chromodynamics (QCD).

The mixing of the pertinent isospin-zero states should be such that the physical η
meson is one of the (almost-)Goldstone bosons of the dynamical chiral symmetry

breaking (DChSB) of QCD, whereas its partner η ′ must be very massive (∼ 1

GeV) and remain such even in the chiral limit. For the correct η ′ mass behavior,
the non-abelian (gluon) axial anomaly of QCD is essential, and a way to extract

its contribution is through the Witten-Veneziano (WV) relation [1,2].

We are particularly interested in the Dyson-Schwinger (DS) approach [3–8] to

QCD and its modeling. In some variants of the DS approach (e.g., in Ref. [9]), the
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WV relation has been used to obtain the description of the η-η ′ complex. In the

present paper, for three different DS models, we compare the usage of the WV

relation with the usage of its recent generalization recently proposed by Shore
[10,11]. The present paper in the Bled 2008 proceedings, is a shortened version of

Ref. [12].

The DS approach [3–8] is the chirally well-behaved bound-state approach
and thus the most suitable one to treat the light pseudoscalar mesons (those com-

posed of the u, d and s quarks), for which DChSB is essential. One solves the

DS equations (DSEs) for dressed quark propagators, which are then employed
in Bethe-Salpeter equations (BSEs). Their solving yields quark-antiquark (qq̄ ′)

bound state amplitudes and corresponding massesMqq̄ ′ .

To obtain the chiral behavior as in QCD, DS and BS equations must be solved
in a consistent approximation. The rainbow-ladder approximation (RLA), where

DChSB is well-understood, is still the most usual approximation in phenomeno-
logical applications. This also entails that in both DSE and BSE we employ the

same effective interaction. Concretely, in the present paper we recall and utilize

the results obtained i) in Refs. [13,14] by using the renormalization-group im-
proved (RGI) interaction of Jain and Munczek [15], ii) in Ref. [9] by using the RGI

gluon condensate-induced interaction [16], and iii) in Refs. [17,18] by using the

separable interaction [19]. Such effective interactions must be modeled at least in
the low-energy, nonperturbative regime in order to be phenomenologically suc-

cessful – which above all means to be sufficiently strong in the low-momentum
domain to yield DChSB. In the chiral limit (and close to it), light pseudoscalar

(P) meson qq̄ bound states (P = π0,±, K0,±, η) then simultaneously manifest

themselves also as (quasi-)Goldstone bosons of DChSB. This enables one to work
with the mesons as explicit qq̄ bound states, while reproducing the results of the

Abelian axial anomaly for the light pseudoscalars, i.e., the amplitudes for P → γγ

and γ⋆ → P0P+P−. This is unique among the bound state approaches – e.g.,

see Refs. [5,20,22,21] and references therein. Nevertheless, one keeps the advan-

tage of bound-state approaches that from the qq̄ substructure one can calculate
many important quantities (such as the pion, kaon and ss̄ pseudoscalar decay

constants: fπ, fK and fss̄) which are just parameters in most of other chiral ap-
proaches to the light-quark sector. The treatment [13,14,23,9] of the η-η ′ complex

is remarkable in that it is very successful in spite of the limitations of RLA. (Very

recently, during the work on the present paper, the first and still simplified DS
treatments of η and η ′ beyond RLA appeared [24,25]. However, RLA treatments

will probably long retain their usefulness in applications where simple modeling
is desirable, as in the calculationally demanding finite-temperature calculations

[18].) The RLA treatments [13,14,23,9,18]of the η-η ′ complex relied on theWitten-

Veneziano (WV) relation [1,2]. Nevertheless, Shore achieved [10,11] what can be
considered as a generalization of the WV relation, and the purpose of the present

paper is exploring the usage of this generalization in the DS context.

The paper is organized as follows: in the next section, we recapitulate the
procedures and results of our previous treatments [14,9,18] relying on the WV

relation (11), and present in Table I also their extension to the scheme of the four

decay constants (and two mixing angles) of η and η ′. In Section 3, we expose the
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usage of the pertinent Shore’s equations [10,11] in the context of DS approach. The

last section concludes after giving the results of solving the pertinent equations.

2 η-η ′ mass matrix fromWitten-Veneziano relation

All qq̄ ′ model massesMqq̄ ′ (q, q ′ = u, d, s) used in the present paper, and cor-
responding qq̄ ′ bound-state amplitudes, were obtained in Refs. [13,14,9,26,17,18]

in RLA, i.e., with an interaction kernel which (irrespective of how one models

the dynamics) cannot possibly capture the effects of the non-Abelian, gluon axial
anomaly. Thus, when we form the η-η ′ mass matrix

M̂2
NA =

[
M2
88 M

2
80

M2
08 M

2
00

]
, (1)

in this case in the octet-singlet basis η8-η0 of the (broken) flavor-SU(3) states of
isospin zero,

η8 =
1√
6
(uū+ dd̄ − 2ss̄), η0 =

1√
3
(uū + dd̄ + ss̄), (2)

this matrix (1), consisting of our calculated qq̄masses,

M2
88 ≡ 〈η8|M̂2

NA|η8〉 =
2

3
(M2

ss̄ +
1

2
M2
uū) , (3)

M2
00 ≡ 〈η0|M̂2

NA|η0〉 =
2

3
(
1

2
M2
ss̄ +M2

uū) , (4)

M2
80 ≡ 〈η8|M̂2

NA|η0〉 = M2
08 =

√
2

3
(M2

uū −M2
ss̄) < 0, (5)

is purely non-anomalous (NA), vanishing in the chiral limit. In the isospin limit,
to which we adhere throughout, the pion is strictly decoupled from the gluon

anomaly andMuū = Mdd̄ is exactly our model pion massMπ. Also the unphys-

ical ss̄ quasi-Goldstone’s massMss̄ results from RLA BSE and does not include
the contribution from the gluon anomaly. This is consistent with the fact that due

to the Dashen-Gell-Mann-Oakes-Renner (DGMOR) relation, it is in a good ap-
proximation [13,14,9,18] given byM2

ss̄ = 2M2
K −M2

π, i.e., by the kaon and pion

masses protected from the anomaly by strangeness and/or isospin.

In our previous DS studies [13,14,9,26,17,18], to which we refer for all model

details, the phenomenology of the non-anomalous sector was successfully repro-
duced, e.g., fπ, fK, as well as the empirical massesMπ andMK (see the upper part

of Table 1), yielding a strongly non-diagonal M̂2
NA (1). Its diagonalization leads to

the eigenstates known as the nonstrange-strange (NS-S) basis,

ηNS =
1√
2
(uū + dd̄) , ηS = ss̄ , (6)

and to M̂2
NA = diag[M2

π,M
2
ss̄]. In contrast to these mass-squared eigenvalues,

the experimental masses are such that (M2
π)expλ

2(M2
η)exp, and η

′ is too heavy,
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(Mη ′)exp = 958MeV, to be considered even as the ss̄ quasi-Goldstone boson. This

is the well-known UA(1) problem, resolved by the fact that the complete η-η ′ mass

matrix M̂2 must contain the anomalous (A) part M̂2
A. That is, M̂

2 = M̂2
NA + M̂2

A.

However, M̂2
A is inaccessible to RLA which yields our Goldstone pseudo-

scalars. In Refs. [13,14,9,17,18], M̂2
A was extracted from lattice data through the

WV relation [the second equality in Eq. (11)]. The main purpose of the present
paper, instead, is to approach η and η ′ through Shore’s [10,11] recent generaliza-

tion of that relation.

Before that, nevertheless, we review the usage of the WV relation in Refs.
[13,14,9,17,18]. The expansion in the large number of colors, Nc, indicates that

the leading approximation in that expansion describes the bulk of main features

of QCD. The gluon anomaly is suppressed as 1/Nc and can be viewed as a pertur-
bation in the largeNc expansion. In the SU(3) limit, it is coupled only to the singlet

combination η0 (2); only the η0 mass receives, from the gluon anomaly, a contri-
bution which, unlike quasi-Goldstone massesMqq̄ ′ ’s comprising M̂2

NA, does not

vanish in the chiral limit. As discussed in Refs. [13,9], in the present bound-state

context it is thus meaningful to include the effect of the gluon anomaly just on the
level of a mass shift for the η0 as the lowest-order effect, and retain the qq̄ bound-

state amplitudes and the corresponding mass eigenvaluesMqq̄ as calculated by

solving DSEs and BSEs with kernels in RLA.

References [13,14,9,17,18] thus break the UA(1) symmetry, and avoid the

UA(1) problem, by shifting the η0 (squared) mass by an amount denoted by 3β

(in the notation of Refs. [14,9]). The complete mass matrix M̂2 = M̂2
NA + M̂2

A

then contains the anomalous part M̂2
A = diag[0, 3β], where the anomalous η0

mass shift 3β is related to the topological susceptibility of the vacuum, but in the
present approach must be treated as a parameter to be determined outside of our

RLA model, i.e., fixed by phenomenology or taken from the lattice calculations

[27]. (The possibility of employing an additional microscopic model for the gluon
anomaly contribution, such as the one of Ref. [28], is presently not considered.)

The SU(3) flavor symmetry breaking and its interplaywith the gluon anomaly

[9] modifies M̂2
A = diag[0, 3β] to

M̂2
A = β

[
2
3
(1− X)2

√
2
3

(1− X)(2+ X)√
2
3

(1 − X)(2 + X) 1
3
(2+ X)2

]
, (7)

where X is the flavor symmetry breaking parameter. It is most often estimated as

X = fπ/fss̄ ∼ 0.7 − 0.8 (see, e.g., Refs. [30,29,14,9], although there are some other
[14], of course related, estimates of X). Presently we also adopt X = fπ/fss̄, which

means that X is a calculated quantity in our approach. The employed models

achieved good agreement with phenomenology [13,14,9,18], e.g., fitted the ex-
perimental value ofM2

η +M2
η ′ for β around 0.26 – 0.28 GeV2. The anomaly con-

tribution M̂2
A then brings the completeM2 rather close to a diagonal form for all

considered models [13,14,9,18]; that is, to diagonalizeM2, only a relatively small

rotation (|θ| ∼ 13◦ ± 2◦) of the η8-η0 basis states,

η = cosθ η8 − sinθ η0 , η′ = sinθ η8 + cosθ η0 , (8)
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is needed to align them with the mass eigenstates, i.e., with the physical η and η′.

In contrast to this, the η-η′ mass matrix in the NS-S basis (6),

M̂2 =

[
M2
ηNS

M2
ηSηNS

M2
ηNSηS

M2
ηS

]
=

[
M2
π + 2β

√
2βX√

2βX M2
ss̄ + βX2

]
−→
φ

[
M2
η 0

0 M2
η ′

]
(9)

is then strongly off-diagonal. The indicated diagonalization, given by

η = cosφηNS − sinφηS , η′ = sinφηNS + cosφηS , (10)

is thus achieved for a largeNS-S state-mixing angle φ ∼ 42◦±2◦. Of course, this is

again in agreement with phenomenological requirements [14,9], since φ is fixed

to the angle θ by the relation φ = θ+ arctan
√
2 = θ+ 54.74◦ .

The invariant trace of the mass matrix (9), together withM2
ss̄ = 2M2

K −M2
π

(from the DGMOR relation), gives the first equality in

β (2+ X2) = M2
η +M2

η ′ − 2M2
K =

6

f2π
χYM . (11)

The second equality is the Witten-Veneziano (WV) relation [1,2] between the η, η ′

and kaon masses and χYM, the topological susceptibility of the pure gauge, Yang-
Mills theory. Thus, β does not need to be a free parameter, but can be determined

from lattice results on χYM, so that no fitting parameters are introduced. For the

three models [15,16,19] utilized in our treatments [13,14,9,18] of η and η ′, the
bare quark mass parameters and the interaction parameters were fixed already in

the non-anomalous sector, by requiring the good pion and kaon phenomenology.
(See the π and K masses and decay constants in Table 1.) Then, following Refs.

[9,18] in adopting the central value of the weighted average of the recent lattice

results on Yang-Mills topological susceptibility [31–33],

χYM = (175.7 ± 1.5MeV)4 , (12)

we have obtained the good descriptions of the η-η ′ phenomenology [13,14,9,18],

exemplified by the first three columns (one for each DS models used) of the mid-

dle part of Table 1, giving the predictions for the η and η ′ masses and for the NS-S
mixing angle φ.

The lowest part of the table, below the second horizontal dividing line, con-

tains the results on the quantities (θ0, θ8, etc.) defined in the scheme with four η
and η′ decay constants and two mixing angles, introduced and explained in the

following Section 3. Table 1 also compares these results of ours (in the first three
columns) with the corresponding results of Shore’s approach [10,11], in which the

experimental values of the meson massesMπ,MK,Mη, andMη′ , as well as the de-

cay constants fπ and fK (in contrast to our qq̄ bound-state model predictions for
these quantities) are used as inputs enabling the calculation of various decay con-

stants in the η-η ′ complex and the two mixing angles θ0 and θ8 (corresponding
to φ = 38.24◦ in our approach).

3 Usage of Shore’s equations in DS approach

The WV relation was derived in the lowest-order approximation in the large Nc
expansion. However, considerations by Shore [10,11] contain what amounts to
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from [14] [9] [18] Shore

Ref. & WV & WV & WV [10,11] Experiment

Mπ 137.3 135.0 140.0 (138.0)
isospin
average

MK 495.7 494.9 495.0 (495.7)
isospin
average

Mss̄ 700.7 722.1 684.8

fπ 93.1 92.9 92.0 92.4 ± 0.3
fK 113.4 111.5 110.1 113.0 ± 1.0
fss̄ 135.0 132.9 119.1

Mη 568.2 577.1 542.3 547.75 ± 0.12
Mη′ 920.4 932.0 932.6 957.78 ± 0.14
φ 41.42◦ 39.56◦ 40.75◦ (38.24◦)

θ0 −2.86◦ −5.12◦ −6.80◦ −12.3◦

θ8 −22.59◦ −24.14◦ −20.58◦ −20.1◦

f0 108.8 107.9 101.8 106.6

f8 122.6 121.1 110.7 104.8

f0η 5.4 9.6 12.1 22.8

f0η′ 108.7 107.5 101.1 104.2

f8η 113.2 110.5 103.7 98.4

f8η′ -47.1 -49.5 -38.9 -37.6

Table 1. The results of employing the WV relation (11) in our DS approach for the three

dynamical models used in Refs. [14,9,18], compared with the results of Shore’s analysis

[10,11] and with the experimental results. The first column was obtained by the WV-

recalculation of the results of Ref. [14], which in turn used the Jain-Munczek Ansatz for

the gluon propagator [15]. Column 2: the results based on Ref. [9], which used the OPE-

inspired, gluon-condensate-enhanced gluon propagator [16]. Column 3: the results based

on Ref. [18], which utilized the separable Ansatz for the dressed gluon propagator [19].

Column 4: The results of Shore [10,11], who used the lattice result χYM = (191MeV)4 of

Ref. [32], and not the weighted average (12), in contrast to us. Column 5: the experimental

values. All masses and decay constants are in MeV, and angles are in degrees. For more

details, see text.

the generalization of theWV relation, which is valid to all orders in 1/Nc. Among
the relations he derived through the inclusion of the gluon anomaly in DGMOR

relations, the following are pertinent for the present paper:

(f0η ′)2M2
η ′ + (f0η)

2M2
η =

1

3

(
f2πM

2
π + 2f2KM

2
K

)
+ 6A , (13)

f0η ′f8η ′M2
η ′ + f0ηf

8
ηM

2
η =

2
√
2

3

(
f2πM

2
π − f2KM

2
K

)
, (14)

(f8η ′)
2M2

η ′ + (f8η)
2M2

η = −
1

3

(
f2πM

2
π − 4f2KM

2
K

)
, (15)

where A is the full QCD topological charge parameter, which is presently un-

known, but in the large Nc limit, it reduces to YM topological susceptibility:

A = χYM + O(1/Nc). Besides fπ, they contain fK and the four decay constants
[34–36], f0η ′ , f8η, f

0
η, and f

8
η ′ , associated with the two pseudoscalars η and η ′.
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Adding Eqs. (13) and (15), one gets the relation

(f0η ′)
2M2

η ′ + (f0η)
2M2

η + (f8η)
2M2

η + (f8η ′)
2M2

η ′ − 2f2KM
2
K = 6A (16)

which is the analogue of the standard WV formula (11), to which it reduces in

the large Nc limit where A → χYM, the f
0
η ′ , f8η, fK → fπ limit, and the limit of

vanishing subdominant decay constants (since η and η ′ are dominantly η8 and

η0, respectively), i.e., f
0
η, f

8
η ′ → 0. Nevertheless, we will need to use not just this

single equation, but the three equations (13)-(15) from Shore’s generalization.

These four η and η ′ decay constants are often parameterized in terms of two
decay constants, f8 and f0, and two mixing angles, θ8 and θ0:

f8η = cosθ8 f8 , f0η = − sin θ0 f0 , f8η ′ = sin θ8 f8 , f0η ′ = cosθ0 f0 . (17)

This is the so-called two-angle mixing scheme, which shows explicitly that it is

inconsistent to assume that the mixing of the decay constants follows the pattern
(8) of the mixing of the states η8 and η0 [34–36,30,37,29].

The advantage of our model is that, as we shall see, we are able to calculate

the f8 and f0 parts of the physical decay constants (17) from the qq̄ substructure.
However, we cannot keep the full generality of Shore’s approach, which allows

for the mixing with the gluonic pseudoscalar operators, and therefore employs

the definition [10,11] of the decay constants which, in general, due to the gluonic
contribution, differs from the following standard definition through the matrix

elements of the axial currents Aaµ(x):

〈0|Aaµ(x)|P(p)〉 = ifaP p
µe−ip·x, a = 8, 0; P = η, η′ . (18)

Nevertheless, Shore’s definition [10,11] coincides with the above standard one in
the non-singlet channel, where there cannot be any admixture of the pseudoscalar

gluonic component. Similarly, since our BS solutions (from Refs. [13,14,9,18]) are
the pure qq̄ states, without any gluonic components, using Shore’s definition

would not help us calculate the gluon anomaly influence on the decay constants.

We thus employ the standarddefinitions (18), also used by, e.g., Gasser, Leutwyler,
and Kaiser [34–36], as well as by Feldmann, Kroll, and Stech (FKS) [30,37,29].

Equivalently to f0η ′ , f8η, f
0
η, and f

8
η ′ , defined by Eq. (18), one has four related

but different constants fNS
η ′ , fNS

η , f
S
η, and f

S
η ′ , if instead of octet and singlet axial

currents (a = 8, 0) in Eq. (18) one uses the nonstrange-strange axial currents (a =

NS, S)

A
µ
NS(x) =

1√
3
A8µ(x) +

√
2

3
A0µ(x) =

1

2

[
ū(x)γµγ5u(x) + d̄(x)γµγ5d(x)

]
, (19)

A
µ
S (x) = −

√
2

3
A8µ(x) +

1√
3
A0µ(x) =

1√
2
s̄(x)γµγ5s(x) . (20)

The relation between the two equivalent sets is thus

[
fNS
η fSη
fNS
η′ fSη′

]
=

[
f8η f

0
η

f8η′ f0η′

]


1√
3

−

√
2
3√

2
3

1√
3


 . (21)
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Of course, this other quartet of η and η ′ decay constants can also be parameter-

ized in terms of other two constants and two other mixing angles:

fNS
η = cosφNS fNS , fSη = − sinφS fS , fNS

η ′ = sinφNS fNS , fSη ′ = cosφS fS ,

(22)

where fNS and fS are given by the matrix elements

〈0|AµNS(x)|ηNS(p)〉 = ifNS p
µe−ip·x , 〈0|AµS (x)|ηS(p)〉 = ifS p

µe−ip·x , (23)

while 〈0|AµNS(x)|ηS(p)〉 = 0 and 〈0|AµS (x)|ηNS(p)〉 = 0 .

In the NS-S basis, it is possible to recover a scheme with a single mixing an-

gle φ through the application of the Okubo-Zweig-Iizuka (OZI) rule [30,37,29].
For example, fNSfS sin(φNS − φS) differs from zero just by an OZI-suppressed

term [29]. Neglecting this term thus implies φNS = φS. (Refs. [30,37,29] denote

fNS, fS, φNS, φS by, respectively, fq, fs, φq, φs.) In general, neglecting the OZI-sup-
pressed terms, i.e., application of the OZI rule, leads to the so-called FKS scheme

[30,37,29],which exploits a big practical difference between the (in principle equiv-
alent) parameterizations (17) and (22): while θ8 and θ0 differ a lot from each other

and from the octet-singlet state mixing angle θ ≈ (θ8 + θ0)/2, the NS-S decay-

constant mixing angles are very close to each other and both can be approximated
by the state mixing angle: φNS ≈ φS ≈ φ. Therefore one can deal with only this

one angle, φ, and express the physical η-η ′ decay constants as

[
f8η f0η
f8η′ f0η′

]
=

[
fNS cosφ −fS sinφ
fNS sinφ fS cosφ

]


1√
3

√
2
3

−

√
2
3

1√
3


 . (24)

This relation is valid also in our approach, where η and η ′ are the simple ηNS-
ηS mixtures (10). In our present DS approach, mesons are pure qq̄ BS solutions,

without any gluonium admixtures, which are prominent possible sources of OZI
violations. Therefore, our decay constants are calculated quantities, fNS = fuū =

fdd̄ = fπ and fS = fss̄, in agreement with the OZI rule. Our DS approach is thus

naturally compatible with the FKS scheme, and we can use the η and η ′ decay
constants (24) with our calculated fNS = fπ and fS = fss̄ in Shore’s equations

(13)-(15).

4 Results and conclusions

All quantities appearing on the right-hand side of Eqs. (13)-(15), namelyMπ,MK,
fπ, and fK, are calculated in our DS approach [14,9,18] (for the three dynamical

models [15,16,19]), except the full QCD topological charge parameterA. Since it is
at present unfortunately not yet known, we follow Shore and approximate it by

the Yang-Mills topological susceptibility χYM.

On the left-hand side of Eqs. (13)-(15), the model results for fNS = fπ and fS =

fss̄ and Eq. (24) reduce the unknown part of the four η and η ′ decay constants f0η,
f0η′ , f8η, and f

8
η′ , down to the mixing angle φ. The three Shore’s equations (13)-(15)

can then be solved for φ,Mη and Mη′ , providing us with the upper three lines
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Inputs: from Ref. [14] from Ref. [9] from Ref. [18]

χ
1/4

YM 175.7 191 175.7 191 175.7 191

Mη 485.7 499.8 482.8 496.7 507.0 526.2

Mη′ 815.8 931.4 818.4 934.9 868.7 983.2

φ 46.11◦ 52.01◦ 46.07◦ 51.85◦ 40.86◦ 47.23◦

θ0 1.84◦ 7.74◦ 1.39◦ 7.17◦ −6.69◦ −0.33◦

θ8 −17.90◦ −12.00◦ −17.6◦ −11.85◦ −20.47◦ −14.11◦

f0 108.8 108.8 107.9 107.9 101.8 101.8

f8 122.6 122.6 121.1 121.1 110.7 110.7

f0η -3.5 -14.7 -2.6 -13.5 11.9 0.6

f0η′ 108.8 107.9 107.9 107.1 101.1 101.8

f8η 116.7 119.9 115.4 118.5 103.7 107.4

f8η′ -37.7 -25.5 -37.6 -24.9 -38.7 -27.0

Table 2. The results of the three DS models obtained through Shore’s equations (13)-(15)

for the two values of χYM approximating A: (175.7MeV)4 and (191MeV)4. Columns 1 and

2: The results when the non-anomalous inputs for Eqs. (13)-(15), namely Mπ ,MK , fπ =

fNS, fss̄ = fS and fK , are taken from Ref. [14], which uses Jain–Munczek Ansatz interaction

[15]. Columns 3 and 4: The results for the non-anomalous inputs from Ref. [9] using OPE-

inspired interaction nonperturbatively dressed by gluon condensates [16]. Columns 5 and

6: The results for the inputs from Ref. [18] using the separable Ansatz interaction [19]. All

masses and decay constants, as well as χ
1/4

YM , are in MeV, and angles are in degrees.

of Table 2. For each of the three different dynamical models which we used in

our previous DS studies [13,14,9,26,17,18], these results are displayed for χYM =

(175.7MeV)4 as in Refs. [9,18] and for χYM = (191MeV)4 [32] (adopted by Shore

[10,11]). The lower part of the table, displaying various additional results, is then
readily obtained through Eq. (24) and/or the following useful relations [29,14]:

f8 =

√
1

3
f2NS +

2

3
f2S , θ8 = φ− arctan

(√
2fS

fNS

)
, (25)

f0 =

√
2

3
f2NS +

1

3
f2S , θ0 = φ− arctan

(√
2fNS

fS

)
. (26)

Note that f0 and f8 do not result from solving of Eqs. (13)-(15), but are the cal-

culated predictions of a concrete dynamical DS model, independently of Shore’s
equations.

For all three quite different (RGI [15,16] and non-RGI [19]) dynamical mod-

els which we used in our previous DS studies [13,14,9,26,17,18], the situation
with the results turns out to be rather similar. The most conspicuous feature is

that η and η ′ masses are both much too low when the weighted average χYM =

(175.7±1.5MeV)4 of Refs. [31–33] is used, in contrast to the results from the stan-

dard WV relation, displayed in Table 1. If we single out just the highest of these

values (191MeV)4 [32]), the masses improve somewhat. However, other results
are spoiled – e.g., the mixing angle φ becomes too high to enable agreement with

the experimental results on η, η ′ → γγ decays, which require φ ∼ 40◦ [9].
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When we turn to the lower parts of Tables 1 and 2, where the results for the

η and η ′ decay constants, and the corresponding two mixing angles θ0 and θ8,

are given, we notice a feature common to all our results, as well as Shore’s (also
given in Table 1). The diagonal ones, f0η′ and f8η, are all of the order of fπ, being

larger by some 10% to 30%. The off-diagonal ones, f8η′ and f0η, are, on the other
hand, in general strongly suppressed. This is expected, as η′ is mostly singlet,

and η is mostly octet. The feature that may be surprising is that Shore’s results

(which, to be sure, were obtained [10,11] in quite a different way from ours) are
more similar to our results obtained through the standard WV relation, than to

our results obtained through Shore’s Eqs. (13)-(15).

All in all, inspection and comparison of the results in Table 2 with the results

(in Table 1) from the analogous calculations but using the standard WV relation
to construct the complete η-η ′ mass matrix, leads to the conclusion that the DS

approach with the standard WV relation (11) is phenomenologically more suc-

cessful, yielding the masses closer to the experimental ones. This may seem sur-
prising, as Shore’s generalization is in principle valid to all orders in 1/Nc, while

the standard WV relation is a lowest order 1/Nc result. Nevertheless, one must
be aware that we do not yet have at our disposal the full QCD topological charge

parameter A, and that we (along with Shore) had to use its lowest 1/Nc approxi-

mation, χYM. Also, we should recall from Sections 1 and 2 that the very usage of
the RLA assumed that the anomaly is implemented on the level of the anomalous

mass only, as a lowest order 1/Nc correction [13,14,9,17,18]. Thus, with respect to
the orders in 1/Nc, the usage of the standard WV relation is consistent in the

present formulation of our DS approach, whereas the usage of Shore’s general-

ization is not, which is probably the cause of its lesser phenomenological success.
However, the usage of Shore’s generalization in the DS context as exposed here,

will likely find its application at finite temperatures. Namely, there it may help
alleviate the difficulties met due to the usage of the standard WV relation in the

DS approach at T > 0, as discussed in Ref. [18].
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26. D. Blaschke, D. Horvatić, D. Klabučar, and A. E. Radzhabov, hep-ph/0703188, in Pro-

ceedings of the Mini-Workshop “Progress in Quark Models”, Bled, Slovenia, 2006, editors B.
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