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Abstract The paper presents a computer analysis of inductive coupling of the electromagnetic compatibility (EMC) 
problem. Its focus is on power electronics and electrical drives and tests performed by a numerical computer 
simulation that can disclose suite surprising findings about EMC problems.  
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1 Introduction 
 
Importance of electromagnetic compatibility (EMC) of 
all electrical products has been rapidly growing during 
the last decade. The environment is increasingly 
polluted by electromagnetic energy. The interference 
impact on the surroundings is being doubled every three 
years and covers a large frequency range. 
 Equipment disturbances and errors have become 
more serious as a consequence of the growth of the 
electronic circuit complexity. According to new 
technical legislation and also economic consequences, 
the EMC concept of all products must be strictly 
observed [1]. It must start with the specification of the 
equipment performance and end with the equipment 
installation procedures. 
 

2 EMC and environmental waste 
We all know the environmental pollution problems 
caused by solid, liquid and gaseous wastes. We are 
aware of most of these pollutants through our senses. 
Due to the increasing life standard, contamination of our 
environment by the electromagnetic energy is constantly 
increasing too. Since human beings have no organs for 
perception of such contamination, they cannot perceive 
it. The great producers of such waste are electronic 
systems developed by man and meant to be effective 
within these electromagnetic surroundings producing, of 
course, electromagnetic waste in turn [2].  
 On one side, interferences are deliberately or 
involuntarily produced. The place of their origin is 

called interference source. On the other side, devices 
may be hindered in their function by such interferences. 
Those objects are called interference objects. 
 The possible interfaces between sources and objects 
are shown in Fig. 1. There are four basic types of 
coupling that can realize these interfaces. 
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Fig. 1. Interference diagram 
 

3 EMC – the interference mechanism  
The interference mechanism can be described in a 
simplified form as follows. The interference source can 
be for instance a power semiconductor converter or 
motor. Interference is produced in the interference 
source getting into electronics in undesirable ways and 
is due to various effects distorting signals. Transmission 
can be direct, for example by galvanic coupling between 
interference source and interference sink. Interference 
can be spread through air or via ducts, or coupled 
inductively or capacitively into signal lines [3]. 
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Development of power semiconductor elements has 
caused vehement evolution of the power electronics 
branch in the last ten years. To investigate the converter 
functionality, it was necessary first to theoretically 
analyze and then practically verify its assumed activity. 
Now, we can eliminate the laborious theoretical analysis 
by a numerical computer simulation, which can disclose 
quite surprising findings about EMC [4]. 
 

4 Inductive coupling 
Inductive coupling is typical for two and more 
galvanically separated electric loops at the moment 
when the smaller one is driven by a time variable- 
current creating the corresponding, time-variable 
magnetic field [5]. In such case their mutual intercircuit 
effect is expressed as a function of the slope of the 
current increase or decrease, circuit environmental 
magnetic property as well as circuit geometric 
dimensions. 
 To predict the intercircuit inductive coupling, our 
focus will be on two electric loops l1 and l2 with currents 
i1 and i2. We will try to determine the effect of loop l1
on loop l2 (Fig. 2).  
 

Fig. 2. Investigated loops  
 

According to the Maxwell’s equation for a quasi-
stationary magnetic field 
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and following its integral form 
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and after applying the Stoke’s theorem, we obtain the 
equation for the induced voltage [6]; 
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where M is the coefficient of the mutual inductance. For 
the magnetic flux Ψ1 definition the equation 
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is valid where 2A is the vector of the magnetic field 
potential created by the current i1. We can calculate the 
value of this vector by the following equation: 
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After substituting the last equation with the equation 

valid for the magnetic flux φ1, the next relation is 
obtained: 
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and then 
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For the practical use, it is more advantageous to 
express the induced voltage in the form of a differential: 
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If we know the geometrical dimensions of the 

investigated loops (Fig. 3) and want to determine their 
mutual inductive coupling then we can use the next 
relation (9) for the induced voltage. It is based on the 
3D Cartesian coordinate system.  
 

Fig. 3. Geometric dimensions of the investigated loops 
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For a global solution of the inductive coupling part of 
the EMC problem inside the overall electric power 
system, it is necessary to analyze the circuit globally 
paying due regard to the mutual intercircuit inductance 
coupling. The result is the following integral-differential 
system of equations: 
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For this purpose it is very suitable to explore the 

existing simulation programs such as for instance the 
PSPICE program utilized worldwide. 
 In the next part, we will try to determine the effect 
of the one-quadrant impulse converter on the sensing 
circuit as it shown in Fig. 4. The circuit dimensions are 
a = 0.2 m, b = 0.3 m, c = 0.1 m, d = 0.05 m, e = 0.005m. 
The radius of the copper wires is R = 0.0006 m and the 
relative permitivity of the circuit environment is µr =
0.991.  
 

Fig. 4. Investigated circuit 
 

The inductance of the first loop is given as 
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and of the second as 
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The mutual inductance M calculated from the above 
mentioned equation is M = 477.4 nH. The magnetic 
coupling coefficient k is given as 
 

774.0
21

=
+

=
LL

Mk . (14) 

 
Now we can use the PSPICE simulation program for 

solving the inductive coupling problem between the two 
circuits [7]. Parameters of the circuit simulation are RZ

= 11.66 Ω, LZ = 400 µH, R = 10 Ω, RG = 100 Ω and 
UCC = 70V. The schematic connection is shown in Fig. 
5. The IGBT transistor Q was switched on at the 
frequency 10 kHz and the switch on/off ratio was 0.5.  
 

Fig. 5. Simulation circuit 
 

Simulation results are shown in Fig. 6. Results 
obtained with measurements are shown in Figs. 7 and 8 
and switching details in Figs. 9 and 10. 
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Fig. 6. Simulation results 
 

Fig. 7. Measured voltage uCE and current iC

Fig. 8. Measured voltage -ui and current iC
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Fig. 9. Switching on voltage uCE and current iC
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Fig. 10. Switching off voltage uCE and current iC

A comparison of the simulated and measured results 
shows that peaks of transistor current ic have the same 
values, i.e. 8.4 A, in both cases. The same values, i.e. 
4.4 A, have both the simulated and measured transistor 
current at the moment when transistor is switched off. 
There is a small difference only between the simulated 
and measured curves of the transistor voltage uCE. The 
overvoltage generated at the transistor switching off 
reaches the value of 150 V for the simulated result. 
However, the corresponding overvoltage has only the 
value of 130 V for the measured result. Peaks of the 
simulated and measured induced voltages have the same 
values of Ui1 = -2.2V, Ui2 = 5.02V, Ui1 = 2.1V. This 
means that such method is acceptable for inductive 
coupling investigation of the EMC problem. 
 To improve the obtained results, the numerical 
solution of the magnetic field by finite element method 
program was also used. The result of such analysis is 
shown in Fig. 11.  
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 From the “integral result” data window it is seen, 
that the value of the magnetic flux inside the sensing 
circuit is 3.317.10-9 Wb. Based on the basic program 
property allowing semi-real 3D space simulation with 
the 3rd dimension equal only to the basic unit of the 
depth (1mm), we multiplied the obtained value of the 
magnetic flux by the value of the sensing circuit depth c 
= 100 mm. The total magnetic flux was then 331.7.10-9 
Wb. This flux was excited by the peak circuit current 
8.4 A, the rising time of which was 120 ns. On the basis 
of the above equations, the first peak of the induced 
voltage can be calculated as  
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Similarly, it is possible to calculate the rest of the 
peaks of the induced voltage ui:
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The results obtained by the finite element numerical 

simulation method are again confirming the correctness 
of the above mentioned methods. 
 

5 Conclusion  
 
The performed analyses indicate that the fast power 
field effect transistor switching can produce the induced 
voltage with the value of some volts up to some tenths’ 
of volts in the nearby circuits. It is also evident that the 
magnitude of the induced voltage depends on the 
magnetic flux slope. This means that fast switching of 
small currents can generate large peaks of the induced 
voltage, too. 
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