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ABSTRACT

Long-object problem and short-object problem both deal with reconstruction problems with truncated cone-
beam CT projections acquired with a helical path. They have significantly less practical limitations than
original exact cone-beam CT reconstruction algorithms which the cone-beam must cover the whole object.
The short-object problem can be defined as reconstruction of the whole object having a finite support in the
axial direction with helical scan extends a little bit above and below the object’s support. However the long-
object problem is to reconstruct the central region of interest (ROI) of a long object having an infinite
support in the axial direction with helical scan extends a little & bit above and below the ROI. Although the
short-object problem is more difficult to solve than the conventional exact reconstruction with non-truncated
projections, the long-object problem presents greater challenge to researchers. Recently, with the great
development of panel detector technology and computer technology, more and more researchers have been
inspired to work on it. Because of great practical value of long-object algorithms, this paper focuses on the
review and discussion of recent developments in long-object algorithms. All Long-object algorithms are
classified as exact and approximate algorithms. After going briefly over the history of cone-beam
algorithms, some novel cone-beam long-object algorithms are introduced, such as: Tam’s algorithm, PI-

method, PHI-method, etc. Then, the methods described are being compared and discussed.
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INTRODUCTION

What are long-object problem and short-
object problem?

Short-object problem and long-object problem
both aim at reconstruction problems with truncated
cone-beam projections (See Fig. 1) acquired with a
helical path. The short-object problem is to reconstruct a
whole object having a finite support in the axial
direction with helical scan that extends a little bit
above and below the object’s support. Contrary to
short-object problem, the long-object problem is to
reconstruct the central region of interest (ROI) of a
long object having an infinite support in the axial
direction with helical scan extends a little a bit above
and below the ROI. The short-object problem
requires covering the whole object by the scan orbit.
But the long-object problem doesn’t. Although the
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short-object problem is more difficult to solve than
the conventional exact reconstruction with non-
truncated projections, the long-object is rather more
difficult than it is. (See Fig. 2)
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Fig 1. The projection is truncated because the cone
beam can’t cover the whole object.
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Fig 2. (a) Long-object problem. We can reconstruct
the ROI exactly only through scanning part of the
object. (b) Short-object problem. In order to reconstruct
the object exact, we must scan the whole object.

As long-object problem has fewer limitations,
long-object algorithms are more practical than other
ones and seem to be very promising in the near future.
This paper discusses the recent development in long-
object algorithms that are classified as approximate
algorithms and exact algorithms. We will introduce
some approximate algorithms such as Generalized
FDK, PI-method and some exact algorithms such as
Tam’s algorithm, PHI-method, Kudo’s algorithm. Then
we will compare and discuss them.

QUICK REVIEW OF CONE-BEAM
ALGORITHMS

As cone-beam CT is able to achieve higher
longitudinal resolution and relatively higher volume
scan speed, many researchers have been working on
it for the last two decades. The first algorithm has
been proposed by Feldkamp (Feldkamp et al., 1984),
and targets the single circle data acquisition
geometry. When imaging large objects, the cone
angle becomes larger, and in this case Feldkamp’s
algorithm degrades severely. To address the problem
many researchers developed their own analytical
exact reconstruction formulas (Tuy, 1983; Smith,
1985; Zeng et al., 1992; 1994; Axelsson et al,
1994;Wang et al., 1999) . The cornerstone of these
methods is a relation between the cone beam
projection and the 3D Radon transform of the object
(Grangeat, 1990). The main limitation of these
algorithms derived from Grangeat’s is the
requirement that their measured projections should
not be truncated. Since 1995 two ways (Tam et al.,
1997; Kudo et al., 1998) have been proposed to
handle truncated projection data. And a few
researchers applied this approach to the helical path
to obtain two different reconstruction algorithms.
However, as all of the algorithms above can’t solve
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long-object problem, they are still classified as short
object algorithms. In fact the real, i.e, exact long-
object algorithms, have been just developed recently.

RECENT ALGORITHMS FOR LONG
OBJECT

Approximate algorithms

Approximate algorithms generally have the virtue
of being computationally less expensive than exact
methods. These assets outweigh the approximate
character of them when the cone angle is not
large, i.e., fewer than 10 degrees. And they are
the dominant algorithms, which are used in
current commercial helical CT systems.

Rebinning algorithms (MSCT): One kind of
approximate algorithms is rebinning approach (Hu,
1999; Schaller et al, 2000a; 2000b), widely
implemented in Multi-Slice CT systems since 1990s.
Multi-row detectors are introduced to these systems
where cone-beam projections are rebinned into a
stack of fan-beam projections corresponding to each
slice. For these small cone angles, it has been shown
that 2-D filtered back-projection methods combined
with axial interpolation provide sufficient image
quality.

Generalized FDK algorithm: Another kind of
approximate algorithms is based on the FDK
algorithm, which was generalized to helical scan by
Ge Wang (Wang et al., 1993; 2000). This solution is
heuristic derivation of 2-D fan beam reconstruction
algorithm. It mainly follows three steps below: each
projection are firstly weighted to compensate its
deviation from the middle plane, then the row-by-row
ramp filtering on the detector plane is applied and, at
last, each projection is backprojected into the object
space.

Pl-methods: Recently a new family of algorithms
is developed by Danielsson, Turbell, etc. In the PI-
methods (Turbell, 2000) the detector fits exactly the
Tam-window, the data capture is complete and
almost non-redundant. The discovery of the original
PI-method (Danielsson et al., 1997) was based on the
simple insight that the rebinned ray geometry
guarantees that the backprojection step will deliver
the same number of contributions to all object points.
The Pl-original algorithm consists of the following
four steps:

1. Pre-weighting of detector data with cosine of the
cone angle

Rebinning to obliquely parallel projection data on
the virtual detector
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Ramp filtering of rebinned data row-by-row

Backprojection along the original ray paths
without magnification factor.

Tam also developed several algorithms to achieve
better image quality or faster speed. ( Danielsson et
al., 1997;Proksa, 2000)

b. Exact algorithms

However, due to approximate algorithms’ intrinsic
approximation, they introduce artifacts, which
generally rise with increasing the cone angle of
cone beam. (See Fig. 1) In contrast to approximate
algorithms, exact methods avoid intrinsic
approximations and can therefore provide superior
image quality for large cone angle.

Tam’s algorithm (1998): The first exact long
object algorithm for helical scan is has been proposed
by Tam (Tam, 1995; 1998; 2000), It requires
additionally a top and a bottom circle scans (See Fig.
3). Its idea is to calculate the 3D Radon transform for
a given plane, not from a single projection as with the
original Grangeat formula but rather from a
combination of several projections that provide a kind
of triangulation of the plane. It consists of four steps
which is a generalization of the six-step CB back-
projection technique developed by Kudo (1998). Tam
has also developed a combination method by
combining PSF filtering with four-step algorithm in
order to achieve good image quality and fast speed.
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Fig. 3 circles+spiral scan.

Kudo’s algorithm (2000): Unfortunately, the
above method is not very attractive for practical
applications because it requires additional two circles
to the helical vertex path. Kudo, etc developed a new
long object algorithm (Kudo et al., 1996; 1999; 2000)
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(Defrise et al., 2000), based on helical scan only. (See
Fig. 4) As this algorithm is derived from an exact
formula by introducing very minor approximation, it
can be called as quasi-exact long-object algorithm.
As a FBP (Filter Backprojection) type algorithm,
projection data can be processed parallel. One
limitation is that when Ro (the radius of object): Rah
(the radius of the helix) > 1.6, the algorithm will
become ineffective. Fortunately in current CT systems
Ro: Rh always much smaller than 1.6, so this algorithm
is practical.
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Fig. 4. Pure helcal scan.

PHI-methods (2000): In 2000 Schaller, etc also
proposed an exact solution (PHI-method) (Schaller et
al., 2000c) to solve long-object problem. The main
novelty of the PHI-method is the introduction of a
virtual object f,(x) for each value of the azimuthal
angle ¢ in the image space, with each virtual object
having the property of being equal to the real object
f(x) in some ROI(Qm). And for each ¢, one can
calculate exact Radon data corresponding to the two-
dimensional parallel-beam projection of f,(x) onto the
meridian plane of angle ¢. Then the ROI(Q2m) can be
exactly reconstructed because f(x) is identical to fy(x)
in Qm. To improve the performance of the PHI-
method, attempts to increase the size of the ROI for a
given scan range have been considered.

Katsevich algorithm (2002): Recently some
further works (Katsevich, 2002) have been made to
improve the effectiveness of exact long object
algorithm. This newly developed algorithm requires
smaller detector, faster reconstruction speed and less
restriction to Ro/Rh. As it implements the projection
data in Pl-line to reconstruct the object, Katsevish’s
algorithm has better temporal resolution than other
algorithms discussed above.



CONCLUSION

The main idea of approximation is implement 2-D
backprojection through rebinning step, which rebinned
projection data into either parallel beam or fan beam.
However, exact algorithms aim at calculating the
Radon transform of the object. Several approaches
have been proposed to handle it such as Tam’s a
combination of several projections which provide a
kind of triangulation of the plane to calculate Radon
transform, Schaller’s virtual object method and so on.
After getting the Radon transform, we can use inverse
Radon transform to reconstruct the object. Exact
algorithm processed in 3D space requires more time
than approximate algorithm. But its reconstruction
quality is better than approximate algorithm especially
when the cone angle becomes larger.

Although now all the commercially available
helical CT systems implement approximate algorithms,
exact long-object algorithms are still promising.
Because fast data acquisition is important for
increasing patient throughput in screening studies,
reducing motion and respiratory artifacts and making
good use of the available sustained X-ray power. Fast
data acquisition means large helix pitch. And large
helix pitch means large cone angle. But approximate
algorithms introduce artifacts, which generally become
severe with increasing cone angle, due to their intrinsic
approximation. Only exact long-object algorithms can
handle large cone angle properly. In the near future,
exact long-object reconstruction will gain wide
implementation when they can process projection
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data in a tolerable time with the great development of
computer technology.
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